Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Alcohol Clin Exp Res ; 42(8): 1476-1485, 2018 08.
Article in English | MEDLINE | ID: mdl-29786878

ABSTRACT

BACKGROUND: Complex interactions between environmental and genetic factors influence the risk of developing alcohol use disorder (AUD) in humans. To date, studies of the impact of environment on AUD risk have primarily focused on psychological characteristics or on the effects of developmental exposure to ethanol (EtOH). We recently observed that modifying levels of the long-chain ω-3 (LC ω-3) fatty acid, eicosapentaenoic acid (EPA), alters acute physiological responses to EtOH in Caenorhabditis elegans. Because mammals derive ω-3 fatty acids from their diet, here we asked if manipulating dietary levels of LC ω-3 fatty acids can affect EtOH-responsive behaviors in mice. METHODS: We used 2 well-characterized inbred mouse strains, C57BL/6J (B6) and DBA/2J (D2), which differ in their responses to EtOH. Age-matched young adult male mice were maintained on isocaloric diets that differed only by being enriched or depleted in LC ω-3 fatty acids. Animals were subsequently tested for acute EtOH sensitivity (locomotor activation and sedation), voluntary consumption, and metabolism. Fat deposition was also determined. RESULTS: We found that dietary levels of LC ω-3s altered EtOH sensitivity and consumption in a genotype-specific manner. Both B6 and D2 animals fed high LC ω-3 diets demonstrated lower EtOH-induced locomotor stimulation than those fed low LC ω-3 diets. EtOH sedation and EtOH metabolism were greater in D2, but not B6 mice on the high LC ω-3 diet. Conversely, LC ω-3 dietary manipulation altered EtOH consumption in B6, but not in D2 mice. B6 mice on a high LC ω-3 diet consumed more EtOH in a 2-bottle choice intermittent access model than B6 mice on a low LC ω-3 diet. CONCLUSIONS: Because EtOH sensitivity is predictive of risk of developing AUD in humans, our data indicate that dietary LC ω-3 levels should be evaluated for their impact on AUD risk in humans. Further, these studies indicate that genetic background can interact with fatty acids in the diet to significantly alter EtOH-responsive behaviors.


Subject(s)
Alcohol Drinking/physiopathology , Behavior, Animal/drug effects , Diet , Ethanol/pharmacology , Fatty Acids, Omega-3/administration & dosage , Alcoholism/physiopathology , Animals , Male , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Species Specificity
2.
Behav Brain Res ; 419: 113703, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34864163

ABSTRACT

The adolescent brain undergoes maturation in areas critically involved in reward, addiction, and memory. Adolescents consume alcohol more than any other drug, typically in a binge-like manner. While adults also binge on alcohol, the adolescent brain is more susceptible to ethanol-related damages due to its ongoing development, which may result in persistent behavioral and physical changes, including differences in myelination in the frontal cortex. Sex also impacts ethanol metabolism and addiction progression, suggesting females are more sensitive than males. This study addressed memory, sociability, ethanol sensitivity, and myelin gene expression changes due to binge ethanol, sex, and age. DBA/2 J males and females were exposed to intermittent binge ethanol (4 g/kg, i.g.) from postnatal day (PND) 29-42 or as adults from PND 64-77. Age groups were tested for behaviors at the early phase (24 h - 7 days) and late phase (starting 3 weeks) after the last dose. Adult prefrontal cortex was collected at both phases. Adolescent ethanol impaired late phase memory while adult ethanol showed no impairment. Meanwhile, adolescent males showed early phase tolerance to ethanol-induced locomotor activation, while adult females showed tolerance at both phases. Adult-treated mice displayed reductions in social interaction. Adult ethanol decreased Mal expression, a gene involved in myelin integrity, at the early phase. No differences in myelin gene expression were observed at the late phase. Thus, adolescent binge ethanol more severely impacts memory and myelin gene expression compared to adult exposure, while adult mice display ethanol-induced reductions in social interaction and tolerance to ethanol's locomotor activation.


Subject(s)
Behavior, Animal/physiology , Binge Drinking , Central Nervous System Depressants/pharmacology , Ethanol/pharmacology , Memory Disorders , Prefrontal Cortex , Social Behavior , Age Factors , Animals , Binge Drinking/complications , Binge Drinking/metabolism , Binge Drinking/physiopathology , Central Nervous System Depressants/administration & dosage , Disease Models, Animal , Ethanol/administration & dosage , Female , Male , Memory Disorders/etiology , Memory Disorders/metabolism , Memory Disorders/physiopathology , Mice , Mice, Inbred DBA , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Prefrontal Cortex/physiopathology , Sex Characteristics , Underage Drinking
3.
Behav Brain Res ; 382: 112500, 2020 03 16.
Article in English | MEDLINE | ID: mdl-31978491

ABSTRACT

BACKGROUND: Trauma related psychiatric disorders, such as posttraumatic stress disorder (PTSD), and alcohol use disorder (AUD) are highly comorbid illnesses that separately present an opposing, sex-specific pattern, with increased prevalence of PTSD in females and increased prevalence of AUD diagnoses in males. Likewise, PTSD is a risk factor in the development of AUD, with conflicting data on the impact of sex in the comorbid development of both disorders. Because the likelihood of experiencing more than one traumatic event is high, we aim to utilize chronic repeated predatory stress (CRPS) to query the extent to which sex interacts with CRPS to influence alcohol consumption, or cessation of consumption. METHODS: Male (n = 16) and female (n = 15) C57BL/6 J mice underwent CRPS or daily handling for two weeks during adolescence (P35-P49) and two weeks during adulthood (P65-P79). Following the conclusion of two rounds of repeated stress, behavior was assessed in the open field. Mice subsequently underwent a two-bottle choice intermittent ethanol access (IEA) assessment (P90-131) with the options of 20 % ethanol or water. After establishing drinking behavior, increasing concentrations of quinine were added to the ethanol to assess the drinking response to adulteration of the alcohol. RESULTS: CRPS increased fecal corticosterone concentrations and anxiety-like behaviors in the open field in both male and female mice as compared to control mice that had not been exposed to CRPS. Consistent with previous reports, we observed a sex difference in alcohol consumption such that females consumed more ethanol per gram of body mass than males. In addition, CRPS reduced alcohol aversion in male mice such that higher concentrations of quinine were necessary to reduce alcohol intake as compared to control mice. CRPS did not alter alcohol-related behaviors in female mice. CONCLUSION: Collectively, we demonstrate that repeated CRPS can induce anxiety-like behavior in both sexes but selectively influences the response to ethanol adulteration in males.


Subject(s)
Alcohol Drinking/psychology , Ethanol/administration & dosage , Predatory Behavior , Quinine/administration & dosage , Stress, Psychological/psychology , Animals , Behavior, Animal/drug effects , Choice Behavior/drug effects , Female , Male , Mice, Inbred C57BL , Sex Characteristics
SELECTION OF CITATIONS
SEARCH DETAIL