Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Cell ; 175(6): 1546-1560.e17, 2018 11 29.
Article in English | MEDLINE | ID: mdl-30500537

ABSTRACT

Mammalian folate metabolism is comprised of cytosolic and mitochondrial pathways with nearly identical core reactions, yet the functional advantages of such an organization are not well understood. Using genome-editing and biochemical approaches, we find that ablating folate metabolism in the mitochondria of mammalian cell lines results in folate degradation in the cytosol. Mechanistically, we show that QDPR, an enzyme in tetrahydrobiopterin metabolism, moonlights to repair oxidative damage to tetrahydrofolate (THF). This repair capacity is overwhelmed when cytosolic THF hyperaccumulates in the absence of mitochondrially produced formate, leading to THF degradation. Unexpectedly, we also find that the classic antifolate methotrexate, by inhibiting its well-known target DHFR, causes even more extensive folate degradation in nearly all tested cancer cell lines. These findings shed light on design features of folate metabolism, provide a biochemical basis for clinically observed folate deficiency in QDPR-deficient patients, and reveal a hitherto unknown and unexplored cellular effect of methotrexate.


Subject(s)
Carbon/metabolism , Cytosol/metabolism , Formates/metabolism , Mitochondria/metabolism , Neoplasms/metabolism , Tetrahydrofolates/metabolism , Cytosol/pathology , HCT116 Cells , HeLa Cells , Humans , MCF-7 Cells , Methotrexate/pharmacokinetics , Methotrexate/pharmacology , Mitochondria/pathology , Mitochondrial Proteins/metabolism , Neoplasm Proteins/metabolism , Neoplasms/drug therapy , Neoplasms/pathology , Tetrahydrofolate Dehydrogenase/metabolism
2.
PLoS Biol ; 16(3): e1002621, 2018 03.
Article in English | MEDLINE | ID: mdl-29494577

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pbio.1000428.].

3.
J Lipid Res ; 60(4): 747-752, 2019 04.
Article in English | MEDLINE | ID: mdl-30718284

ABSTRACT

The discovery of the phosphatidylinositol-3-kinase (PI3K) pathway was a major advance in understanding growth factor signaling. The high frequency of PI3K pathway mutations in many cancers has encouraged a new field targeting cancer driver mutations. Although there have been many successes, targeting PI3K itself has proven challenging, in part because of its multiple isoforms with distinct roles. Despite promising preclinical results, development of PI3K inhibitors as pharmacologic anticancer agents has been limited by modest single-agent efficacy and significant adverse effects. If we could overcome these limitations, PI3K inhibitors would be a powerful cancer-fighting tool. Data from phase III clinical trials yields insight into some of the problems with PI3K inhibitors. Recent advances have shed light on the mechanisms of tumor resistance to PI3K inhibitors via feedback pathways that cause elevated insulin levels that then activate the same PI3K pathways that are the targets of inhibition. Improving our understanding of the complex regulatory feedback pathways that activate in response to PI3K inhibition will reveal ways to increase the efficacy of PI3K inhibitors and reduce adverse effects, increasing the usefulness of this class as a treatment option for multiple cancer types.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm/drug effects , Neoplasms/drug therapy , Phosphatidylinositol 3-Kinases/metabolism , Protein Kinase Inhibitors/pharmacology , Animals , Humans , Neoplasms/metabolism , Neoplasms/pathology
4.
PLoS Biol ; 8(7): e1000428, 2010 Jul 20.
Article in English | MEDLINE | ID: mdl-20652015

ABSTRACT

Genetic variation at immunoglobulin (Ig) gene variable regions in B-cells is created through a multi-step process involving deamination of cytosine bases by activation-induced cytidine deaminase (AID) and their subsequent mutagenic repair. To protect the genome from dangerous, potentially oncogenic effects of off-target mutations, both AID activity and mutagenic repair are targeted specifically to the Ig genes. However, the mechanisms of targeting are unknown and recent data have highlighted the role of regulating mutagenic repair to limit the accumulation of somatic mutations resulting from the more widely distributed AID-induced lesions to the Ig genes. Here we investigated the role of the DNA damage sensor poly-(ADPribose)-polymerase-1 (PARP-1) in the repair of AID-induced DNA lesions. We show through sequencing of the diversifying Ig genes in PARP-1(-/-) DT40 B-cells that PARP-1 deficiency results in a marked reduction in gene conversion events and enhanced high-fidelity repair of AID-induced lesions at both Ig heavy and light chains. To further characterize the role of PARP-1 in the mutagenic repair of AID-induced lesions, we performed functional analyses comparing the role of engineered PARP-1 variants in high-fidelity repair of DNA damage induced by methyl methane sulfonate (MMS) and the mutagenic repair of lesions at the Ig genes induced by AID. This revealed a requirement for the previously uncharacterized BRCT domain of PARP-1 to reconstitute both gene conversion and a normal rate of somatic mutation at Ig genes, while being dispensable for the high-fidelity base excision repair. From these data we conclude that the BRCT domain of PARP-1 is required to initiate a significant proportion of the mutagenic repair specific to diversifying antibody genes. This role is distinct from the known roles of PARP-1 in high-fidelity DNA repair, suggesting that the PARP-1 BRCT domain has a specialized role in assembling mutagenic DNA repair complexes involved in antibody diversification.


Subject(s)
Gene Conversion/genetics , Genes, Immunoglobulin/genetics , Poly(ADP-ribose) Polymerases/chemistry , Poly(ADP-ribose) Polymerases/metabolism , Animals , Cell Survival/drug effects , Chickens , Cytidine Deaminase/metabolism , DNA Breaks, Double-Stranded/drug effects , DNA Repair/drug effects , Enzyme Activation/drug effects , Gene Conversion/drug effects , Gene Knockout Techniques , Histone Deacetylase Inhibitors/pharmacology , Humans , Hydroxamic Acids/pharmacology , Models, Biological , Mutant Proteins/metabolism , Mutation/genetics , Poly(ADP-ribose) Polymerases/deficiency , Protein Structure, Tertiary , Recombination, Genetic/drug effects , Recombination, Genetic/genetics , Somatic Hypermutation, Immunoglobulin/drug effects
5.
Cell Rep ; 42(12): 113535, 2023 12 26.
Article in English | MEDLINE | ID: mdl-38060450

ABSTRACT

The phosphoinositide 3-kinase p110α is an essential mediator of insulin signaling and glucose homeostasis. We interrogated the human serine, threonine, and tyrosine kinome to search for novel regulators of p110α and found that the Hippo kinases phosphorylate p110α at T1061, which inhibits its activity. This inhibitory state corresponds to a conformational change of a membrane-binding domain on p110α, which impairs its ability to engage membranes. In human primary hepatocytes, cancer cell lines, and rodent tissues, activation of the Hippo kinases MST1/2 using forskolin or epinephrine is associated with phosphorylation of T1061 and inhibition of p110α, impairment of downstream insulin signaling, and suppression of glycolysis and glycogen synthesis. These changes are abrogated when MST1/2 are genetically deleted or inhibited with small molecules or if the T1061 is mutated to alanine. Our study defines an inhibitory pathway of PI3K signaling and a link between epinephrine and insulin signaling.


Subject(s)
Protein Serine-Threonine Kinases , Humans , Animals , Mice , Cell Line , Mice, Inbred C57BL , Male , Female , Epinephrine/pharmacology , Enzyme Activation/drug effects , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Phosphatidylinositols/chemistry , Phosphatidylinositols/metabolism , Gene Deletion , Colforsin/pharmacology , Insulin/metabolism , Phosphorylation/drug effects , Hippo Signaling Pathway/drug effects , Hippo Signaling Pathway/genetics
6.
Cancer Discov ; 10(8): 1226-1239, 2020 08.
Article in English | MEDLINE | ID: mdl-32513774

ABSTRACT

Inactivation of the tumor suppressor lipid phosphatase INPP4B is common in triple-negative breast cancer (TNBC). We generated a genetically engineered TNBC mouse model deficient in INPP4B. We found a dose-dependent increase in tumor incidence in INPP4B homozygous and heterozygous knockout mice compared with wild-type (WT), supporting a role for INPP4B as a tumor suppressor in TNBC. Tumors derived from INPP4B knockout mice are enriched for AKT and MEK gene signatures. Consequently, mice with INPP4B deficiency are more sensitive to PI3K or MEK inhibitors compared with WT mice. Mechanistically, we found that INPP4B deficiency increases PI(3,4)P2 levels in endocytic vesicles but not at the plasma membrane. Moreover, INPP4B loss delays degradation of EGFR and MET, while promoting recycling of receptor tyrosine kinases (RTK), thus enhancing the duration and amplitude of signaling output upon growth factor stimulation. Therefore, INPP4B inactivation in TNBC promotes tumorigenesis by modulating RTK recycling and signaling duration. SIGNIFICANCE: Inactivation of the lipid phosphatase INPP4B is frequent in TNBC. Using a genetically engineered mouse model, we show that INPP4B functions as a tumor suppressor in TNBC. INPP4B regulates RTK trafficking and degradation, such that loss of INPP4B prolongs both PI3K and ERK activation.This article is highlighted in the In This Issue feature, p. 1079.


Subject(s)
Disease Models, Animal , Genes, Tumor Suppressor , Phosphoric Monoester Hydrolases/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Triple Negative Breast Neoplasms/genetics , Animals , Antineoplastic Agents/therapeutic use , Cells, Cultured , Humans , Mice, Transgenic , Phosphatidylinositols/metabolism , Protein Kinase Inhibitors/therapeutic use , Receptor Protein-Tyrosine Kinases/genetics , Signal Transduction , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism
7.
Cell Chem Biol ; 27(5): 525-537.e6, 2020 05 21.
Article in English | MEDLINE | ID: mdl-32130941

ABSTRACT

The PI5P4Ks have been demonstrated to be important for cancer cell proliferation and other diseases. However, the therapeutic potential of targeting these kinases is understudied due to a lack of potent, specific small molecules available. Here, we present the discovery and characterization of a pan-PI5P4K inhibitor, THZ-P1-2, that covalently targets cysteines on a disordered loop in PI5P4Kα/ß/γ. THZ-P1-2 demonstrates cellular on-target engagement with limited off-targets across the kinome. AML/ALL cell lines were sensitive to THZ-P1-2, consistent with PI5P4K's reported role in leukemogenesis. THZ-P1-2 causes autophagosome clearance defects and upregulation in TFEB nuclear localization and target genes, disrupting autophagy in a covalent-dependent manner and phenocopying the effects of PI5P4K genetic deletion. Our studies demonstrate that PI5P4Ks are tractable targets, with THZ-P1-2 as a useful tool to further interrogate the therapeutic potential of PI5P4K inhibition and inform drug discovery campaigns for these lipid kinases in cancer metabolism and other autophagy-dependent disorders.


Subject(s)
Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Catalytic Domain/drug effects , Cell Line, Tumor , Drug Discovery , Humans , Leukemia, Myeloid, Acute/drug therapy , Molecular Docking Simulation , Molecular Targeted Therapy , Phosphotransferases (Alcohol Group Acceptor)/chemistry , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Protein Kinase Inhibitors/chemistry
8.
Cell Rep ; 27(7): 1991-2001.e5, 2019 05 14.
Article in English | MEDLINE | ID: mdl-31091439

ABSTRACT

Insulin stimulates the conversion of phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) to phosphatidylinositol-3,4,5-trisphosphate (PI(3,4,5)P3), which mediates downstream cellular responses. PI(4,5)P2 is produced by phosphatidylinositol-4-phosphate 5-kinases (PIP5Ks) and by phosphatidylinositol-5-phosphate 4-kinases (PIP4Ks). Here, we show that the loss of PIP4Ks (PIP4K2A, PIP4K2B, and PIP4K2C) in vitro results in a paradoxical increase in PI(4,5)P2 and a concomitant increase in insulin-stimulated production of PI(3,4,5)P3. The reintroduction of either wild-type or kinase-dead mutants of the PIP4Ks restored cellular PI(4,5)P2 levels and insulin stimulation of the PI3K pathway, suggesting a catalytic-independent role of PIP4Ks in regulating PI(4,5)P2 levels. These effects are explained by an increase in PIP5K activity upon the deletion of PIP4Ks, which normally suppresses PIP5K activity through a direct binding interaction mediated by the N-terminal motif VMLΦPDD of PIP4K. Our work uncovers an allosteric function of PIP4Ks in suppressing PIP5K-mediated PI(4,5)P2 synthesis and insulin-dependent conversion to PI(3,4,5)P3 and suggests that the pharmacological depletion of PIP4K enzymes could represent a strategy for enhancing insulin signaling.


Subject(s)
Insulin/metabolism , Phosphatidylinositol 4,5-Diphosphate/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Signal Transduction , Animals , Humans , Phosphatidylinositol 4,5-Diphosphate/genetics , Phosphotransferases (Alcohol Group Acceptor)/genetics
SELECTION OF CITATIONS
SEARCH DETAIL