Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 179
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Ann Neurol ; 95(6): 1178-1192, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38466158

ABSTRACT

OBJECTIVE: To apply a machine learning analysis to clinical and presynaptic dopaminergic imaging data of patients with rapid eye movement (REM) sleep behavior disorder (RBD) to predict the development of Parkinson disease (PD) and dementia with Lewy bodies (DLB). METHODS: In this multicenter study of the International RBD study group, 173 patients (mean age 70.5 ± 6.3 years, 70.5% males) with polysomnography-confirmed RBD who eventually phenoconverted to overt alpha-synucleinopathy (RBD due to synucleinopathy) were enrolled, and underwent baseline presynaptic dopaminergic imaging and clinical assessment, including motor, cognitive, olfaction, and constipation evaluation. For comparison, 232 RBD non-phenoconvertor patients (67.6 ± 7.1 years, 78.4% males) and 160 controls (68.2 ± 7.2 years, 53.1% males) were enrolled. Imaging and clinical features were analyzed by machine learning to determine predictors of phenoconversion. RESULTS: Machine learning analysis showed that clinical data alone poorly predicted phenoconversion. Presynaptic dopaminergic imaging significantly improved the prediction, especially in combination with clinical data, with 77% sensitivity and 85% specificity in differentiating RBD due to synucleinopathy from non phenoconverted RBD patients, and 85% sensitivity and 86% specificity in discriminating PD-converters from DLB-converters. Quantification of presynaptic dopaminergic imaging showed that an empirical z-score cutoff of -1.0 at the most affected hemisphere putamen characterized RBD due to synucleinopathy patients, while a cutoff of -1.0 at the most affected hemisphere putamen/caudate ratio characterized PD-converters. INTERPRETATION: Clinical data alone poorly predicted phenoconversion in RBD due to synucleinopathy patients. Conversely, presynaptic dopaminergic imaging allows a good prediction of forthcoming phenoconversion diagnosis. This finding may be used in designing future disease-modifying trials. ANN NEUROL 2024;95:1178-1192.


Subject(s)
Dopamine , Lewy Body Disease , Machine Learning , Parkinson Disease , REM Sleep Behavior Disorder , Synucleinopathies , Humans , REM Sleep Behavior Disorder/diagnostic imaging , Male , Female , Aged , Synucleinopathies/diagnostic imaging , Middle Aged , Lewy Body Disease/diagnostic imaging , Parkinson Disease/diagnostic imaging , Parkinson Disease/complications , Dopamine/metabolism , Tomography, Emission-Computed, Single-Photon , Presynaptic Terminals/metabolism , Dopaminergic Imaging
2.
Mol Psychiatry ; 2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36737483

ABSTRACT

Functional and structural connectivity alterations in short- and long-range projections have been reported across neurodevelopmental disorders (NDD). Interhemispheric callosal projection neurons (CPN) represent one of the major long-range projections in the brain, which are particularly important for higher-order cognitive function and flexibility. However, whether a causal relationship exists between interhemispheric connectivity alterations and cognitive deficits in NDD remains elusive. Here, we focused on CDKL5 Deficiency Disorder (CDD), a severe neurodevelopmental disorder caused by mutations in the X-linked Cyclin-dependent kinase-like 5 (CDKL5) gene. We found an increase in homotopic interhemispheric connectivity and functional hyperconnectivity across higher cognitive areas in adult male and female CDKL5-deficient mice by resting-state functional MRI (rs-fMRI) analysis. This was accompanied by an increase in the number of callosal synaptic inputs but decrease in local synaptic connectivity in the cingulate cortex of juvenile CDKL5-deficient mice, suggesting an impairment in excitatory synapse development and a differential role of CDKL5 across excitatory neuron subtypes. These deficits were associated with significant cognitive impairments in CDKL5 KO mice. Selective deletion of CDKL5 in the largest subtype of CPN likewise resulted in an increase of functional callosal inputs, without however significantly altering intracortical cingulate networks. Notably, such callosal-specific changes were sufficient to cause cognitive deficits. Finally, when CDKL5 was selectively re-expressed only in this CPN subtype, in otherwise CDKL5-deficient mice, it was sufficient to prevent the cognitive impairments of CDKL5 mutants. Together, these results reveal a novel role of CDKL5 by demonstrating that it is both necessary and sufficient for proper CPN connectivity and cognitive function and flexibility, and further validates a causal relationship between CPN dysfunction and cognitive impairment in a model of NDD.

