ABSTRACT
A comprehensive understanding of the mechanisms involved in epigenetic changes in gene expression is essential to the clinical management of diseases linked to the SMYD family of lysine methyltransferases. The five known SMYD enzymes catalyze the transfer of donor methyl groups from S-adenosylmethionine (SAM) to specific lysines on histones and non-histone substrates. SMYDs family members have distinct tissue distributions and tissue-specific functions, including regulation of development, cell differentiation, and embryogenesis. Diseases associated with SMYDs include the repressed transcription of SMYD1 genes needed for the formation of ion channels in the heart leading to heart failure, SMYD2 overexpression in esophageal squamous cell carcinoma (ESCC) or p53-related cancers, and poor prognosis associated with SMYD3 overexpression in more than 14 types of cancer including breast cancer, colon cancer, prostate cancer, lung cancer, and pancreatic cancer. Given the importance of epigenetics in various pathologies, the development of epigenetic inhibitors has attracted considerable attention from the pharmaceutical industry. The pharmacologic development of the inhibitors involves the identification of molecules regulating both functional SMYD SET (Suppressor of variegation, Enhancer of Zeste, Trithorax) and MYND (Myeloid-Nervy-DEAF1) domains, a process facilitated by available X-ray structures for SMYD1, SMYD2, and SMYD3. Important leads for potential pharmaceutical agents have been reported for SMYD2 and SMYD3 enzymes, and six epigenetic inhibitors have been developed for drugs used to treat myelodysplastic syndrome (Vidaza, Dacogen), cutaneous T-cell lymphoma (Zoinza, Isrodax), and peripheral T-cell lymphoma (Beleodag, Epidaza). The recently demonstrated reversal of SMYD histone methylation suggests that reversing the epigenetic effects of SMYDs in cancerous tissues may be a desirable target for pharmacological development.
Subject(s)
Epigenesis, Genetic , Histone-Lysine N-Methyltransferase , Humans , DNA-Binding Proteins/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , Lysine/metabolism , Transcription Factors/metabolism , Neoplasms/geneticsABSTRACT
SMYD3 is a lysine methyltransferase that regulates the expression of over 80 genes and is required for the uncontrolled proliferation of most breast, colorectal, and hepatocellular carcinomas. The elimination of SMYD3 restores normal expression patterns of these genes and halts aberrant cell proliferation, making it a promising target for small molecule inhibition. In this study, we sought to establish a proof of concept for our in silico/in vitro hit-to-lead enzyme inhibitor development platform and to identify a lead small molecule candidate for SMYD3 inhibition. We used Schrodinger® software to screen libraries of small molecules in silico and the five compounds with the greatest predicted binding affinity within the SMYD3 binding pocket were purchased and assessed in vitro in direct binding assays and in breast cancer cell lines. We have confirmed the ability of one of these inhibitors, Inhibitor-4, to restore normal rates of cell proliferation, arrest the cell cycle, and induce apoptosis in breast cancer cells without affecting wildtype cell behavior. Our results provide a proof of concept for this fast and affordable small molecule hit-to-lead methodology as well as a promising candidate small molecule SMYD3 inhibitor for the treatment of human cancer.
Subject(s)
Drug Discovery , Histone Deacetylase Inhibitors/chemistry , Histone-Lysine N-Methyltransferase/chemistry , Molecular Docking Simulation , Molecular Dynamics Simulation , Apoptosis/drug effects , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Drug Discovery/methods , Female , Histone Deacetylase Inhibitors/pharmacology , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Humans , Molecular Structure , Structure-Activity RelationshipABSTRACT
ABSTRACT: Co-occurrence of chronic pain and clinically significant symptoms of anxiety and/or depression is regularly noted in the literature. Yet, little is known empirically about population prevalence of co-occurring symptoms, nor whether people with co-occurring symptoms constitute a distinct subpopulation within US adults living with chronic pain or US adults living with anxiety and/or depression symptoms (A/D). To address this gap, this study analyzes data from the 2019 National Health Interview Survey, a representative annual survey of self-reported health status and treatment use in the United States (n = 31,997). Approximately 12 million US adults, or 4.9% of the adult population, have co-occurring chronic pain and A/D symptoms. Unremitted A/D symptoms co-occurred in 23.9% of US adults with chronic pain, compared with an A/D prevalence of 4.9% among those without chronic pain. Conversely, chronic pain co-occurred in the majority (55.6%) of US adults with unremitted A/D symptoms, compared with a chronic pain prevalence of 17.1% among those without A/D symptoms. The likelihood of experiencing functional limitations in daily life was highest among those experiencing co-occurring symptoms, compared with those experiencing chronic pain alone or A/D symptoms alone. Among those with co-occurring symptoms, 69.4% reported that work was limited due to a health problem, 43.7% reported difficulty doing errands alone, and 55.7% reported difficulty participating in social activities. These data point to the need for targeted investment in improving functional outcomes for the nearly 1 in 20 US adults living with co-occurring chronic pain and clinically significant A/D symptoms.