Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Plant Cell ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38701330

ABSTRACT

Grain and flag leaf size are two important agronomic traits that influence grain yield in rice (Oryza sativa). Many QTLs and genes that regulate these traits individually have been identified, however, few QTLs and genes that simultaneously control these two traits have been identified. In this study, we conducted a genome-wide association analysis in rice and detected a major locus, WIDTH OF LEAF AND GRAIN (WLG), that associated with both grain and flag leaf width. WLG encodes a RING-domain E3 ubiquitin ligase. WLGhap.B, which possesses five SNP variations compared to WLGhap.A, encodes a protein with enhanced ubiquitination activity that confers increased rice leaf width and grain size, whereas mutation of WLG leads to narrower leaves and smaller grains. Both WLGhap.A and WLGhap.B interact with LARGE2, a HETC-type E3 ligase, however, WLGhap.B exhibits stronger interaction with LARGE2, thus higher ubiquitination activity towards LARGE2 compared with WLGhap.A. Lysine1021 is crucial for the ubiquitination of LARGE2 by WLG. Loss-of-function of LARGE2 in wlg-1 phenocopies large2-c in grain and leaf width, suggesting that WLG acts upstream of LARGE2. These findings reveal the genetic and molecular mechanism by which the WLG-LARGE2 module mediates grain and leaf size in rice, and suggest the potential of WLGhap.B in improving rice yield.

2.
Hortic Res ; 11(4): uhae056, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38659444

ABSTRACT

Diosgenin (DG) is a bioactive metabolite isolated from Dioscorea species, renowned for its medicinal properties. Brassinosteroids (BRs) are a class of crucial plant steroidal hormones. Cholesterol and campesterol are important intermediates of DG and BR biosynthesis, respectively. DG and BRs are structurally similar components; however, the regulatory network and metabolic interplays have not been fully elucidated. In an effort to decode these complex networks, we conducted a comprehensive study integrating genome-wide methylation, transcriptome and characteristic metabolite data from Dioscorea zingiberensis. Leveraging these data, we were able to construct a comprehensive regulatory network linking DG and BRs. Mass spectrometry results enabled us to clarify the alterations in cholesterol, campesterol, diosgenin, and castasterone (one of the major active BRs). The DG content decreased by 27.72% at 6 h after brassinolide treatment, whereas the content increased by 85.34% at 6 h after brassinazole treatment. Moreover, we pinpointed DG/BR-related genes, such as CASs, CYP90s, and B3-ARFs, implicated in the metabolic pathways of DG and BRs. Moreover, CASs and CYP90s exhibit hypomethylation, which is closely related to their high transcription. These findings provide robust evidence for the homeostasis between DG and BRs. In conclusion, our research revealed the existence of a balance between DG and BRs in D. zingiberensis. Furthermore, our work not only provides new insights into the relationship between the two pathways but also offers a fresh perspective on the functions of secondary metabolites.

3.
Sci China Life Sci ; 67(8): 1727-1738, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38679669

ABSTRACT

Inbreeding depression refers to the reduced performance arising from increased homozygosity, a phenomenon that is the reverse of heterosis and exists among plants and animals. As a natural self-pollinated crop with strong heterosis, the mechanism of inbreeding depression in rice is largely unknown. To understand the genetic basis of inbreeding depression, we constructed a successive inbreeding population from the F2 to F4 generation and observed inbreeding depression of all heterotic traits in the progeny along with the decay of heterozygosity in each generation. The expected depression effect was largely explained by 13 QTLs showing dominant effects for spikelets per panicle, 11 for primary branches, and 12 for secondary branches, and these loci constitute the main correlation between heterosis and inbreeding depression. However, the genetic basis of inbreeding depression is also distinct from that of heterosis, such that a biased transmission ratio of alleles for QTLs with either dominant or additive effects in four segregation distortion regions would result in minor effects in expected depression. Noticeably, two-locus interactions may change the extent and direction of the depression effects of the target loci, and overall interactions would promote inbreeding depression among generations. Using an F2:3 variation population, the actual performance of the loci showing expected depression was evaluated considering the heterozygosity decay in the background after inbreeding. We found inconsistent or various degrees of background depression from the F2 to F3 generation assuming different genotypes of the target locus, which may affect the actual depression effect of the locus due to epistasis. The results suggest that the genetic architecture of inbreeding depression and heterosis is closely linked but also differs in their intrinsic mechanisms, which expand our understanding of the whole-genome architecture of inbreeding depression.


Subject(s)
Hybrid Vigor , Inbreeding Depression , Oryza , Quantitative Trait Loci , Oryza/genetics , Hybrid Vigor/genetics , Heterozygote , Inbreeding , Hybridization, Genetic , Crosses, Genetic , Alleles
SELECTION OF CITATIONS
SEARCH DETAIL