3.
Eur J Nucl Med Mol Imaging ; 50(3): 784-791, 2023 02.
Article in English | MEDLINE | ID: mdl-36308536

ABSTRACT

PURPOSE: The identification of prognostic tools in amyotrophic lateral sclerosis (ALS) would improve the design of clinical trials, the management of patients, and life planning. We aimed to evaluate the accuracy of brain 2-[18F]fluoro-2-deoxy-D-glucose-positron-emission tomography (2-[18F]FDG-PET) as an independent predictor of survival in ALS. METHODS: A prospective cohort study enrolled 418 ALS patients, who underwent brain 2-[18F]FDG-PET at diagnosis and whose survival time was available. We discretized the survival time in a finite number of classes in a data-driven fashion by employing a k-means-like strategy. We identified "hot brain regions" with maximal power in discriminating survival classes, by evaluating the Laplacian scores in a class-aware fashion. We retained the top-m features for each class to train the classification systems (i.e., a support vector machine, SVM), using 10% of the ALS cohort as test set. RESULTS: Data were discretized in three survival profiles: 0-2 years, 2-5 years, and > 5 years. SVM resulted in an error rate < 20% for two out of three classes separately. As for class one, the discriminant clusters included left caudate body and anterior cingulate cortex. The most discriminant regions were bilateral cerebellar pyramid in class two, and right cerebellar dentate nucleus, and left cerebellar nodule in class three. CONCLUSION: Brain 2-[18F]FDG-PET along with artificial intelligence was able to predict with high accuracy the survival time range in our ALS cohort. Healthcare professionals can benefit from this prognostic tool for planning patients' management and follow-up. 2-[18F]FDG-PET represents a promising biomarker for individual patients' stratification in clinical trials. The lack of a multicentre external validation of the model warrants further studies to evaluate its generalization capability.


Subject(s)
Amyotrophic Lateral Sclerosis , Fluorodeoxyglucose F18 , Humans , Amyotrophic Lateral Sclerosis/diagnostic imaging , Prospective Studies , Glucose , Artificial Intelligence , Positron-Emission Tomography/methods , Brain/diagnostic imaging
4.
Cereb Cortex ; 32(14): 3042-3056, 2022 07 12.
Article in English | MEDLINE | ID: mdl-34791077

ABSTRACT

Abnormal tactile response is an integral feature of Autism Spectrum Disorders (ASDs), and hypo-responsiveness to tactile stimuli is often associated with the severity of ASDs core symptoms. Patients with Phelan-McDermid syndrome (PMS), caused by mutations in the SHANK3 gene, show ASD-like symptoms associated with aberrant tactile responses. The neural underpinnings of these abnormalities are still poorly understood. Here we investigated, in Shank3b-/- adult mice, the neural substrates of whisker-guided behaviors, a key component of rodents' interaction with the surrounding environment. We assessed whisker-dependent behaviors in Shank3b-/- adult mice and age-matched controls, using the textured novel object recognition (tNORT) and whisker nuisance (WN) test. Shank3b-/- mice showed deficits in whisker-dependent texture discrimination in tNORT and behavioral hypo-responsiveness to repetitive whisker stimulation in WN. Sensory hypo-responsiveness was accompanied by a significantly reduced activation of the primary somatosensory cortex (S1) and hippocampus, as measured by c-fos mRNA induction, a proxy of neuronal activity following whisker stimulation. Moreover, resting-state fMRI showed a significantly reduced S1-hippocampal connectivity in Shank3b mutants, in the absence of altered connectivity between S1 and other somatosensory areas. Impaired crosstalk between hippocampus and S1 might underlie Shank3b-/- hypo-reactivity to whisker-dependent cues, highlighting a potentially generalizable somatosensory dysfunction in ASD.


Subject(s)
Chromosome Disorders , Microfilament Proteins , Nerve Tissue Proteins , Vibrissae , Animals , Disease Models, Animal , Hippocampus/metabolism , Mice , Mice, Knockout , Microfilament Proteins/genetics , Nerve Tissue Proteins/genetics , Somatosensory Cortex/metabolism , Vibrissae/physiology
5.
Neurobiol Dis ; 169: 105742, 2022 07.
Article in English | MEDLINE | ID: mdl-35483565

ABSTRACT

Sensory abnormalities are a common feature in autism spectrum disorders (ASDs). Tactile responsiveness is altered in autistic individuals, with hypo-responsiveness being associated with the severity of ASD core symptoms. Similarly, sensory abnormalities have been described in mice lacking ASD-associated genes. Loss-of-function mutations in CNTNAP2 result in cortical dysplasia-focal epilepsy syndrome (CDFE) and autism. Likewise, Cntnap2-/- mice show epilepsy and deficits relevant with core symptoms of human ASDs, and are considered a reliable model to study ASDs. Altered synaptic transmission and synchronicity found in the cerebral cortex of Cntnap2-/- mice would suggest a network dysfunction. Here, we investigated the neural substrates of whisker-dependent responses in Cntnap2+/+ and Cntnap2-/- adult mice. When compared to controls, Cntnap2-/- mice showed focal hyper-connectivity within the primary somatosensory cortex (S1), in the absence of altered connectivity between S1 and other somatosensory areas. This data suggests the presence of impaired somatosensory processing in these mutants. Accordingly, Cntnap2-/- mice displayed impaired whisker-dependent discrimination in the textured novel object recognition test (tNORT) and increased c-fos mRNA induction within S1 following whisker stimulation. S1 functional hyperconnectivity might underlie the aberrant whisker-dependent responses observed in Cntnap2-/- mice, indicating that Cntnap2 mice are a reliable model to investigate sensory abnormalities that characterize ASDs.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Membrane Proteins , Nerve Tissue Proteins , Animals , Autism Spectrum Disorder/genetics , Autistic Disorder/genetics , Cerebral Cortex , Membrane Proteins/genetics , Mice , Nerve Tissue Proteins/genetics , Somatosensory Cortex , Vibrissae
6.
Eur J Nucl Med Mol Imaging ; 49(4): 1263-1274, 2022 03.
Article in English | MEDLINE | ID: mdl-34651219

