Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Am J Physiol Regul Integr Comp Physiol ; 309(5): R467-74, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26108870

ABSTRACT

Mice provide a unique platform to dissect disease pathogenesis, with the availability of recombinant inbred strains and diverse genetically modified strains. Leveraging these reagents to elucidate the mechanisms of hypertensive tissue injury has been hindered by difficulty establishing persistent hypertension in these inbred lines. ANG II infusion provides relatively short-term activation of the renin-angiotensinogen system (RAS) with concomitant elevated arterial pressure. Longer-duration studies using renin transgenic mice are powerful models of chronic hypertension, yet are limited by the genetic background on which the transgene exists and the exposure throughout development. The present studies characterized hypertension produced by transduction with a renin-coding adeno-associated virus (ReninAAV). ReninAAV mice experienced elevated circulating renin with concurrent elevations in arterial pressure. Following a single injection of ReninAAV, arterial pressure increased on average +56 mmHg, an increase that persisted for at least 12 wk in three distinct and widely used strains of adult mice: 129/S6, C56BL/6, and DBA/2J. This was accomplished without surgical implantation of pumps or complex breeding and backcrossing. In addition, ReninAAV mice developed pathophysiological changes associated with chronic hypertension, including increased heart weight and albuminuria. Thus ReninAAV provides a unique tool to study the onset of and effects of persistent hypertension in diverse murine models. This model should facilitate our understanding of the pathogenesis of hypertensive injury.


Subject(s)
Arterial Pressure , Dependovirus/metabolism , Genetic Vectors , Hypertension/metabolism , Renin-Angiotensin System , Renin/biosynthesis , Transduction, Genetic , Albuminuria/genetics , Albuminuria/metabolism , Animals , Arterial Pressure/genetics , Cardiomegaly/genetics , Cardiomegaly/metabolism , Dependovirus/genetics , Disease Models, Animal , Disease Progression , Genetic Predisposition to Disease , Hypertension/genetics , Hypertension/physiopathology , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Inbred DBA , Mutation , Phenotype , Renin/genetics , Renin-Angiotensin System/genetics , Time Factors
2.
Cardiovasc Drugs Ther ; 22(6): 469-78, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18679781

ABSTRACT

INTRODUCTION: Controlling hypertension by angiotensin converting enzyme inhibitors (ACEI) or angiotensin receptor blockers (ARB), mechanisms that inhibit later pathway steps in the renin-angiotensin system (RAS), have clinically afforded protection against cardiac and renal disease. MATERIALS AND METHODS: In order to determine if blocking the RAS rate-limiting step of angiotensin II generation via renin inhibition could afford similar end organ protection in a human-relevant preclinical model, this study investigated the cardiac and renal effects of a nonpeptide, piperidine renin inhibitor (RI; 100 mg/kg/day PO) in double transgenic mice (dTGM) which express both human renin and angiotensinogen genes. RI was compared to the ARB, candesartan (3 mg/kg/day PO), and to the ACEI, enalapril (60 mg/kg/day PO) in a 4-week dosing paradigm. These doses of RI, ACEI and ARB were previously found to normalize mean blood pressure (MBP) to 110 + 3, 109 + 7 and 107 + 6 mmHg, respectively, after 1 day of treatment. RESULTS AND DISCUSSION: In the dTGM, PRA, plasma aldosterone, GFR, microalbuminuria and left ventricular free wall thickness (LVH) were higher than in the wild type C57BL/6 mice. Microalbuminuria and LVH were significantly reduced by 93% and 9% for the RI, 83% and 13% for enalapril and 73% and 6% for candesartan, respectively. PRA and aldosterone were reduced by the RI 56% and 23%, respectively. These results suggest that the RI provides protection against cardiac and renal disease, similar to ARB and ACEI.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Angiotensinogen/genetics , Cardiotonic Agents/therapeutic use , Kidney Diseases/drug therapy , Piperidines/therapeutic use , Quinolines/therapeutic use , Renin/antagonists & inhibitors , Administration, Oral , Albuminuria/diagnosis , Albuminuria/drug therapy , Albuminuria/etiology , Aldosterone/blood , Angiotensin II Type 1 Receptor Blockers/pharmacology , Angiotensin II Type 1 Receptor Blockers/therapeutic use , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensinogen/metabolism , Animals , Benzimidazoles/pharmacology , Biphenyl Compounds/pharmacology , Blood Pressure/drug effects , Blood Pressure/physiology , Cardiotonic Agents/pharmacology , Drug Administration Schedule , Enalapril/pharmacology , Female , Glomerular Filtration Rate/drug effects , Glomerular Filtration Rate/physiology , Humans , Hypertrophy, Left Ventricular/diagnostic imaging , Hypertrophy, Left Ventricular/drug therapy , Hypertrophy, Left Ventricular/physiopathology , Kidney Diseases/prevention & control , Mice , Mice, Inbred C57BL , Mice, Transgenic , Molecular Structure , Piperidines/chemistry , Quinolines/chemistry , Renin/blood , Renin/genetics , Renin-Angiotensin System/drug effects , Renin-Angiotensin System/genetics , Tetrazoles/pharmacology , Time Factors , Ultrasonography
3.
Mediators Inflamm ; 2007: 85091, 2007.
Article in English | MEDLINE | ID: mdl-17641732

ABSTRACT

Hypertensive mice that express the human renin and angiotensinogen genes are used as a model for human hypertension because they develop hypertension secondary to increased renin-angiotensin system activity. Our study investigated the cellular localization and distribution of COX-1, COX-2, mPGES-1, and mPGES-2 in organ tissues from a mouse model of human hypertension. Male (n = 15) and female (n = 15) double transgenic mice (h-Ang 204/1 h-Ren 9) were used in the study. Lung, kidney, and heart tissues were obtained from mice at necropsy and fixed in 10% neutral buffered formalin followed by embedding in paraffin wax. Cut sections were stained immunohistochemically with antibodies to COX-1, COX-2, mPGES-1, and mPGES-2 and analyzed by light microscopy. Renal expression of COX-1 was the highest in the distal convoluted tubules, cortical collecting ducts, and medullary collecting ducts; while proximal convoluted tubules lacked COX-1 expression. Bronchial and bronchiolar epithelial cells, alveolar macrophages, and cardiac vascular endothelial cells also had strong COX-1 expression, with other renal, pulmonary, or cardiac microanatomic locations having mild-to-moderate expression. mPGES-2 expression was strong in the bronchial and bronchiolar epithelial cells, mild to moderate in various renal microanatomic locations, and absent in cardiac tissues. COX-2 expression was strong in the proximal and distal convoluted tubules, alveolar macrophages, and bronchial and bronchiolar epithelial cells. Marked mPGES-1 was present only in bronchial and bronchiolar epithelial cells; while mild-to-moderate expression was present in other pulmonary, renal, or cardiac microanatomic locations. Expression of these molecules was similar between males and females. Our work suggests that in hypertensive mice, there are (a) significant microanatomic variations in the pulmonary, renal, and cardiac distribution and cellular localization of COX-1, COX-2, mPGES-1, and mPGES-2, and (b) no differences in expression between genders.


Subject(s)
Cyclooxygenase 1/metabolism , Cyclooxygenase 2/metabolism , Hypertension/enzymology , Intramolecular Oxidoreductases/metabolism , Angiotensinogen/genetics , Animals , Disease Models, Animal , Female , Humans , Hypertension/genetics , Hypertension/pathology , Immunohistochemistry , Kidney/enzymology , Lung/enzymology , Male , Mice , Mice, Transgenic , Microsomes/enzymology , Myocardium/enzymology , Prostaglandin-E Synthases , Renin/genetics
4.
J Med Chem ; 54(12): 4219-33, 2011 Jun 23.
Article in English | MEDLINE | ID: mdl-21557540

ABSTRACT

Mining of an in-house collection of angiotensin II type 1 receptor antagonists to identify compounds with activity at the peroxisome proliferator-activated receptor-γ (PPARγ) revealed a new series of imidazo[4,5-b]pyridines 2 possessing activity at these two receptors. Early availability of the crystal structure of the lead compound 2a bound to the ligand binding domain of human PPARγ confirmed the mode of interaction of this scaffold to the nuclear receptor and assisted in the optimization of PPARγ activity. Among the new compounds, (S)-3-(5-(2-(1H-tetrazol-5-yl)phenyl)-2,3-dihydro-1H-inden-1-yl)-2-ethyl-5-isobutyl-7-methyl-3H-imidazo[4,5-b]pyridine (2l) was identified as a potent angiotensin II type I receptor blocker (IC(50) = 1.6 nM) with partial PPARγ agonism (EC(50) = 212 nM, 31% max) and oral bioavailability in rat. The dual pharmacology of 2l was demonstrated in animal models of hypertension (SHR) and insulin resistance (ZDF rat). In the SHR, 2l was highly efficacious in lowering blood pressure, while robust lowering of glucose and triglycerides was observed in the male ZDF rat.


Subject(s)
Angiotensin II Type 1 Receptor Blockers/chemical synthesis , Antihypertensive Agents/chemical synthesis , Hypoglycemic Agents/chemical synthesis , Imidazoles/chemical synthesis , PPAR gamma/agonists , Pyridines/chemical synthesis , Administration, Oral , Angiotensin II Type 1 Receptor Blockers/chemistry , Angiotensin II Type 1 Receptor Blockers/pharmacology , Animals , Antihypertensive Agents/chemistry , Antihypertensive Agents/pharmacology , Biological Availability , Blood Glucose/analysis , Crystallography, X-Ray , Drug Partial Agonism , Humans , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Imidazoles/chemistry , Imidazoles/pharmacology , Insulin Resistance , Male , Models, Molecular , Pyridines/chemistry , Pyridines/pharmacology , Radioligand Assay , Rats , Rats, Inbred SHR , Stereoisomerism , Structure-Activity Relationship , Transcriptional Activation , Triglycerides/blood
5.
Bioorg Med Chem ; 13(7): 2657-64, 2005 Apr 01.
Article in English | MEDLINE | ID: mdl-15755665

ABSTRACT

Ketopiperazine 2 was designed from a previously published analog. Compound 2 was shown to be a novel, potent inhibitor of renin that, when administered orally, lowered blood pressure in a hypertensive double transgenic (human renin and angiotensinogen) mouse model. Compound 2 was further optimized to sub-nanomolar potency by designing an analog that addressed the S3 sub-pocket of the renin enzyme (16).


Subject(s)
Enzyme Inhibitors/pharmacology , Piperazines/pharmacology , Renin/antagonists & inhibitors , Animals , Blood Pressure/drug effects , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Mice , Mice, Transgenic , Molecular Structure , Piperazines/chemical synthesis , Piperazines/chemistry , Structure-Activity Relationship
6.
Bioorg Med Chem ; 13(1): 59-68, 2005 Jan 03.
Article in English | MEDLINE | ID: mdl-15582452

ABSTRACT

Recently, trans-disubstituted oxo-aryl-piperidines have been identified as small molecule nonpeptide renin inhibitors for the modulation of hypertension. Herein, we report on the discovery and preparation of a new class of novel cis-disubstituted amino-aryl-piperidines as a mixture of enantiomers that are potent in vitro renin inhibitors and also, possess in vivo antihypertensive activity in a double transgenic mouse model.


Subject(s)
Piperidines/chemistry , Piperidines/pharmacology , Renin/antagonists & inhibitors , Animals , Antihypertensive Agents/chemistry , Antihypertensive Agents/pharmacology , Crystallography, X-Ray , Magnetic Resonance Spectroscopy , Mice , Mice, Transgenic , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL