Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
PLoS Biol ; 16(7): e2005710, 2018 07.
Article in English | MEDLINE | ID: mdl-29975680

ABSTRACT

Animals live together with diverse bacteria that can impact their biology. In Drosophila melanogaster, gut-associated bacterial communities are relatively simple in composition but also have a strong impact on host development and physiology. It is generally assumed that gut bacteria in D. melanogaster are transient and their constant ingestion with food is required to maintain their presence in the gut. Here, we identify bacterial species from wild-caught D. melanogaster that stably associate with the host independently of continuous inoculation. Moreover, we show that specific Acetobacter wild isolates can proliferate in the gut. We further demonstrate that the interaction between D. melanogaster and the wild isolated Acetobacter thailandicus is mutually beneficial and that the stability of the gut association is key to this mutualism. The stable population in the gut of D. melanogaster allows continuous bacterial spreading into the environment, which is advantageous to the bacterium itself. The bacterial dissemination is in turn advantageous to the host because the next generation of flies develops in the presence of this particularly beneficial bacterium. A. thailandicus leads to a faster host development and higher fertility of emerging adults when compared to other bacteria isolated from wild-caught flies. Furthermore, A. thailandicus is sufficient and advantageous when D. melanogaster develops in axenic or freshly collected figs, respectively. This isolate of A. thailandicus colonizes several genotypes of D. melanogaster but not the closely related D. simulans, indicating that the stable association is host specific. This work establishes a new conceptual model to understand D. melanogaster-gut microbiota interactions in an ecological context; stable interactions can be mutualistic through microbial farming, a common strategy in insects. Moreover, these results develop the use of D. melanogaster as a model to study gut microbiota proliferation and colonization.


Subject(s)
Bacteria/metabolism , Drosophila melanogaster/microbiology , Gastrointestinal Microbiome , Symbiosis/physiology , Animals , Bacteria/growth & development , Biodiversity , Female , Gastrointestinal Tract/microbiology , Models, Biological , Species Specificity
2.
iScience ; 26(9): 107490, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37636057

ABSTRACT

Upon exposure to a bacterial pore-forming toxin, enterocytes rapidly purge their apical cytoplasm into the gut lumen, resulting in a thin intestinal epithelium. The enterocytes regain their original shape and thickness within 16 h after the ingestion of the bacteria. Here, we show that the regrowth of Drosophila enterocytes entails an inversion of metabolic fluxes from the organism back toward the intestine. We identify a proton-assisted transporter, Arcus, that is required for the reverse absorption of amino acids and the timely recovery of the intestinal epithelium. Arcus is required for a peak of amino acids appearing in the hemolymph shortly after infection. The regrowth of enterocytes involves the insulin signaling pathway and Myc. The purge decreases Myc mRNA levels, which subsequently remain at low levels in the arcus mutant. Interestingly, the action of arcus and Myc in the intestinal epithelium is not cell-autonomous, suggesting amino acid fluxes within the intestinal epithelium.

SELECTION OF CITATIONS
SEARCH DETAIL