Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Article in English | MEDLINE | ID: mdl-34782457

ABSTRACT

Lipofuscin granules enclose mixtures of cross-linked proteins and lipids in proportions that depend on the tissue analyzed. Retinal lipofuscin is unique in that it contains mostly lipids with very little proteins. However, retinal lipofuscin also presents biological and physicochemical characteristics indistinguishable from conventional granules, including indigestibility, tendency to cause lysosome swelling that results in rupture or defective functions, and ability to trigger NLRP3 inflammation, a symptom of low-level disruption of lysosomes. In addition, like conventional lipofuscins, it appears as an autofluorescent pigment, considered toxic waste, and a biomarker of aging. Ocular lipofuscin accumulates in the retinal pigment epithelium (RPE), whereby it interferes with the support of the neuroretina. RPE cell death is the primary cause of blindness in the most prevalent incurable genetic and age-related human disorders, Stargardt disease and age-related macular degeneration (AMD), respectively. Although retinal lipofuscin is directly linked to the cell death of the RPE in Stargardt, the extent to which it contributes to AMD is a matter of debate. Nonetheless, the number of AMD clinical trials that target lipofuscin formation speaks for the potential relevance for AMD as well. Here, we show that retinal lipofuscin triggers an atypical necroptotic cascade, amenable to pharmacological intervention. This pathway is distinct from canonic necroptosis and is instead dependent on the destabilization of lysosomes. We also provide evidence that necroptosis is activated in aged human retinas with AMD. Overall, this cytotoxicity mechanism may offer therapeutic targets and markers for genetic and age-related diseases associated with lipofuscin buildups.


Subject(s)
Intracellular Membranes/metabolism , Lipofuscin/pharmacology , Lysosomes/metabolism , Necroptosis/drug effects , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Aging , Alcohol Oxidoreductases , Animals , Cell Death , Humans , Lipofuscin/metabolism , Macular Degeneration/metabolism , Mice , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Retina/metabolism , Retinal Pigment Epithelium/metabolism
2.
Cell Stem Cell ; 31(2): 196-211.e6, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38237586

ABSTRACT

COVID-19 patients commonly present with signs of central nervous system and/or peripheral nervous system dysfunction. Here, we show that midbrain dopamine (DA) neurons derived from human pluripotent stem cells (hPSCs) are selectively susceptible and permissive to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. SARS-CoV-2 infection of DA neurons triggers an inflammatory and cellular senescence response. High-throughput screening in hPSC-derived DA neurons identified several FDA-approved drugs that can rescue the cellular senescence phenotype by preventing SARS-CoV-2 infection. We also identified the inflammatory and cellular senescence signature and low levels of SARS-CoV-2 transcripts in human substantia nigra tissue of COVID-19 patients. Furthermore, we observed reduced numbers of neuromelanin+ and tyrosine-hydroxylase (TH)+ DA neurons and fibers in a cohort of severe COVID-19 patients. Our findings demonstrate that hPSC-derived DA neurons are susceptible to SARS-CoV-2, identify candidate neuroprotective drugs for COVID-19 patients, and suggest the need for careful, long-term monitoring of neurological problems in COVID-19 patients.


Subject(s)
COVID-19 , Pluripotent Stem Cells , Humans , SARS-CoV-2 , Dopaminergic Neurons , Central Nervous System
3.
Foods ; 12(7)2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37048381

ABSTRACT

Guangdong black teas have diverse flavors and aromas. To explore the molecular basis of these aromas, we extracted and analyzed the volatile flavor compounds of 31 black tea samples from 7 districts (Yingde, Luokeng, Renhua, Meizhou, Chaozhou, Lianshan, and Heyuan) in Guangdong Province with headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS). Then, 135 volatile flavor compounds (VFCs) were identified and grouped into 12 classes according to their chemical structure. Notably, alcohols accounted for 31.40-44.43% of total VFCs. The score plot of supervised partial least squares-discriminant analysis (PLS-DA) revealed good discrimination for most black tea samples. Additionally, 64 compounds with variable importance in projection > 1.0 were identified as differential odorants. Through an odor activity value analysis, eight volatile compounds were identified as the key active differential VFCs: linalool, methyl salicylate, phenylethyl alcohol, p-cresol, 3-methyl-butanoic acid, geraniol, benzaldehyde, and benzeneacetaldehyde. Thus, benzeneacetaldehyde and linalool in YJ-Yingde samples, benzaldehyde in Luokeng samples with an almond-like aroma, phenylethyl alcohol in the Heyuan samples, and p-cresol and 3-methyl-butanoic acid in the Chaozhou samples were the key volatile flavor compounds that could differentiate local black teas from other black teas. These findings will enrich the research in tea aroma chemistry and provide a method for identifying the origins of Guangdong black teas.

4.
Food Res Int ; 173(Pt 1): 113356, 2023 11.
Article in English | MEDLINE | ID: mdl-37803659

ABSTRACT

Fenghuang Dancong tea (FHDC), a famous oolong tea originating from Guangdong Province in China, is known for its rich and unique fragrance. Nevertheless, the identification of the key aroma compounds with the difference fragrance types of FHDC remains uncertain. In order to characteristic the volatile components in different fragrance types of FHDC, 10 well-known fragrance types of FHDC and Tieguanyin (TGY) as a control were analyzed by headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography mass spectrometry (GC-MS). Results indicated that 172 volatile compounds were identified as common volatile compounds among all the tea samples. A total of 16 compounds were identified as key compounds that could be used to distinguish between FHDC and TGY. Among the 10 FHDC fragrance types, indole, hotrienol, benzyl nitrile, and jasmine lactone were found to be the most abundant compounds. Despite the presence of certain similarities in aroma components, each type exhibits unique fragrance characteristics as a result of variation in compound composition content and proportion. Furthermore, using statistical and odor activity value analysis, 20 aroma-active compounds were recognized as potential characteristic markers accountable for the diverse fragrance types of FHDC. This research enhances our comprehension of the various fragrance types of FHDC and provides reference values for their rapid identification in the market.


Subject(s)
Camellia sinensis , Volatile Organic Compounds , Tea/chemistry , Gas Chromatography-Mass Spectrometry/methods , Odorants/analysis , Camellia sinensis/chemistry , Solid Phase Microextraction/methods , Volatile Organic Compounds/analysis , Multivariate Analysis
5.
J Food Sci ; 87(8): 3433-3446, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35838150

ABSTRACT

Volatile flavor compounds in 112 black teas from seven countries were analyzed by untargeted metabolomics using headspace solid-phase microextraction and gas chromatography-mass spectrometry (HS-SPME/GC-MS). Multivariate statistical analysis and odor activity values (OAVs) were used to classify these samples and identify key odorants. A total of 140 volatile flavor compounds (VFCs), including 12 different groups, were identified, and alcohols were prevalent in China and India samples, accounting for 40.83% and 34.96% of the total VFCs, respectively. Eight volatile compounds with OAVs > 1 were identified as key active differential odorants in Chinese, Indian, and Sri Lankan samples, including linalool, pentanoic acid, methyl salicylate, hexanoic acid, 1-methyl-naphthalene, phenylethyl alcohol, geraniol, and ß-ionone. Linalool, pentanoic acid, and hexanoic acid in Indian black teas, phenylethyl alcohol in Chinese black teas, and 1-methyl-naphthalene, ß-ionone in Sri Lankan black teas could be used to discriminate different black tea groups. A total of 12-14 VFCs with OAVs > 1 were identified as key active aromatics in Chinese black tea sample. Linalool and benzeneacetaldehyde in Yingde (Guangdong) black tea, methyl salicylate in Taiwanese samples, and benzeneacetic acid in Anhui black tea could be used as biomarkers to distinguish them from other Chinese samples. Sensory evaluation results showed that most black teas presented the common sweet, floral odors, which were consistent with GC-MS analysis. These results will contribute to characterize the odor metabolome of black teas and provide biochemical basis for identifying the authenticity of different black teas. PRACTICAL APPLICATION: Linalool, pentanoic acid, and hexanoic acid in Indian black teas, phenylethyl alcohol in Chinese black teas, 1-methyl-naphthalene, ß-ionone, and methyl salicylate in Sri Lankan black teas could be used to discriminate black teas from the three countries. Linalool and benzeneacetaldehyde in Yingde black teas, methyl salicylate in Taiwanese black teas, and benzeneacetic acid in Anhui black tea are the potential biomarkers to distinguish these teas from other Chinese black teas.


Subject(s)
Camellia sinensis , Phenylethyl Alcohol , Volatile Organic Compounds , Camellia sinensis/chemistry , Gas Chromatography-Mass Spectrometry , Naphthalenes/analysis , Odorants/analysis , Phenylethyl Alcohol/analysis , Solid Phase Microextraction , Tea/chemistry , Volatile Organic Compounds/analysis
6.
Hortic Res ; 8(1): 42, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33642595

ABSTRACT

The characteristic secondary metabolites in tea (theanine, caffeine, and catechins) are important factors contributing to unique tea flavors. However, there has been relatively little research on molecular markers related to these metabolites. Thus, we conducted a genome-wide association analysis of the levels of these tea flavor-related metabolites in three seasons. The theanine, caffeine, and catechin levels in Population 1 comprising 191 tea plant germplasms were examined, which revealed that their heritability exceeded 0.5 in the analyzed seasons, with the following rank order (highest to lowest heritabilities): (+)-catechin > (-)-gallocatechin gallate > caffeine = (-)-epicatechin > (-)-epigallocatechin-3-gallate > theanine > (-)-epigallocatechin > (-)-epicatechin-3-gallate > catechin gallate > (+)-gallocatechin. The SNPs detected by amplified-fragment SNP and methylation sequencing divided Population 1 into three groups and seven subgroups. An association analysis yielded 307 SNP markers related to theanine, caffeine, and catechins that were common to all three seasons. Some of the markers were pleiotropic. The functional annotation of 180 key genes at the SNP loci revealed that FLS, UGT, MYB, and WD40 domain-containing proteins, as well as ATP-binding cassette transporters, may be important for catechin synthesis. KEGG and GO analyses indicated that these genes are associated with metabolic pathways and secondary metabolite biosynthesis. Moreover, in Population 2 (98 tea plant germplasm resources), 30 candidate SNPs were verified, including 17 SNPs that were significantly or extremely significantly associated with specific metabolite levels. These results will provide a foundation for future research on important flavor-related metabolites and may help accelerate the breeding of new tea varieties.

7.
Food Res Int ; 138(Pt B): 109789, 2020 12.
Article in English | MEDLINE | ID: mdl-33288175

ABSTRACT

Camellia kucha (Chang et Wang) Chang is a special tea in China, which is extremely bitter but beneficial for human health. However, there are no systematic studies on Kucha metabolites, especially those associated with bitterness. In this study, a non-targeted metabolomics approach based on UHPLC-LTQ-Orbitrap-MS was applied to comprehensively profile the characteristic metabolites of two Kucha cultivars by comparison with three common tea cultivars. A total of 90 differential metabolites were identified. Among them, eight key metabolites (theacrine, 2,4-dimethyl-1H-indole, EGCG, dihydrokaempferol, panasenoside, 3-cresotinic acid, 3-methylglutaconic acid, and L-histidine) were more abundant in Kucha than in the controls, most of which were positively correlated with bitterness. Furthermore, quantitative analysis of some important catechins and alkaloids by HPLC implied absolutely higher concentrations of EGCG and theacrine in Kucha, which was similar to the metabolomics results. These results will be contribute to future research on the bitter and nutritional properties of Kucha.


Subject(s)
Alkaloids , Camellia , China , Chromatography, High Pressure Liquid , Humans , Metabolomics
8.
Cancer Res ; 76(2): 491-504, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26744520

ABSTRACT

Consequences of the obesity epidemic on cancer morbidity and mortality are not fully appreciated. Obesity is a risk factor for many cancers, but the mechanisms by which it contributes to cancer development and patient outcome have yet to be fully elucidated. Here, we examined the effects of coculturing human-derived adipocytes with established and primary breast cancer cells on tumorigenic potential. We found that the interaction between adipocytes and cancer cells increased the secretion of proinflammatory cytokines. Prolonged culture of cancer cells with adipocytes or cytokines increased the proportion of mammosphere-forming cells and of cells expressing stem-like markers in vitro. Furthermore, contact with immature adipocytes increased the abundance of cancer cells with tumor-forming and metastatic potential in vivo. Mechanistic investigations demonstrated that cancer cells cultured with immature adipocytes or cytokines activated Src, thus promoting Sox2, c-Myc, and Nanog upregulation. Moreover, Sox2-dependent induction of miR-302b further stimulated cMYC and SOX2 expression and potentiated the cytokine-induced cancer stem cell-like properties. Finally, we found that Src inhibitors decreased cytokine production after coculture, indicating that Src is not only activated by adipocyte or cytokine exposures, but is also required to sustain cytokine induction. These data support a model in which cancer cell invasion into local fat would establish feed-forward loops to activate Src, maintain proinflammatory cytokine production, and increase tumor-initiating cell abundance and metastatic progression. Collectively, our findings reveal new insights underlying increased breast cancer mortality in obese individuals and provide a novel preclinical rationale to test the efficacy of Src inhibitors for breast cancer treatment.


Subject(s)
Adipocytes/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cytokines/metabolism , Obesity/complications , RNA, Messenger/metabolism , src-Family Kinases/metabolism , Adipocytes/cytology , Animals , Breast Neoplasms/pathology , Disease Progression , Female , Humans , Mice , RNA, Messenger/genetics , SOXB1 Transcription Factors , Signal Transduction , Transfection , src-Family Kinases/genetics
9.
Am J Physiol Cell Physiol ; 294(6): C1387-97, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18385288

ABSTRACT

Bone morphogenetic proteins (BMPs) and their endogenous antagonists are important for brain and bone development and tumor initiation and progression. Heparan sulfate (HS) proteoglycans (HSPG) modulate the activities of BMPs and their antagonists. How glycosaminoglycans (GAGs) influence BMP activity in various malignancies and in inherited abnormalities of GAG metabolism, and the structural features of GAGs essential for modulation of BMP signaling, remain incompletely defined. We examined whether chemically modified soluble heparins, the endogenous HS in malignant cells and the HS accumulated in Hurler syndrome cells influence BMP-4 signaling and activity. We show that both exogenous (soluble) and endogenous GAGs modulate BMP-4 signaling and activity, and that this effect is dependent on specific sulfate residues of GAGs. Our studies suggest that endogenous sulfated GAGs promote the proliferation and impair differentiation of malignant human cells, providing the rationale for investigating whether pharmacological agents that inhibit GAG synthesis or function might reverse this effect. Our demonstration of impairment of BMP-4 signaling by GAGs in multipotent stem cells in human Hurler syndrome identifies a mechanism that might contribute to the progressive neurological and skeletal abnormalities in Hurler syndrome and related mucopolysaccharidoses.


Subject(s)
Bone Morphogenetic Proteins/metabolism , Heparin/metabolism , Heparitin Sulfate/metabolism , Mucopolysaccharidosis I/metabolism , Multipotent Stem Cells/metabolism , Osteosarcoma/metabolism , Signal Transduction , Bone Morphogenetic Protein 4 , Bone Morphogenetic Protein Receptors/metabolism , Cell Differentiation , Cell Line, Tumor , Cell Proliferation , Cells, Cultured , Glycoproteins/metabolism , Humans , Inhibitor of Differentiation Protein 1/genetics , Inhibitor of Differentiation Protein 1/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Mucopolysaccharidosis I/pathology , Multipotent Stem Cells/pathology , Osteosarcoma/pathology , Phosphorylation , Promoter Regions, Genetic , Recombinant Proteins/metabolism , Smad1 Protein/metabolism , Time Factors
10.
Blood ; 106(6): 1956-64, 2005 Sep 15.
Article in English | MEDLINE | ID: mdl-15947088

ABSTRACT

In mucopolysaccharidosis-I (MPS-I), alpha-L-iduronidase deficiency leads to progressive heparan sulfate (HS) and dermatan sulfate (DS) glycosaminoglycan (GAG) accumulation. The functional consequences of these accumulated molecules are unknown. HS critically influences tissue morphogenesis by binding to and modulating the activity of several cytokines (eg, fibroblast growth factors [FGFs]) involved in developmental patterning. We recently isolated a multipotent progenitor cell from postnatal human bone marrow, which differentiates into cells of all 3 embryonic lineages. The availability of multipotent progenitor cells from healthy volunteers and patients with MPS-I (Hurler syndrome) provides a unique opportunity to directly examine the functional effects of abnormal HS on cytokine-mediated stem-cell proliferation and survival. We demonstrate here that abnormally sulfated HS in Hurler multipotent progenitor cells perturb critical FGF-2-FGFR1-HS interactions, resulting in defective FGF-2-induced proliferation and survival of Hurler multipotent progenitor cells. Both the mitogenic and survival-promoting activities of FGF-2 were restored by substitution of Hurler HS by normal HS. This perturbation of critical HS-cytokine receptor interactions may represent a mechanism by which accumulated HS contributes to the developmental pathophysiology of Hurler syndrome. Similar mechanisms may operate in the pathogenesis of other diseases where structurally abnormal GAGs accumulate.


Subject(s)
Fibroblast Growth Factor 2/metabolism , Heparitin Sulfate/chemistry , Heparitin Sulfate/physiology , Mucopolysaccharidosis I/metabolism , Multipotent Stem Cells/pathology , Case-Control Studies , Cell Proliferation , Cell Survival , Cells, Cultured , Chromatography, High Pressure Liquid , Heparitin Sulfate/isolation & purification , Humans , Mucopolysaccharidosis I/etiology , Multipotent Stem Cells/cytology , Receptor Protein-Tyrosine Kinases/metabolism , Receptor, Fibroblast Growth Factor, Type 1 , Receptors, Fibroblast Growth Factor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL