Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters

Publication year range
1.
Neuroimage ; 226: 117557, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33189934

ABSTRACT

Cognitive planning, the ability to develop a sequenced plan to achieve a goal, plays a crucial role in human goal-directed behavior. However, the specific role of frontal structures in planning is unclear. We used a novel and ecological task, that allowed us to separate the planning period from the execution period. The spatio-temporal dynamics of EEG recordings showed that planning induced a progressive and sustained increase of frontal-midline theta activity (FMθ) over time. Source analyses indicated that this activity was generated within the prefrontal cortex. Theta activity from the right mid-Cingulate Cortex (MCC) and the left Anterior Cingulate Cortex (ACC) were correlated with an increase in the time needed for elaborating plans. On the other hand, left Frontopolar cortex (FP) theta activity exhibited a negative correlation with the time required for executing a plan. Since reaction times of planning execution correlated with correct responses, left FP theta activity might be associated with efficiency and accuracy in making a plan. Associations between theta activity from the right MCC and the left ACC with reaction times of the planning period may reflect high cognitive demand of the task, due to the engagement of attentional control and conflict monitoring implementation. In turn, the specific association between left FP theta activity and planning performance may reflect the participation of this brain region in successfully self-generated plans.


Subject(s)
Cognition/physiology , Frontal Lobe/physiology , Gyrus Cinguli/physiology , Theta Rhythm/physiology , Thinking/physiology , Adult , Attention , Electroencephalography , Female , Humans , Male , Reaction Time/physiology , Young Adult
2.
Br J Psychiatry ; 218(2): 112-118, 2021 02.
Article in English | MEDLINE | ID: mdl-32807243

ABSTRACT

BACKGROUND: Social and environmental factors such as poverty or violence modulate the risk and course of schizophrenia. However, how they affect the brain in patients with psychosis remains unclear. AIMS: We studied how environmental factors are related to brain structure in patients with schizophrenia and controls in Latin America, where these factors are large and unequally distributed. METHOD: This is a multicentre study of magnetic resonance imaging in patients with schizophrenia and controls from six Latin American cities. Total and voxel-level grey matter volumes, and their relationship with neighbourhood characteristics such as average income and homicide rates, were analysed with a general linear model. RESULTS: A total of 334 patients with schizophrenia and 262 controls were included. Income was differentially related to total grey matter volume in both groups (P = 0.006). Controls showed a positive correlation between total grey matter volume and income (R = 0.14, P = 0.02). Surprisingly, this relationship was not present in patients with schizophrenia (R = -0.076, P = 0.17). Voxel-level analysis confirmed that this interaction was widespread across the cortex. After adjusting for global brain changes, income was positively related to prefrontal cortex volumes only in controls. Conversely, the hippocampus in patients with schizophrenia, but not in controls, was relatively larger in affluent environments. There was no significant correlation between environmental violence and brain structure. CONCLUSIONS: Our results highlight the interplay between environment, particularly poverty, and individual characteristics in psychosis. This is particularly important for harsh environments such as low- and middle-income countries, where potentially less brain vulnerability (less grey matter loss) is sufficient to become unwell in adverse (poor) environments.


Subject(s)
Schizophrenia , Brain/diagnostic imaging , Cities , Gray Matter , Humans , Latin America/epidemiology , Magnetic Resonance Imaging , Poverty , Schizophrenia/diagnostic imaging , Schizophrenia/epidemiology , Violence
3.
Br J Anaesth ; 127(2): 254-263, 2021 08.
Article in English | MEDLINE | ID: mdl-34099242

ABSTRACT

BACKGROUND: Brain activity complexity is a promising correlate of states of consciousness. Previous studies have shown higher complexity for awake compared with deep anaesthesia states. However, little attention has been paid to complexity in intermediate states of sedation. METHODS: We analysed the Lempel-Ziv complexity of EEG signals from subjects undergoing moderate propofol sedation, from an open access database, and related it to behavioural performance as a continuous marker of the level of sedation and to plasma propofol concentrations. We explored its relation to spectral properties, to propofol susceptibility, and its topographical distribution. RESULTS: Subjects who retained behavioural performance despite propofol sedation showed increased brain activity complexity compared with baseline (M=13.9%, 95% confidence interval=7.5-20.3). This was not the case for subjects who lost behavioural performance. The increase was most prominent in frontal electrodes, and correlated with behavioural performance and propofol susceptibility. This effect was positively correlated with high-frequency activity. However, abolishing specific frequency ranges (e.g. alpha or gamma) did not reduce the propofol-induced increase in Lempel-Ziv complexity. CONCLUSIONS: Brain activity complexity can increase in response to propofol, particularly during low-dose sedation. Propofol-mediated Lempel-Ziv complexity increase was independent of frequency-specific spectral power manipulations, and most prominent in frontal areas. Taken together, these results advance our understanding of brain activity complexity and anaesthetics. They do not support models of consciousness that propose a direct relation between brain activity complexity and states of consciousness.


Subject(s)
Brain/drug effects , Electroencephalography/drug effects , Hypnotics and Sedatives/pharmacology , Propofol/pharmacology , Dose-Response Relationship, Drug , Electroencephalography/methods , Humans
4.
Cereb Cortex ; 30(7): 4011-4025, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32108230

ABSTRACT

Adaptive behavior requires the comparison of outcome predictions with actual outcomes (e.g., performance feedback). This process of performance monitoring is computed by a distributed brain network comprising the medial prefrontal cortex (mPFC) and the anterior insular cortex (AIC). Despite being consistently co-activated during different tasks, the precise neuronal computations of each region and their interactions remain elusive. In order to assess the neural mechanism by which the AIC processes performance feedback, we recorded AIC electrophysiological activity in humans. We found that the AIC beta oscillations amplitude is modulated by the probability of performance feedback valence (positive or negative) given the context (task and condition difficulty). Furthermore, the valence of feedback was encoded by delta waves phase-modulating the power of beta oscillations. Finally, connectivity and causal analysis showed that beta oscillations relay feedback information signals to the mPFC. These results reveal that structured oscillatory activity in the anterior insula encodes performance feedback information, thus coordinating brain circuits related to reward-based learning.


Subject(s)
Adaptation, Psychological/physiology , Decision Making , Feedback, Psychological/physiology , Formative Feedback , Insular Cortex/physiology , Memory, Short-Term , Prefrontal Cortex/physiology , Adolescent , Adult , Beta Rhythm/physiology , Drug Resistant Epilepsy , Electrocorticography , Female , Humans , Male , Middle Aged , Reading , Spatial Memory , Young Adult
5.
Neuroimage ; 219: 117027, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32522663

ABSTRACT

Resting-state functional MRI activity is organized as a complex network. However, this coordinated brain activity changes with time, raising questions about its evolving temporal arrangement. Does the brain visit different configurations through time in a random or ordered way? Advances in this area depend on developing novel paradigms that would allow us to shed light on these issues. We here propose to study the temporal changes in the functional connectome by looking at transition graphs of network activity. Nodes of these graphs correspond to brief whole-brain connectivity patterns (or meta-states), and directed links to the temporal transition between consecutive meta-states. We applied this method to two datasets of healthy subjects (160 subjects and a replication sample of 54), and found that transition networks had several non-trivial properties, such as a heavy-tailed degree distribution, high clustering, and a modular organization. This organization was implemented at a low biological cost with a high cost-efficiency of the dynamics. Furthermore, characteristics of the subjects' transition graphs, including global efficiency, local efficiency and their transition cost, were correlated with cognition and motor functioning. All these results were replicated in both datasets. We conclude that time-varying functional connectivity patterns of the brain in health progress in time in a highly organized and complex order, which is related to behavior.


Subject(s)
Brain/diagnostic imaging , Cognition/physiology , Default Mode Network/diagnostic imaging , Nerve Net/diagnostic imaging , Adult , Connectome , Databases, Factual , Female , Humans , Magnetic Resonance Imaging , Male , Models, Neurological , Young Adult
6.
Neuroimage ; 95: 276-86, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-24650595

ABSTRACT

Eye movements are a constant and essential component of natural vision, yet, most of our knowledge about the human visual system comes from experiments that restrict them. This experimental constraint is mostly in place to control visual stimuli presentation and to avoid artifacts in non-invasive measures of brain activity, however, this limitation can be overcome with intracranial EEG (iEEG) recorded from epilepsy patients. Moreover, the high-frequency components of the iEEG signal (between about 50 and 150Hz) can provide a proxy of population-level spiking activity in any cortical area during free-viewing. We combined iEEG with high precision eye-tracking to study fine temporal dynamics and functional specificity in the fusiform face (FFA) and visual word form area (VWFA) while patients inspected natural pictures containing faces and text. We defined the first local measure of visual (electrophysiological) responsiveness adapted to free-viewing in humans: amplitude modulations in the high-frequency activity range (50-150Hz) following fixations (fixation-related high-frequency response). We showed that despite the large size of receptive fields in the ventral occipito-temporal cortex, neural activity during natural vision of realistic cluttered scenes is mostly dependent upon the category of the foveated stimulus - suggesting that category-specificity is preserved during free-viewing and that attention mechanisms might filter out the influence of objects surrounding the fovea.


Subject(s)
Eye Movements/physiology , Visual Cortex/physiology , Visual Perception/physiology , Adult , Electroencephalography , Female , Humans , Signal Processing, Computer-Assisted
7.
J Neurosci ; 32(10): 3414-21, 2012 Mar 07.
Article in English | MEDLINE | ID: mdl-22399764

ABSTRACT

An object that differs markedly from its surrounding-for example, a red cherry among green leaves-seems to pop out effortlessly in our visual experience. The rapid detection of salient targets, independently of the number of other items in the scene, is thought to be mediated by efficient search brain mechanisms. It is not clear, however, whether efficient search is actually an "effortless" bottom-up process or whether it also involves regions of the prefrontal cortex generally associated with top-down sustained attention. We addressed this question with intracranial EEG (iEEG) recordings designed to identify brain regions underlying a classic visual search task and correlate neural activity with target detection latencies on a trial-by-trial basis with high temporal precision recordings of these regions in epileptic patients. The spatio-temporal dynamics of single-trial spectral analysis of iEEG recordings revealed sustained energy increases in a broad gamma band (50-150 Hz) throughout the duration of the search process in the entire dorsal attention network both in efficient and inefficient search conditions. By contrast to extensive theoretical and experimental indications that efficient search relies exclusively on transient bottom-up processes in visual areas, we found that efficient search is mediated by sustained gamma activity in the dorsal lateral prefrontal cortex and the anterior cingulate cortex, alongside the superior parietal cortex and the frontal eye field. Our findings support the hypothesis that active visual search systematically involves the frontal-parietal attention network and therefore, executive attention resources, regardless of target saliency.


Subject(s)
Attention/physiology , Brain Waves/physiology , Cerebral Cortex/physiology , Nerve Net/physiology , Pattern Recognition, Visual/physiology , Photic Stimulation/methods , Adult , Female , Humans , Male , Middle Aged , Reaction Time/physiology , Time Factors , Young Adult
8.
J Neurosci ; 32(49): 17554-62, 2012 Dec 05.
Article in English | MEDLINE | ID: mdl-23223279

ABSTRACT

As you might experience it while reading this sentence, silent reading often involves an imagery speech component: we can hear our own "inner voice" pronouncing words mentally. Recent functional magnetic resonance imaging studies have associated that component with increased metabolic activity in the auditory cortex, including voice-selective areas. It remains to be determined, however, whether this activation arises automatically from early bottom-up visual inputs or whether it depends on late top-down control processes modulated by task demands. To answer this question, we collaborated with four epileptic human patients recorded with intracranial electrodes in the auditory cortex for therapeutic purposes, and measured high-frequency (50-150 Hz) "gamma" activity as a proxy of population level spiking activity. Temporal voice-selective areas (TVAs) were identified with an auditory localizer task and monitored as participants viewed words flashed on screen. We compared neural responses depending on whether words were attended or ignored and found a significant increase of neural activity in response to words, strongly enhanced by attention. In one of the patients, we could record that response at 800 ms in TVAs, but also at 700 ms in the primary auditory cortex and at 300 ms in the ventral occipital temporal cortex. Furthermore, single-trial analysis revealed a considerable jitter between activation peaks in visual and auditory cortices. Altogether, our results demonstrate that the multimodal mental experience of reading is in fact a heterogeneous complex of asynchronous neural responses, and that auditory and visual modalities often process distinct temporal frames of our environment at the same time.


Subject(s)
Attention/physiology , Auditory Cortex/physiology , Brain Mapping/psychology , Reading , Visual Cortex/physiology , Visual Perception/physiology , Acoustic Stimulation/methods , Acoustic Stimulation/psychology , Adult , Brain Mapping/methods , Female , Humans , Magnetic Resonance Imaging/methods , Magnetic Resonance Imaging/psychology , Male , Photic Stimulation/methods , Speech/physiology , Speech Perception/physiology
9.
J Neurosci ; 32(19): 6421-34, 2012 May 09.
Article in English | MEDLINE | ID: mdl-22573665

ABSTRACT

Reading sentences involves a distributed network of brain regions acting in concert surrounding the left sylvian fissure. The mechanisms of neural communication underlying the extraction and integration of verbal information across subcomponents of this reading network are still largely unknown. We recorded intracranial EEG activity in 12 epileptic human patients performing natural sentence reading and analyzed long-range corticocortical interactions between local neural activations. During a simple task contrasting semantic, phonological, and purely visual processes, we found process-specific neural activity elicited at the single-trial level, characterized by energy increases in a broad gamma band (40-150 Hz). Correlation analysis between task-induced gamma-band activations revealed a selective fragmentation of the network into specialized subnetworks supporting sentence-level semantic analysis and phonological processing. We extend the implications of our results beyond reading, to propose that gamma-band amplitude correlations might constitute a fundamental mechanism for large-scale neural integration during high-level cognition.


Subject(s)
Brain Waves/physiology , Nerve Net/physiology , Photic Stimulation/methods , Psychomotor Performance/physiology , Reading , Adult , Brain Mapping/methods , Cerebral Cortex/physiology , Electroencephalography/methods , Epilepsies, Partial/diagnosis , Epilepsies, Partial/physiopathology , Female , Humans , Middle Aged , Pattern Recognition, Visual/physiology , Young Adult
10.
Sci Rep ; 13(1): 21700, 2023 12 07.
Article in English | MEDLINE | ID: mdl-38065976

ABSTRACT

Characterization of brain states is essential for understanding its functioning in the absence of external stimuli. Brain states differ on their balance between excitation and inhibition, and on the diversity of their activity patterns. These can be respectively indexed by 1/f slope and Lempel-Ziv complexity (LZc). However, whether and how these two brain state properties relate remain elusive. Here we analyzed the relation between 1/f slope and LZc with two in-silico approaches and in both rat EEG and monkey ECoG data. We contrasted resting state with propofol anesthesia, which directly modulates the excitation-inhibition balance. We found convergent results among simulated and empirical data, showing a strong, inverse and non trivial monotonic relation between 1/f slope and complexity, consistent at both ECoG and EEG scales. We hypothesize that differentially entropic regimes could underlie the link between the excitation-inhibition balance and the vastness of the repertoire of brain systems.


Subject(s)
Electroencephalography , Propofol , Rats , Animals , Electroencephalography/methods , Brain/physiology , Propofol/pharmacology , Electrocorticography
11.
J Vis Exp ; (193)2023 03 03.
Article in English | MEDLINE | ID: mdl-36939245

ABSTRACT

The planning process, characterized by the capability to formulate an organized plan to reach a goal, is essential for human goal-directed behavior. Since planning is compromised in several neuropsychiatric disorders, the implementation of proper clinical and experimental tests to examine planning is critical. Due to the nature of the deployment of planning, in which several cognitive domains participate, the assessment of planning and the design of behavioral paradigms coupled with neuroimaging methods are current challenges in cognitive neuroscience. A planning task was evaluated in combination with an electroencephalogram (EEG) system and eye movement recordings in 27 healthy adult participants. Planning can be separated into two stages: a mental planning stage in which a sequence of steps is internally represented and an execution stage in which motor action is used to achieve a previously planned goal. Our protocol included a planning task and a control task. The planning task involved solving 36 maze trials, each representing a zoo map. The task had four periods: i) planning, where the subjects were instructed to plan a path to visit the locations of four animals according to a set of rules; ii) maintenance, where the subjects had to retain the planned path in their working memory; iii) execution, where the subjects used eye movements to trace the previously planned path as indicated by the eye-tracker system; and iv) response, where the subjects reported the order of the visited animals. The control task had a similar structure, but the cognitive planning component was removed by modifying the task goal. The spatial and temporal patterns of the EEG revealed that planning induces a gradual and lasting rise in frontal-midline theta activity (FMθ) over time. The source of this activity was identified within the prefrontal cortex by source analyses. Our results suggested that the experimental paradigm combining EEG and eye-tracker systems was optimal for evaluating cognitive planning.


Subject(s)
Electroencephalography , Prefrontal Cortex , Adult , Animals , Humans , Prefrontal Cortex/physiology , Eye Movements , Memory, Short-Term/physiology
12.
Schizophr Bull ; 49(3): 706-716, 2023 05 03.
Article in English | MEDLINE | ID: mdl-36472382

ABSTRACT

BACKGROUND AND HYPOTHESIS: Abnormal functional connectivity between brain regions is a consistent finding in schizophrenia, including functional magnetic resonance imaging (fMRI) studies. Recent studies have highlighted that connectivity changes in time in healthy subjects. We here examined the temporal changes in functional connectivity in patients with a first episode of psychosis (FEP). Specifically, we analyzed the temporal order in which whole-brain organization states were visited. STUDY DESIGN: Two case-control studies, including in each sample a subgroup scanned a second time after treatment. Chilean sample included 79 patients with a FEP and 83 healthy controls. Mexican sample included 21 antipsychotic-naïve FEP patients and 15 healthy controls. Characteristics of the temporal trajectories between whole-brain functional connectivity meta-states were examined via resting-state functional MRI using elements of network science. We compared the cohorts of cases and controls and explored their differences as well as potential associations with symptoms, cognition, and antipsychotic medication doses. STUDY RESULTS: We found that the temporal sequence in which patients' brain dynamics visited the different states was more redundant and segregated. Patients were less flexible than controls in changing their network in time from different configurations, and explored the whole landscape of possible states in a less efficient way. These changes were related to the dose of antipsychotics the patients were receiving. We replicated the relationship with antipsychotic medication in the antipsychotic-naïve FEP sample scanned before and after treatment. CONCLUSIONS: We conclude that psychosis is related to a temporal disorganization of the brain's dynamic functional connectivity, and this is associated with antipsychotic medication use.


Subject(s)
Antipsychotic Agents , Psychotic Disorders , Schizophrenia , Humans , Schizophrenia/diagnostic imaging , Schizophrenia/drug therapy , Antipsychotic Agents/pharmacology , Antipsychotic Agents/therapeutic use , Psychotic Disorders/diagnostic imaging , Psychotic Disorders/drug therapy , Brain/diagnostic imaging , Brain Mapping , Magnetic Resonance Imaging
13.
J Neurosci ; 31(41): 14521-30, 2011 Oct 12.
Article in English | MEDLINE | ID: mdl-21994368

ABSTRACT

Task performance is associated with increased brain metabolism but also with prominent deactivation in specific brain structures known as the default-mode network (DMN). The role of DMN deactivation remains enigmatic in part because its electrophysiological correlates, temporal dynamics, and link to behavior are poorly understood. Using extensive depth electrode recordings in humans, we provide first electrophysiological evidence for a direct correlation between the dynamics of power decreases in the DMN and individual subject behavior. We found that all DMN areas displayed transient suppressions of broadband gamma (60-140 Hz) power during performance of a visual search task and, critically, we show for the first time that the millisecond range duration and extent of the transient gamma suppressions are correlated with task complexity and subject performance. In addition, trial-by-trial correlations revealed that spatially distributed gamma power increases and decreases formed distinct anticorrelated large-scale networks. Beyond unraveling the electrophysiological basis of DMN dynamics, our results suggest that, rather than indicating a mere switch to a global exteroceptive mode, DMN deactivation encodes the extent and efficiency of our engagement with the external world. Furthermore, our findings reveal a pivotal role for broadband gamma modulations in the interplay between task-positive and task-negative networks mediating efficient goal-directed behavior and facilitate our understanding of the relationship between electrophysiology and neuroimaging studies of intrinsic brain networks.


Subject(s)
Brain Mapping , Brain Waves/physiology , Brain/physiopathology , Models, Neurological , Adolescent , Adult , Computer Simulation , Electroencephalography , Epilepsy/pathology , Epilepsy/physiopathology , Female , Humans , Imaging, Three-Dimensional , Male , Middle Aged , Neural Pathways/physiopathology , Neuropsychological Tests , Nonlinear Dynamics , Photic Stimulation/methods , Reaction Time/physiology , Statistics as Topic , Time Factors , Young Adult
14.
Neuroimage ; 59(1): 872-9, 2012 Jan 02.
Article in English | MEDLINE | ID: mdl-21839843

ABSTRACT

Several brain regions involved in visual perception have been shown to also participate in non-sensory cognitive processes of visual representations. Here we studied the role of ventral visual pathway areas in visual imagery and working memory. We analyzed intracerebral EEG recordings from the left inferior temporal lobe of an epileptic patient during working memory tasks and mental imagery. We found that high frequency gamma-band activity (50-150 Hz) in the inferior temporal gyrus (ITG) increased with memory load only during visuo-spatial, but not verbal, working memory. Using a real-time set-up to measure and visualize gamma-band activity online--BrainTV--we found a systematic activity increase in ITG when the patient was visualizing a letter (visual imagery), but not during perception of letters. In contrast, only 7 mm more medially, neurons located in the fusiform gyrus exhibited a complete opposite pattern, responding during verbal working memory retention and letter presentation, but not during imagery or visuo-spatial working memory maintenance. Talairach coordinates indicate that the fusiform contact site corresponds to the word form area, suggesting that this region has a role not only in processing letter-strings, but also in working memory retention of verbal information. We conclude that neural networks supporting imagination of a visual element are not necessarily the same as those underlying perception of that element. Additionally, we present evidence that gamma-band activity in the inferior temporal lobe, can be used as a direct measure of the efficiency of top-down attentional control over visual areas with implications for the development of novel brain-computer interfaces. Finally, by just reading gamma-band activity in these two recording sites, it is possible to determine, accurately and in real-time, whether a given memory content is verbal or visuo-spatial.


Subject(s)
Imagination/physiology , Memory, Short-Term/physiology , Temporal Lobe/physiology , Visual Perception/physiology , Adolescent , Brain Mapping , Electroencephalography , Female , Humans
15.
Netw Neurosci ; 5(4): 890-910, 2021.
Article in English | MEDLINE | ID: mdl-35024535

ABSTRACT

Previous research has shown that the autonomic nervous system provides essential constraints over ongoing cognitive function. However, there is currently a relative lack of direct empirical evidence for how this interaction manifests in the brain at the macroscale level. Here, we examine the role of ascending arousal and attentional load on large-scale network dynamics by combining pupillometry, functional MRI, and graph theoretical analysis to analyze data from a visual motion-tracking task with a parametric load manipulation. We found that attentional load effects were observable in measures of pupil diameter and in a set of brain regions that parametrically modulated their BOLD activity and mesoscale network-level integration. In addition, the regional patterns of network reconfiguration were correlated with the spatial distribution of the α2a adrenergic receptor. Our results further solidify the relationship between ascending noradrenergic activity, large-scale network integration, and cognitive task performance.

16.
Hum Brain Mapp ; 31(8): 1217-32, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20120013

ABSTRACT

Evaluating the outcome of our own actions is a fundamental process by which we adapt our behavior in our interaction with the external world. fMRI and electrophysiological studies in monkeys have found feedback-specific responses in several brain regions, unveiling facets of a large-scale network predominantly distributed in the frontal lobes. However, a consensus has yet to be reached regarding the exact contribution of each region. The present study benefited from intracerebral EEG recordings in epileptic patients to record directly the neural activity in each of those frontal structures in response to positive and negative feedback. Both types of feedback induced a sequence of high-frequency responses (>40 Hz) in a widespread network involving medial frontal cortex, dorsolateral prefrontal cortex (DLPFC), orbitofrontal cortex (OFC), and insular cortex. The pre-supplementary motor area (pre-SMA), DLPFC, and lateral OFC showed higher activation in response to negative feedback, while medial OFC and dorsal anterior cingulate cortex (dACC) were more responsive to positive feedback. Responses in the medial prefrontal cortex (pre-SMA and dACC) were sustained (lasting more than 1,000 ms), while responses in the DLPFC, insula, and the OFC were short lasting (less than 800 ms). Taken together, our findings show that evaluating the outcome of our actions triggers gamma-range activity modulations in several frontal and insular regions. Moreover, we found that the timing and amplitude of those gamma-band responses reveal fine-scale dissociations between the neural dynamics of positive versus negative feedback processing.


Subject(s)
Brain Mapping , Cerebral Cortex/physiopathology , Epilepsies, Partial/pathology , Evoked Potentials, Visual/physiology , Feedback, Physiological/physiology , Time Perception/physiology , Adult , Cerebral Cortex/pathology , Electrodes, Implanted , Electroencephalography/methods , Female , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Neuropsychological Tests , Photic Stimulation/methods , Young Adult
17.
Front Neurosci ; 14: 558981, 2020.
Article in English | MEDLINE | ID: mdl-33414699

ABSTRACT

Electroencephalography (EEG) source reconstruction estimates spatial information from the brain's electrical activity acquired using EEG. This method requires accurate identification of the EEG electrodes in a three-dimensional (3D) space and involves spatial localization and labeling of EEG electrodes. Here, we propose a new approach to tackle this two-step problem based on the simultaneous acquisition of EEG and magnetic resonance imaging (MRI). For the step of spatial localization of electrodes, we extract the electrode coordinates from the curvature of the protrusions formed in the high-resolution T1-weighted brain scans. In the next step, we assign labels to each electrode based on the distinguishing feature of the electrode's distance profile in relation to other electrodes. We then compare the subject's electrode data with template-based models of prelabeled distance profiles of correctly labeled subjects. Based on this approach, we could localize EEG electrodes in 26 head models with over 90% accuracy in the 3D localization of electrodes. Next, we performed electrode labeling of the subjects' data with progressive improvements in accuracy: with ∼58% accuracy based on a single EEG-template, with ∼71% accuracy based on 3 EEG-templates, and with ∼76% accuracy using 5 EEG-templates. The proposed semi-automated method provides a simple alternative for the rapid localization and labeling of electrodes without the requirement of any additional equipment than what is already used in an EEG-fMRI setup.

18.
Nat Commun ; 11(1): 2786, 2020 06 03.
Article in English | MEDLINE | ID: mdl-32493923

ABSTRACT

Music perception is plausibly constrained by universal perceptual mechanisms adapted to natural sounds. Such constraints could arise from our dependence on harmonic frequency spectra for segregating concurrent sounds, but evidence has been circumstantial. We measured the extent to which concurrent musical notes are misperceived as a single sound, testing Westerners as well as native Amazonians with limited exposure to Western music. Both groups were more likely to mistake note combinations related by simple integer ratios as single sounds ('fusion'). Thus, even with little exposure to Western harmony, acoustic constraints on sound segregation appear to induce perceptual structure on note combinations. However, fusion did not predict aesthetic judgments of intervals in Westerners, or in Amazonians, who were indifferent to consonance/dissonance. The results suggest universal perceptual mechanisms that could help explain cross-cultural regularities in musical systems, but indicate that these mechanisms interact with culture-specific influences to produce musical phenomena such as consonance.


Subject(s)
Indigenous Peoples , Music , Pitch Perception/physiology , Acoustic Stimulation , Adult , Bolivia , Female , Humans , Male , Sound
19.
Hum Brain Mapp ; 30(6): 1758-71, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19343801

ABSTRACT

Although non-invasive techniques provide functional activation maps at ever-growing spatio-temporal precision, invasive recordings offer a unique opportunity for direct investigations of the fine-scale properties of neural mechanisms in focal neuronal populations. In this review we provide an overview of the field of intracranial Electroencephalography (iEEG) and discuss its strengths and limitations and its relationship to non-invasive brain mapping techniques. We discuss the characteristics of invasive data acquired from implanted epilepsy patients using stereotactic-electroencephalography (SEEG) and electrocorticography (ECoG) and the use of spectral analysis to reveal task-related modulations in multiple frequency components. Increasing evidence suggests that gamma-band activity (>40 Hz) might be a particularly efficient index for functional mapping. Moreover, the detection of high gamma activity may play a crucial role in bridging the gap between electrophysiology and functional imaging studies as well as in linking animal and human data. The present review also describes recent advances in real-time invasive detection of oscillatory modulations (including gamma activity) in humans. Furthermore, the implications of intracerebral findings on future non-invasive studies are discussed.


Subject(s)
Brain/physiology , Electroencephalography/methods , Epilepsy/physiopathology , Magnetoencephalography/methods , Attention , Auditory Perception , Brain/physiopathology , Brain Mapping/methods , Cognition , Evoked Potentials/physiology , Humans , Memory , Oscillometry , Parietal Lobe , Recognition, Psychology , Stereotaxic Techniques , Visual Perception
20.
Sci Data ; 6(1): 25, 2019 04 11.
Article in English | MEDLINE | ID: mdl-30975993

ABSTRACT

Attention Deficit/Hyperactive Disorder (ADHD) is diagnosed based on observed behavioral outcomes alone. Given that some brain attentional networks involve circuits that control the eye pupil, we monitored pupil size in ADHD- diagnosed children and also in control children during a visuospatial working memory task. We present here the full dataset, consisting of pupil size time series for each trial and subject. There are data from, 22 control, and 28 ADHD-diagnosed children. There are also data from a subset of 17 ADHD children that performed the task twice, on- and off-medication. In addition, our dataset also includes gaze position data from each trial and subject, and also scores from the Weschler Intelligence Scale for Children. In this context, the dataset can serve as a resource to analyze dynamic eye movement and pupil changes as a function of known behavioral changes and scores in neuropsychological tests, which reflect neurocognitive processing.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Cognition , Eye Movements , Attention , Attention Deficit Disorder with Hyperactivity/physiopathology , Attention Deficit Disorder with Hyperactivity/psychology , Child , Female , Humans , Male , Neuropsychological Tests , Pupil/physiology
SELECTION OF CITATIONS
SEARCH DETAIL