ABSTRACT

PURPOSE: FDG-PET is an established supportive biomarker in dementia with Lewy bodies (DLB), but its diagnostic accuracy is unknown at the mild cognitive impairment (MCI-LB) stage when the typical metabolic pattern may be difficultly recognized at the individual level. Semiquantitative analysis of scans could enhance accuracy especially in less skilled readers, but its added role with respect to visual assessment in MCI-LB is still unknown. METHODS: We assessed the diagnostic accuracy of visual assessment of FDG-PET by six expert readers, blind to diagnosis, in discriminating two matched groups of patients (40 with prodromal AD (MCI-AD) and 39 with MCI-LB), both confirmed by in vivo biomarkers. Readers were provided in a stepwise fashion with (i) maps obtained by the univariate single-subject voxel-based analysis (VBA) with respect to a control group of 40 age- and sex-matched healthy subjects, and (ii) individual odds ratio (OR) plots obtained by the volumetric regions of interest (VROI) semiquantitative analysis of the two main hypometabolic clusters deriving from the comparison of MCI-AD and MCI-LB groups in the two directions, respectively. RESULTS: Mean diagnostic accuracy of visual assessment was 76.8 ± 5.0% and did not significantly benefit from adding the univariate VBA map reading (77.4 ± 8.3%) whereas VROI-derived OR plot reading significantly increased both accuracy (89.7 ± 2.3%) and inter-rater reliability (ICC 0.97 [0.96-0.98]), regardless of the readers' expertise. CONCLUSION: Conventional visual reading of FDG-PET is moderately accurate in distinguishing between MCI-LB and MCI-AD, and is not significantly improved by univariate single-subject VBA but by a VROI analysis built on macro-regions, allowing for high accuracy independent of reader skills.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Lewy Body Disease , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Biomarkers/metabolism , Brain/diagnostic imaging , Brain/metabolism , Cognitive Dysfunction/metabolism , Fluorodeoxyglucose F18/metabolism , Humans , Lewy Body Disease/diagnostic imaging , Lewy Body Disease/metabolism , Positron-Emission Tomography/methods , Reproducibility of Results
7.
Eur J Nucl Med Mol Imaging ; 49(7): 2242-2250, 2022 06.
Article in English | MEDLINE | ID: mdl-35076740

ABSTRACT

PURPOSE: Neuropathological data suggest that ALS with SOD1 mutations (SOD1-ALS) is a distinct form of ALS. We evaluated brain metabolic changes characterizing SOD1-ALS as compared to sporadic ALS (sALS), employing 18fluorodeoxyglucose-positron-emission tomography (18F-FDG-PET). METHODS: We included 18 SOD1-ALS patients, 40 healthy controls (HC), and 46 sALS patients without mutations in SOD1, TARDBP, FUS, and C9ORF72, randomly selected from 665 subjects who underwent brain 18F-FDG-PET at diagnosis between 2008 and 2019 at the ALS Centre of Turin. We excluded patients with frontotemporal dementia. We used the full factorial design in SPM12 to evaluate whether differences among groups exist overall. In case the hypothesis was confirmed, group comparisons were performed through the two-sample t-test model of SPM12. In all the analyses, the height threshold was P < 0.001 (P < 0.05 FWE-corrected at cluster level). RESULTS: The full factorial design resulted in a significant main effect of groups. We identified a relative hypometabolism in sALS patients compared to SOD1-ALS cases in the right precentral and medial frontal gyrus, right paracentral lobule, and bilateral postcentral gyrus. SOD1 patients showed a relative hypermetabolism as compared to HC in the right precentral gyrus and paracentral lobule. As compared to HC, sALS patients showed relative hypometabolism in frontal, temporal, and occipital cortices. CONCLUSION: SOD1-ALS was characterized by a relative hypermetabolism in the motor cortex as compared to sALS and HC. Since promising, targeted, therapeutic strategies are upcoming for SOD1-ALS, our data support the use of PET to study disease pathogenesis and to track its course in clinical trials, in both asymptomatic and symptomatic mutation carriers.


Subject(s)
Amyotrophic Lateral Sclerosis , Amyotrophic Lateral Sclerosis/diagnostic imaging , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Brain/metabolism , Fluorodeoxyglucose F18 , Humans , Mutation , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism
8.
Br J Clin Psychol ; 61(2): 214-241, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34651307

ABSTRACT

OBJECTIVE: Huntington's disease (HD) is a dramatic neurodegenerative disorder encompassing severe motor symptoms coupled to significant cognitive and social cognition deficits. However, it is not clear whether and how patients' neuropsychological profile changes between the prodromal and the manifest stages of the condition. The aim of the present in-depth review is to consider cognitive and social cognition impairment in HD patients by differentiating deficits arising before diagnosis from those evident from the manifest phase onwards. METHODS: Electronic databases were searched between January 1st , 2010 and December 31st , 2020 by using multiple combinations of keywords related to the investigation of neuropsychological profile in HD for preliminary search, and by defining strict selection criteria for studies to be included. RESULTS: Forty-two studies were included. Evidence suggests that the neuropsychological profile in HD reflects a complex pathological spectrum of deficits. It includes impairment in the realms of executive functions, memory, attention, information processing, and social cognition. Interestingly, patients' profiles differ significantly between the manifest and the prodromal stages of their condition, not only in quantitative terms but also from a qualitative point of view. CONCLUSIONS: Researchers and clinicians should thus include in clinical routine timely and specific neuropsychological assessments in order to monitor patients' cognitive status as time goes by, with the ultimate goal to implement effective clinical management strategies. PRACTITIONER POINTS: The neuropsychological profile in HD encompasses a complex pathological spectrum of deficits. Patients' profiles differ significantly between the manifest and the prodromal stages of their condition. Clinicians should include in everyday practice a timely and specific neuropsychological assessment. Detecting patients' cognitive status during the early stages of the condition already can contribute significantly to implement effective clinical management strategies.


Subject(s)
Huntington Disease , Cognition , Humans , Huntington Disease/complications , Huntington Disease/diagnosis , Huntington Disease/psychology , Neuropsychological Tests , Prodromal Symptoms , Social Cognition
9.
J Integr Neurosci ; 21(5): 143, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-36137952

ABSTRACT

INTRODUCTION: The spread of the COVID-19 Pandemic led the Italian government to impose restrictive measures. Schools were closed and the organization of Distance Learning (DL) made adolescents face the psychological impact of the pandemic and the loss of their social life. OBJECTIVE: This research aimed to evaluate the psychological impact of the COVID-19 Pandemic and DL on students, attending two high schools in the Lodi area (Lombardy, Italy). METHOD: A questionnaire, composed of PSYCHO-COVID 19 and EMOTION THERMOMETER applied to DL, was administered anonymously through the Google Drive School platform, from May 5th to June 5th 2020. RESULTS: Analysis of the protocols revealed stress reactions in 35% of students (12% High, 7% Moderate, 16% Mild). Principal Components Analysis also revealed the presence of a "distress entity" characterized by anxiety, depressive and somatic symptoms (comparable to those of post-traumatic stress syndrome), with a greater impact on females. The analysis of data on DL showed that online teaching was experienced negatively, in an almost linear correlation, by those subjects who had expressed distress. CONCLUSIONS: The results suggest that the pandemic had a traumatic impact on adolescents, especially on girls; psychological distress negatively influenced individual experiences with DL. Appropriate psychotherapeutic interventions are needed to prevent the chronicization of stress reactions and to facilitate the adaptation of adolescents to possible rapid changes in educational management.


Subject(s)
COVID-19 , Pandemics , Adolescent , Anxiety , Female , Humans , Pandemics/prevention & control , Physical Distancing , SARS-CoV-2
10.
Eur J Nucl Med Mol Imaging ; 48(4): 1124-1133, 2021 04.
Article in English | MEDLINE | ID: mdl-33029654

ABSTRACT

PURPOSE: To assess the brain metabolic correlates of the different regional extent of ALS, evaluated with the King's staging system, using brain 18F-2-fluoro-2-deoxy-D-glucose-PET (18F-FDG-PET). METHODS: Three hundred ninety ALS cases with King's stages 1, 2, and 3 (n = 390), i.e., involvement of 1, 2, and 3 body regions respectively, underwent brain 18F-FDG-PET at diagnosis. King's stage at PET was derived from ALSFRS-R and was regressed out against whole-brain metabolism in the whole sample. The full factorial design confirmed the hypothesis that differences among groups (King's 1, King's 2, King's 3, and 40 healthy controls (HC)) existed overall. Comparisons among stages and between each group and HC were performed. We included age at PET and sex as covariates. RESULTS: Brain metabolism was inversely correlated with stage in medial frontal gyrus bilaterally, and right precentral and postcentral gyri. The full factorial design resulted in a significant main effect of groups. There was no significant difference between stages 1 and 2. Comparing stage 3 to stage 1+2, a significant relative hypometabolism was highlighted in the former in the left precentral and medial frontal gyri, and in the right medial frontal, postcentral, precentral, and middle frontal gyri. The comparisons between each group and HC showed the extension of frontal metabolic changes from stage 1 to stage 3, with the larger metabolic gap between stages 2 and 3. CONCLUSIONS: Our findings support the hypothesis that in ALS, the propagation of neurodegeneration follows a corticofugal, regional ordered pattern, extending from the motor cortex to posterior and anterior regions.


Subject(s)
Amyotrophic Lateral Sclerosis , Fluorodeoxyglucose F18 , Amyotrophic Lateral Sclerosis/diagnostic imaging , Brain/diagnostic imaging , Glucose , Humans , Positron-Emission Tomography
11.
Eur J Neurol ; 28(3): 745-753, 2021 03.
Article in English | MEDLINE | ID: mdl-33175462

ABSTRACT

BACKGROUND AND PURPOSE: The aim of this study was to evaluate brain metabolic correlates of apathy in amyotrophic lateral sclerosis (ALS). METHODS: A total of 165 ALS patients underwent 18 F-2-fluoro-2-deoxy-D-glucose positron emission tomography (18 F-FDG-PET) and Frontal Systems Behaviour Scale (FrSBe) evaluation. FrSBe provides "before" and "after" apathy subscores, referring to premorbid and morbid conditions. "After" apathy subscore and "before-after" gap, i.e. the difference between "before" and "after" subscores, were regressed against whole-brain metabolism. Among patients with a pathological "after" apathy subscore (i.e., ≥65), we compared patients with "before" apathy subscores ≥65 and <65, and patients with "before-after" gaps of <22 and ≥22. RESULTS: In the whole sample, the "after" apathy subscore negatively correlated with metabolism in the dorsolateral prefrontal cortex (DLPFC), dorsomedial prefrontal cortex (DMPFC), ventrolateral prefrontal cortex (VLPFC), premotor cortex (PMC) and anterior cingulate cortex (ACC), and insula bilaterally. A positive correlation was found in the cerebellum and pons. The "before-after" gap negatively correlated with metabolism in bilateral DLPFC, DMPFC and PMC, and left VLPFC and ACC, and positively correlated with cerebellar and pontine clusters. Among patients with an "after" apathy subscore ≥65, we found no difference between those with "before" apathy subscores ≥65 and <65. Patients with a "before-after" gap ≥22, compared to patients with a gap <22, showed relative hypometabolism in bilateral DLPFC and DMPFC, and left ACC and PMC, and relative cerebellar and pontine hypermetabolism. CONCLUSION: No studies on brain 18 F-2-fluoro-2-deoxy-D-glucose positron emission tomography correlates of apathy have been performed in ALS. We found that FrSBe "after" apathy subscore correlated with metabolic changes in brain regions known as neuroanatomical correlates of apathy. Furthermore, our findings support the relevance of the gap between premorbid and morbid conditions to detect behavioural changes due to the neurodegenerative process underlying ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Apathy , Amyotrophic Lateral Sclerosis/diagnostic imaging , Brain/diagnostic imaging , Fluorodeoxyglucose F18 , Humans , Positron-Emission Tomography
12.
J Neurosci ; 39(27): 5299-5310, 2019 07 03.
Article in English | MEDLINE | ID: mdl-31061091

ABSTRACT

Mutations in the synaptic scaffolding protein SHANK3 are a major cause of autism and are associated with prominent intellectual and language deficits. However, the neural mechanisms whereby SHANK3 deficiency affects higher-order socio-communicative functions remain unclear. Using high-resolution functional and structural MRI in adult male mice, here we show that loss of Shank3 (Shank3B-/-) results in disrupted local and long-range prefrontal and frontostriatal functional connectivity. We document that prefrontal hypoconnectivity is associated with reduced short-range cortical projections density, and reduced gray matter volume. Finally, we show that prefrontal disconnectivity is predictive of social communication deficits, as assessed with ultrasound vocalization recordings. Collectively, our results reveal a critical role of SHANK3 in the development of prefrontal anatomy and function, and suggest that SHANK3 deficiency may predispose to intellectual disability and socio-communicative impairments via dysregulation of higher-order cortical connectivity.SIGNIFICANCE STATEMENT Mutations in the synaptic scaffolding protein SHANK3 are commonly associated with autism, intellectual, and language deficits. Previous research has linked SHANK3 deficiency to basal ganglia dysfunction, motor stereotypies, and social deficits. However, the neural mechanism whereby Shank3 gene mutations affects cortical functional connectivity and higher-order socio-communicative functions remain unclear. Here we show that loss of SHANK3 in mice results in largely disrupted functional connectivity and abnormal gray matter anatomy in prefrontal areas. We also show that prefrontal connectivity disruption is tightly linked to socio-communicative deficits. Our findings suggest that SHANK3 is a critical orchestrator of frontocortical function, and that disrupted connectivity of prefrontal areas may underpin socio-communicative impairments observed in SHANK3 mutation carriers.


Subject(s)
Autism Spectrum Disorder/genetics , Nerve Tissue Proteins/physiology , Prefrontal Cortex/growth & development , Vocalization, Animal/physiology , Animals , Brain Mapping , Disease Models, Animal , Genetic Predisposition to Disease , Gray Matter/growth & development , Gray Matter/pathology , Magnetic Resonance Imaging , Male , Mice, Knockout , Microfilament Proteins , Nerve Tissue Proteins/genetics , Prefrontal Cortex/pathology , Social Behavior
13.
Article in English | MEDLINE | ID: mdl-33229451

ABSTRACT

OBJECTIVE: To identify the metabolic changes related to the various levels of cognitive deficits in amyotrophic lateral sclerosis (ALS) using 18F-2-fluoro-2-deoxy-D-glucose positron emission tomography (18F-FDG-PET) imaging. METHODS: 274 ALS patients underwent neuropsychological assessment and brain 18F-FDG-PET at diagnosis. According to the criteria published in 2017, cognitive status was classified as ALS with normal cognition (ALS-Cn, n=132), ALS with behavioural impairment (ALS-Bi, n=66), ALS with cognitive impairment (ALS-Ci, n=30), ALS with cognitive and behavioural impairment (ALS-Cbi, n=26), ALS with frontotemporal dementia (ALS-FTD, n=20). We compared each group displaying some degree of cognitive and/or behavioural impairment to ALS-Cn patients, including age at PET, sex and ALS Functional Rating Scale-Revised as covariates. RESULTS: We identified frontal lobe relative hypometabolism in cognitively impaired patients that resulted more extensive and significant across the continuum from ALS-Ci, through ALS-Cbi, to ALS-FTD. ALS-FTD patients also showed cerebellar relative hypermetabolism. ALS-Bi patients did not show any difference compared with ALS-Cn. CONCLUSIONS: These data support the concept that patients with cognitive impairment have a more widespread neurodegenerative process compared with patients with a pure motor disease: the more severe the cognitive impairment, the more diffuse the metabolic changes. Otherwise, metabolic changes related to pure behavioural impairment need further characterisation.

14.
Eur J Nucl Med Mol Imaging ; 47(2): 437-450, 2020 02.
Article in English | MEDLINE | ID: mdl-31768600

ABSTRACT

RATIONALE: In Parkinson's disease (PD), spatial covariance analysis of 18F-FDG PET data has consistently revealed a characteristic PD-related brain pattern (PDRP). By quantifying PDRP expression on a scan-by-scan basis, this technique allows objective assessment of disease activity in individual subjects. We provide a further validation of the PDRP by applying spatial covariance analysis to PD cohorts from the Netherlands (NL), Italy (IT), and Spain (SP). METHODS: The PDRPNL was previously identified (17 controls, 19 PD) and its expression was determined in 19 healthy controls and 20 PD patients from the Netherlands. The PDRPIT was identified in 20 controls and 20 "de-novo" PD patients from an Italian cohort. A further 24 controls and 18 "de-novo" Italian patients were used for validation. The PDRPSP was identified in 19 controls and 19 PD patients from a Spanish cohort with late-stage PD. Thirty Spanish PD patients were used for validation. Patterns of the three centers were visually compared and then cross-validated. Furthermore, PDRP expression was determined in 8 patients with multiple system atrophy. RESULTS: A PDRP could be identified in each cohort. Each PDRP was characterized by relative hypermetabolism in the thalamus, putamen/pallidum, pons, cerebellum, and motor cortex. These changes co-varied with variable degrees of hypometabolism in posterior parietal, occipital, and frontal cortices. Frontal hypometabolism was less pronounced in "de-novo" PD subjects (Italian cohort). Occipital hypometabolism was more pronounced in late-stage PD subjects (Spanish cohort). PDRPIT, PDRPNL, and PDRPSP were significantly expressed in PD patients compared with controls in validation cohorts from the same center (P < 0.0001), and maintained significance on cross-validation (P < 0.005). PDRP expression was absent in MSA. CONCLUSION: The PDRP is a reproducible disease characteristic across PD populations and scanning platforms globally. Further study is needed to identify the topography of specific PD subtypes, and to identify and correct for center-specific effects.


Subject(s)
Parkinson Disease , Brain/diagnostic imaging , Fluorodeoxyglucose F18 , Glucose , Humans , Italy , Netherlands , Parkinson Disease/diagnostic imaging , Positron-Emission Tomography , Spain
15.
Mov Disord ; 35(4): 587-594, 2020 04.
Article in English | MEDLINE | ID: mdl-31872507

ABSTRACT

BACKGROUND: An ideal imaging biomarker for a neurodegenerative disorder should be able to measure abnormalities in the earliest stages of the disease. OBJECTIVE: We investigated metabolic network changes in two independent cohorts of drug-naïve Parkinson's disease (PD) patients who have not been exposed to dopaminergic medication. METHODS: We scanned 85 de novo, drug-naïve PD patients and 85 age-matched healthy control subjects from Italy (n = 96) and the United States (n = 74) with [18 F]-fluorodeoxyglucose PET. All patients had clinical follow-ups to verify the diagnosis of idiopathic PD. Spatial covariance analysis was used to identify and validate de novo PD-related metabolic patterns in the Italian and U.S. cohorts. We compared the de novo PD-related metabolic patterns to the original PD-related pattern that was identified in more advanced patients who had been on chronic dopaminergic treatment. RESULTS: De novo PD-related metabolic patterns were identified in each of the two independent cohorts of drug-naïve PD patients, and each differentiated PD patients from healthy control subjects. Expression values for these disease patterns were elevated in drug-naïve PD patients relative to healthy controls in the identification as well as in each of the validation subgroups. The two de novo PD-related metabolic patterns were topographically very similar to each other and to the original PD-related pattern. CONCLUSIONS: Reproducible PD-related patterns are expressed in de novo, drug-naïve PD patients. In PD, disease-related metabolic patterns have stereotyped topographies that develop independently of chronic levodopa treatment. © 2019 International Parkinson and Movement Disorder Society.


Subject(s)
Parkinson Disease , Pharmaceutical Preparations , Humans , Italy , Levodopa , Metabolic Networks and Pathways , Parkinson Disease/diagnostic imaging , Parkinson Disease/drug therapy
16.
Mov Disord ; 35(11): 2009-2018, 2020 11.
Article in English | MEDLINE | ID: mdl-32822512

ABSTRACT

It remains unclear whether the supportive imaging features described in the diagnostic criteria for progressive supranuclear palsy (PSP) are suitable for the full clinical spectrum. The aim of the current study was to define and cross-validate the pattern of glucose metabolism in the brain associated with a diagnosis of different PSP variants. A retrospective multicenter cohort study performed on 73 PSP patients who were referred for a fluorodeoxyglucose positron emission tomography PET scan: PSP-Richardson's syndrome, n = 47; PSP-parkinsonian variant, n = 18; and progressive gait freezing, n = 8. In addition, we included 55 healthy controls and 58 Parkinson's disease (PD) patients. Scans were normalized by global mean activity. We analyzed the regional differences in metabolism between the groups. Moreover, we applied a multivariate analysis to obtain a PSP-related pattern that was cross-validated in independent populations at the individual level. Group analysis showed relative hypometabolism in the midbrain, basal ganglia, thalamus, and frontoinsular cortices and hypermetabolism in the cerebellum and sensorimotor cortices in PSP patients compared with healthy controls and PD patients, the latter with more severe involvement in the basal ganglia and occipital cortices. The PSP-related pattern obtained confirmed the regions described above. At the individual level, the PSP-related pattern showed optimal diagnostic accuracy to distinguish between PSP and healthy controls (sensitivity, 80.4%; specificity, 96.9%) and between PSP and PD (sensitivity, 80.4%; specificity, 90.7%). Moreover, PSP-Richardson's syndrome and PSP-parkinsonian variant patients showed significantly more PSP-related pattern expression than PD patients and healthy controls. The glucose metabolism assessed by fluorodeoxyglucose PET is a useful and reproducible supportive diagnostic tool for PSP-Richardson's syndrome and PSP-parkinsonian variant. © 2020 International Parkinson and Movement Disorder Society.


Subject(s)
Movement Disorders , Supranuclear Palsy, Progressive , Brain/diagnostic imaging , Cohort Studies , Humans , Retrospective Studies , Supranuclear Palsy, Progressive/diagnostic imaging
17.
J Neurosci ; 38(30): 6640-6652, 2018 07 25.
Article in English | MEDLINE | ID: mdl-29934348

ABSTRACT

The human 16p11.2 microdeletion is one of the most common gene copy number variations linked to autism, but the pathophysiology associated with this chromosomal abnormality is largely unknown. The 593 kb deletion contains the ERK1 gene and other genes that converge onto the ERK/MAP kinase pathway. Perturbations in ERK signaling are linked to a group of related neurodevelopmental disorders hallmarked by intellectual disability, including autism. We report that mice harboring the 16p11.2 deletion exhibit a paradoxical elevation of ERK activity, cortical cytoarchitecture abnormalities and behavioral deficits. Importantly, we show that treatment with a novel ERK pathway inhibitor during a critical period of brain development rescues the molecular, anatomical and behavioral deficits in the 16p11.2 deletion mice. The ERK inhibitor treatment administered to adult mice ameliorates a subset of these behavioral deficits. Our findings provide evidence for potential targeted therapeutic intervention in 16p11.2 deletion carriers.SIGNIFICANCE STATEMENT The ERK/MAPK pathway is genetically linked to autism spectrum disorders and other syndromes typified by intellectual disability. We provide direct evidence connecting the ERK/MAP kinases to the developmental abnormalities in neurogenesis and cortical cytoarchitecture associated with the 16p11.2 chromosomal deletion. Most importantly, we demonstrate that treatment with a novel ERK-specific inhibitor during development rescues aberrant cortical cytoarchitecture and restores normal levels of cell-cycle regulators during cortical neurogenesis. These treatments partially reverse the behavioral deficits observed in the 16p11.2del mouse model, including hyperactivity, memory as well as olfaction, and maternal behavior. We also report a rescue of a subset of these deficits upon treatment of adult 16p11.2del mice. These data provide a strong rationale for therapeutic approaches to this disorder.


Subject(s)
Fetus/drug effects , MAP Kinase Signaling System/drug effects , Neurogenesis/drug effects , Animals , Autistic Disorder/enzymology , Chromosome Deletion , Chromosome Disorders/enzymology , Chromosomes, Human, Pair 16/drug effects , Chromosomes, Human, Pair 16/enzymology , Enzyme Inhibitors/pharmacology , Female , Intellectual Disability/enzymology , Mice , Peptides , Phenotype , Pregnancy
18.
Curr Opin Neurol ; 32(5): 740-746, 2019 10.
Article in English | MEDLINE | ID: mdl-31335337

ABSTRACT

PURPOSE OF REVIEW: Neuroimaging with MRI and PET has become a well-established technical tool for amyotrophic lateral sclerosis (ALS). This review summarizes current developments in the advanced neuroimaging assessment of ALS and explores their potential in a clinical and neuroscientific setting. RECENT FINDINGS: With a focus on diffusion-weighted imaging, MRI-based neuroimaging has shown to provide reliable measures for monitoring disease progression and should be included in the clinical workup of ALS. There have been efforts to improve the clinical utility of fluorodesoxyglucose (FDG)-PET, and multivariate analysis has made advances in discriminating patients from controls and for prognostic assessment. Beyond FDG-PET, promising investigations have been carried out implementing novel radiotracers. SUMMARY: MRI and PET studies in ALS have consistently shown patterns of functional and structural changes considered to be the pathological signature of the disease. The constant advance of neuroimaging techniques encourages to investigate the cascade of ALS neurodegeneration and symptoms at finer and more specific level. Multicenter studies and the implementation of novel methodologies might confer a pivotal role to neuroimaging in the clinical setting in the near future, accelerating ALS diagnosis and allowing a prompt prognosis about disease progression.


Subject(s)
Amyotrophic Lateral Sclerosis/diagnostic imaging , Brain/diagnostic imaging , Magnetic Resonance Imaging , Neuroimaging/methods , Positron-Emission Tomography , Humans
19.
Eur J Nucl Med Mol Imaging ; 46(2): 334-347, 2019 02.
Article in English | MEDLINE | ID: mdl-30382303

ABSTRACT

PURPOSE: The aim of this study was to verify the reliability and generalizability of an automatic tool for the detection of Alzheimer-related hypometabolic pattern based on a Support-Vector-Machine (SVM) model analyzing 18F-fluorodeoxyglucose (FDG) PET data. METHODS: The SVM model processed metabolic data from anatomical volumes of interest also considering interhemispheric asymmetries. It was trained on a homogeneous dataset from a memory clinic center and tested on an independent multicentric dataset drawn from the Alzheimer's Disease Neuroimaging Initiative. Subjects were included in the study and classified based on a diagnosis confirmed after an adequate follow-up time. RESULTS: The accuracy of the discrimination between patients with Alzheimer Disease (AD), in either prodromal or dementia stage, and normal aging subjects was 95.8%, after cross-validation, in the training set. The accuracy of the same model in the testing set was 86.5%. The role of the two datasets was then reversed, and the accuracy was 89.8% in the multicentric training set and 88.0% in the monocentric testing set. The classification rate was also evaluated in different subgroups, including non-converter mild cognitive impairment (MCI) patients, subjects with MCI reverted to normal conditions and subjects with non-confirmed memory concern. The percent of pattern detections increased from 77% in early prodromal AD to 91% in AD dementia, while it was about 10% for healthy controls and non-AD patients. CONCLUSIONS: The present findings show a good level of reproducibility and generalizability of a model for detecting the hypometabolic pattern in AD and confirm the accuracy of FDG-PET in Alzheimer disease.


Subject(s)
Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Brain/diagnostic imaging , Brain/metabolism , Image Processing, Computer-Assisted , Positron-Emission Tomography , Aged , Automation , Female , Fluorodeoxyglucose F18 , Humans , Male , Support Vector Machine
20.
Eur J Nucl Med Mol Imaging ; 46(5): 1117-1131, 2019 May.
Article in English | MEDLINE | ID: mdl-30617963

ABSTRACT

PURPOSE: The role for [18F]FDG-PET in supporting amyotrophic lateral sclerosis (ALS) diagnosis is not fully established. In this study, we aim at evaluating [18F]FDG-PET hypo- and hyper-metabolism patterns in spinal- and bulbar-onset ALS cases, at the single-subject level, testing the diagnostic value in discriminating the two conditions, and the correlations with core clinical symptoms severity. METHODS: We included 95 probable-ALS patients with [18F]FDG-PET scan and clinical follow-up. [18F]FDG-PET images were analyzed with an optimized voxel-based-SPM method. The resulting single-subject SPM-t maps were used to: (a) assess brain regional hypo- and hyper-metabolism; (b) evaluate the accuracy of regional hypo- and hyper metabolism in discriminating spinal vs. bulbar-onset ALS; (c) perform correlation analysis with motor symptoms severity, as measured by ALS-FRS-R. RESULTS: Primary motor cortex showed the most frequent hypo-metabolism in both spinal-onset (∼57%) and bulbar-onset (∼64%) ALS; hyper-metabolism was prevalent in the cerebellum in both spinal-onset (∼56.5%) and bulbar-onset (∼55.7%) ALS, and in the occipital cortex in bulbar-onset (∼62.5%) ALS. Regional hypo- and hyper-metabolism yielded a very low accuracy (AUC < 0.63) in discriminating spinal- vs. bulbar-onset ALS, as obtained from single-subject SPM-t-maps. Severity of motor symptoms correlated with hypo-metabolism in sensorimotor cortex in spinal-onset ALS, and with cerebellar hyper-metabolism in bulbar-onset ALS. CONCLUSIONS: The high variability in regional hypo- and hyper-metabolism patterns, likely reflecting the heterogeneous pathology and clinical phenotypes, limits the diagnostic potential of [18F]FDG-PET in discriminating spinal and bulbar onset patients.


Subject(s)
Amyotrophic Lateral Sclerosis/diagnostic imaging , Fluorodeoxyglucose F18 , Medulla Oblongata/diagnostic imaging , Spine/diagnostic imaging , Amyotrophic Lateral Sclerosis/metabolism , Diagnosis, Differential , Female , Humans , Male , Middle Aged , Motor Cortex/metabolism , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL