Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.429
Filter
Add more filters

Publication year range
1.
J Virol ; 98(8): e0064524, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39012141

ABSTRACT

Porcine deltacoronavirus (PDCoV) is an important enteric coronavirus that has caused enormous economic losses in the pig industry worldwide. However, no commercial vaccine is currently available. Therefore, developing a safe and efficacious live-attenuated vaccine candidate is urgently needed. In this study, the PDCoV strain CH/XJYN/2016 was continuously passaged in LLC-PK cells until passage 240, and the virus growth kinetics in cell culture, pathogenicity in neonatal piglets, transcriptome differences after LLC-PK infection, changes in the functional characteristics of the spike (S) protein in the high- and low-passage strains, genetic variation of the virus genome, resistance to pepsin and acid, and protective effects of this strain when used as a live-attenuated vaccine were examined. The results of animal experiments demonstrated that the virulent PDCoV strain CH/XJYN/2016 was completely attenuated and not pathogenic in piglets following serial cell passage. Genome sequence analysis showed that amino acid mutations in nonstructural proteins were mainly concentrated in Nsp3, structural protein mutations were mainly concentrated in the S protein, and the N, M, and E genes were conserved. Transcriptome comparison revealed that compared with negative control cells, P10-infected LLC-PK cells had the most differentially expressed genes (DEGs), while P0 and P240 had the least number of DEGs. Analysis of trypsin dependence and related structural differences revealed that the P10 S protein interacted more strongly with trypsin and that the P120 S protein interacted more strongly with the APN receptor. Moreover, the infectivity of P240 was not affected by pepsin but was significantly decreased after exposure to low pH. Furthermore, the P240-based live-attenuated vaccine provided complete protection to piglets against the challenge of virulent PDCoV. In conclusion, we showed that a PDCoV strain was completely attenuated through serial passaging in vitro. These results provide insights into the potential molecular mechanisms of PDCoV attenuation and the development of a promising live-attenuated PDCoV vaccine.IMPORTANCEPorcine deltacoronavirus (PDCoV) is one of the most important enteropathogenic pathogens that cause diarrhea in pigs of various ages, especially in suckling piglets, and causes enormous economic losses in the global commercial pork industry. There are currently no effective measures to prevent and control PDCoV. As reported in previous porcine epidemic diarrhea virus (PEDV) and transmissible gastroenteritis virus studies, inactivated vaccines usually elicit less robust protective immune responses than live-attenuated vaccines in native sows. Therefore, identifying potential attenuation mechanisms, gene evolution, pathogenicity differences during PDCoV passaging, and immunogenicity as live-attenuated vaccines is important for elucidating the mechanism of attenuation and developing safe and effective vaccines for virulent PDCoV strains. In this study, we demonstrated that the virulence of the PDCoV strain CH/XJYN/2016 was completely attenuated following serial cell passaging in vitro, and changes in the biological characteristics and protection efficacy of the strain were evaluated. Our results help elucidate the mechanism of PDCoV attenuation and support the development of appropriate designs for the study of live PDCoV vaccines.


Subject(s)
Coronavirus Infections , Deltacoronavirus , Genome, Viral , Serial Passage , Swine Diseases , Vaccines, Attenuated , Animals , Swine , Deltacoronavirus/genetics , Deltacoronavirus/pathogenicity , Vaccines, Attenuated/immunology , Coronavirus Infections/virology , Coronavirus Infections/veterinary , Swine Diseases/virology , Virulence , Viral Vaccines/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Cell Line , Mutation
2.
PLoS Pathog ; 19(8): e1011580, 2023 08.
Article in English | MEDLINE | ID: mdl-37566637

ABSTRACT

The multigene family genes (MGFs) in the left variable region (LVR) of the African swine fever virus (ASFV) genome have been reported to be involved in viral replication in primary porcine alveolar macrophages (PAMs) and virulence in pigs. However, the exact functions of key MGFs in the LVR that regulate the replication and virulence of ASFV remain unclear. In this study, we identified the MGF300-2R gene to be critical for viral replication in PAMs by deleting different sets of MGFs in the LVR from the highly virulent strain ASFV HLJ/18 (ASFV-WT). The ASFV mutant lacking the MGF300-2R gene (Del2R) showed a 1-log reduction in viral titer, and induced higher IL-1ß and TNF-α production in PAMs than did ASFV-WT. Mechanistically, the MGF300-2R protein was found to interact with and degrade IKKα and IKKß via the selective autophagy pathway. Furthermore, we showed that MGF300-2R promoted the K27-linked polyubiquitination of IKKα and IKKß, which subsequently served as a recognition signal for the cargo receptor TOLLIP-mediated selective autophagic degradation. Importantly, Del2R exhibited a significant reduction in both replication and virulence compared with ASFV-WT in pigs, likely due to the increased IL-1ß and TNF-α, indicating that MGF300-2R is a virulence determinant. These findings reveal that MGF300-2R suppresses host innate immune responses by mediating the degradation of IKKα and IKKß, which provides clues to paving the way for the rational design of live attenuated vaccines to control ASF.


Subject(s)
African Swine Fever Virus , African Swine Fever , Swine , Animals , African Swine Fever Virus/genetics , Virulence , I-kappa B Kinase/genetics , I-kappa B Kinase/metabolism , Tumor Necrosis Factor-alpha/metabolism , Macrophages , Protein Serine-Threonine Kinases/metabolism , Autophagy
3.
Ann Neurol ; 95(3): 583-595, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38055324

ABSTRACT

OBJECTIVE: This study was undertaken to investigate migraine glymphatic and meningeal lymphatic vessel (mLV) functions. METHODS: Migraine patients and healthy controls (HCs) were prospectively recruited between 2020 and 2023. Diffusion tensor image analysis along the perivascular space (DTI-ALPS) index for glymphatics and dynamic contrast-enhanced magnetic resonance imaging parameters (time to peak [TTP]/enhancement integral [EI]/mean time to enhance [MTE]) for para-superior sagittal (paraSSS)-mLV or paratransverse sinus (paraTS)-mLV in episodic migraine (EM), chronic migraine (CM), and CM with and without medication-overuse headache (MOH) were analyzed. DTI-ALPS correlations with clinical parameters (migraine severity [numeric rating scale]/disability [Migraine Disability Assessment (MIDAS)]/bodily pain [Widespread Pain Index]/sleep quality [Pittsburgh Sleep Quality Index (PSQI)]) were examined. RESULTS: In total, 175 subjects (112 migraine + 63 HCs) were investigated. DTI-ALPS values were lower in CM (median [interquartile range] = 0.64 [0.12]) than in EM (0.71 [0.13], p = 0.005) and HCs (0.71 [0.09], p = 0.004). CM with MOH (0.63 [0.07]) had lower DTI-ALPS values than CM without MOH (0.73 [0.12], p < 0.001). Furthermore, CM had longer TTP (paraSSS-mLV: 55.8 [12.9] vs 40.0 [7.6], p < 0.001; paraTS-mLV: 51.2 [8.1] vs 44.0 [3.3], p = 0.002), EI (paraSSS-mLV: 45.5 [42.0] vs 16.1 [9.2], p < 0.001), and MTE (paraSSS-mLV: 253.7 [6.7] vs 248.4 [13.8], p < 0.001; paraTS-mLV: 252.0 [6.2] vs 249.7 [1.2], p < 0.001) than EM patients. The MIDAS (p = 0.002) and PSQI (p = 0.002) were negatively correlated with DTI-ALPS index after Bonferroni corrections (p < q = 0.01). INTERPRETATION: CM patients, particularly those with MOH, have glymphatic and meningeal lymphatic dysfunctions, which are highly clinically relevant and may implicate pathogenesis for migraine chronification. ANN NEUROL 2024;95:583-595.


Subject(s)
Lymphatic Vessels , Migraine Disorders , Humans , Migraine Disorders/diagnostic imaging , Disability Evaluation , Image Processing, Computer-Assisted , Pain
4.
Proc Natl Acad Sci U S A ; 119(41): e2122099119, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36191206

ABSTRACT

Viruses pose a great threat to animal and plant health worldwide, with many being dependent on insect vectors for transmission between hosts. While the virus-host arms race has been well established, how viruses and insect vectors adapt to each other remains poorly understood. Begomoviruses comprise the largest genus of plant-infecting DNA viruses and are exclusively transmitted by the whitefly Bemisia tabaci. Here, we show that the vector Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway plays an important role in mediating the adaptation between the begomovirus tomato yellow leaf curl virus (TYLCV) and whiteflies. We found that the JAK/STAT pathway in B. tabaci functions as an antiviral mechanism against TYLCV infection in whiteflies as evidenced by the increase in viral DNA and coat protein (CP) levels after inhibiting JAK/STAT signaling. Two STAT-activated effector genes, BtCD109-2 and BtCD109-3, mediate this anti-TYLCV activity. To counteract this vector immunity, TYLCV has evolved strategies that impair the whitefly JAK/STAT pathway. Infection of TYLCV is associated with a reduction of JAK/STAT pathway activity in whiteflies. Moreover, TYLCV CP binds to STAT and blocks its nuclear translocation, thus, abrogating the STAT-dependent transactivation of target genes. We further show that inhibition of the whitefly JAK/STAT pathway facilitates TYLCV transmission but reduces whitefly survival and fecundity, indicating that this JAK/STAT-dependent TYLCV-whitefly interaction plays an important role in keeping a balance between whitefly fitness and TYLCV transmission. This study reveals a mechanism of plant virus-insect vector coadaptation in relation to vector survival and virus transmission.


Subject(s)
Begomovirus , Hemiptera , Plant Viruses , Solanum lycopersicum , Animals , Antiviral Agents , Begomovirus/genetics , DNA, Viral , Hemiptera/physiology , Janus Kinases/genetics , Solanum lycopersicum/genetics , Plant Diseases , Plant Viruses/genetics , STAT Transcription Factors/genetics , Signal Transduction
5.
Eur Heart J ; 45(9): 669-684, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38085922

ABSTRACT

BACKGROUND AND AIMS: Survivors of acute coronary syndromes face an elevated risk of recurrent atherosclerosis-related vascular events despite advanced medical treatments. The underlying causes remain unclear. This study aims to investigate whether myocardial infarction (MI)-induced trained immunity in monocytes could sustain proatherogenic traits and expedite atherosclerosis. METHODS: Apolipoprotein-E deficient (ApoE-/-) mice and adoptive bone marrow transfer chimeric mice underwent MI or myocardial ischaemia-reperfusion (IR). A subsequent 12-week high-fat diet (HFD) regimen was implemented to elucidate the mechanism behind monocyte trained immunity. In addition, classical monocytes were analysed by flow cytometry in the blood of enrolled patients. RESULTS: In MI and IR mice, blood monocytes and bone marrow-derived macrophages exhibited elevated spleen tyrosine kinase (SYK), lysine methyltransferase 5A (KMT5A), and CCHC-type zinc finger nucleic acid-binding protein (CNBP) expression upon exposure to a HFD or oxidized LDL (oxLDL) stimulation. MI-induced trained immunity was transmissible by transplantation of bone marrow to accelerate atherosclerosis in naive recipients. KMT5A specifically recruited monomethylation of Lys20 of histone H4 (H4K20me) to the gene body of SYK and synergistically transactivated SYK with CNBP. In vivo small interfering RNA (siRNA) inhibition of KMT5A or CNBP potentially slowed post-MI atherosclerosis. Sympathetic denervation with 6-hydroxydopamine reduced atherosclerosis and inflammation after MI. Classical monocytes from ST-elevation MI (STEMI) patients with advanced coronary lesions expressed higher SYK and KMT5A gene levels. CONCLUSIONS: The findings underscore the crucial role of monocyte trained immunity in accelerated atherosclerosis after MI, implying that SYK in blood classical monocytes may serve as a predictive factor for the progression of atherosclerosis in STEMI patients.


Subject(s)
Atherosclerosis , Myocardial Infarction , ST Elevation Myocardial Infarction , Humans , Animals , Mice , Monocytes , Trained Immunity
6.
J Infect Dis ; 229(2): 398-402, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-37798128

ABSTRACT

We measured neutralizing antibodies (nAbs) against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in a cohort of 235 convalescent patients (representing 384 analytic samples). They were followed for up to 588 days after the first report of onset in Taiwan. A proposed Bayesian approach was used to estimate nAb dynamics in patients postvaccination. This model revealed that the titer reached its peak (1819.70 IU/mL) by 161 days postvaccination and decreased to 154.18 IU/mL by day 360. Thus, the nAb titers declined in 6 months after vaccination. Protection, against variant B.1.1.529 (ie, Omicron) may only occur during the peak period.


Subject(s)
COVID-19 , Humans , COVID-19/prevention & control , SARS-CoV-2 , Bayes Theorem , Vaccination , Antibodies, Neutralizing , Antibodies, Viral
7.
J Infect Dis ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38718223

ABSTRACT

BACKGROUND: COVID-19 remains a global public health challenge due to new immune-evasive SARS-CoV-2 variants and heterogeneous immunity. METHODS: In this cross-sectional study, we evaluated the adaptive immune responses in U.S. active-duty personnel who completed a COVID-19 primary vaccine series and with heterogenous SARS-CoV-2 vaccination and infection histories to 3 previously dominant variants (Ancestral, Delta, BA.5) and 3 circulating variants (XBB.1.5, EG.5, and BA.2.86) in late 2023. Analyses were performed based upon timing (within or beyond 12 months) and type (vaccine or infection) of the most recent exposure. RESULTS: Significant reduction was observed in binding antibodies, neutralization antibodies, memory B cells, and CD8+ T cells against circulating variants compared to previous variants. The reduction in antibody response was more pronounced in those whose most recent exposure was greater than 12 months from enrollment. In contrast, the CD4+ T cell response was largely consistent across all tested variants. The type of most recent exposure was not a significant factor in determining the magnitude of current immune responses. CONCLUSIONS: Administration of the XBB.1.5-based booster is likely to enhance cross-reactive humoral responses against SARS-CoV-2 circulating lineages. Ongoing surveillance of immune responses to emerging variants is needed for informing vaccine composition and timing.

8.
BMC Bioinformatics ; 25(1): 157, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38643108

ABSTRACT

BACKGROUND: The identification of essential proteins can help in understanding the minimum requirements for cell survival and development to discover drug targets and prevent disease. Nowadays, node ranking methods are a common way to identify essential proteins, but the poor data quality of the underlying PIN has somewhat hindered the identification accuracy of essential proteins for these methods in the PIN. Therefore, researchers constructed refinement networks by considering certain biological properties of interacting protein pairs to improve the performance of node ranking methods in the PIN. Studies show that proteins in a complex are more likely to be essential than proteins not present in the complex. However, the modularity is usually ignored for the refinement methods of the PINs. METHODS: Based on this, we proposed a network refinement method based on module discovery and biological information. The idea is, first, to extract the maximal connected subgraph in the PIN, and to divide it into different modules by using Fast-unfolding algorithm; then, to detect critical modules according to the orthologous information, subcellular localization information and topology information within each module; finally, to construct a more refined network (CM-PIN) by using the identified critical modules. RESULTS: To evaluate the effectiveness of the proposed method, we used 12 typical node ranking methods (LAC, DC, DMNC, NC, TP, LID, CC, BC, PR, LR, PeC, WDC) to compare the overall performance of the CM-PIN with those on the S-PIN, D-PIN and RD-PIN. The experimental results showed that the CM-PIN was optimal in terms of the identification number of essential proteins, precision-recall curve, Jackknifing method and other criteria, and can help to identify essential proteins more accurately.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Protein Interaction Mapping/methods , Algorithms , Protein Interaction Maps , Computational Biology/methods
9.
Ann Hum Genet ; 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39239922

ABSTRACT

OBJECTIVE: This study aimed to investigate the heritability of various obesity indices and their shared genetic factors with cardiometabolic traits in the Chinese nuclear family. METHODS: A total of 1270 individuals from 538 nuclear families were included in this cross-sectional study. Different indices were used to quantify fat mass and distribution, including body index mass (BMI), visceral fat index (VFI), and body fat percent (BFP). Heritability and genetic correlations for all quantitative traits were estimated using variance component models. The susceptibility-threshold model was utilized to estimate the heritability for binary traits. RESULTS: Heritability estimates for obesity indices were highest for BMI (59%), followed by BFP (49%), and VFI (40%). Heritability estimates for continuous cardiometabolic traits varied from 24% to 50%. All obesity measures exhibited consistently significant positive genetic correlations with blood pressure, fasting blood glucose, and uric acid (rG range: 0.26-0.57). However, diverse genetic correlations between various obesity indices and lipid profiles were observed. Significant genetic correlations were limited to specific pairs: BFP and total cholesterol (rG = 0.24), BFP and low-density lipoprotein cholesterol (rG = 0.25), and VFI and triglyceride (rG = 0.33). CONCLUSION: The genetic overlap between various obesity indices and cardiometabolic traits underscores the importance of pleiotropic genes. Further studies are warranted to investigate specific shared genetic and environmental factors between obesity and cardiometabolic diseases.

10.
J Gen Virol ; 105(8)2024 Aug.
Article in English | MEDLINE | ID: mdl-39136113

ABSTRACT

Porcine deltacoronavirus (PDCoV), an enteropathogenic coronavirus, causes severe watery diarrhoea, dehydration and high mortality in piglets, which has the potential for cross-species transmission in recent years. Growth factor receptor-bound protein 2 (Grb2) is a bridging protein that can couple cell surface receptors with intracellular signal transduction events. Here, we investigated the reciprocal regulation between Grb2 and PDCoV. It is found that Grb2 regulates PDCoV infection and promotes IFN-ß production through activating Raf/MEK/ERK/STAT3 pathway signalling in PDCoV-infected swine testis cells to suppress viral replication. PDCoV N is capable of interacting with Grb2. The proline-rich motifs in the N- or C-terminal region of PDCoV N were critical for the interaction between PDCoV-N and Grb2. Except for Deltacoronavirus PDCoV N, the Alphacoronavirus PEDV N protein could interact with Grb2 and affect the regulation of PEDV replication, while the N protein of Betacoronavirus PHEV and Gammacoronavirus AIBV could not interact with Grb2. PDCoV N promotes Grb2 degradation by K48- and K63-linked ubiquitin-proteasome pathways. Overexpression of PDCoV N impaired the Grb2-mediated activated effect on the Raf/MEK/ERK/STAT3 signal pathway. Thus, our study reveals a novel mechanism of how host protein Grb2 protein regulates viral replication and how PDCoV N escaped natural immunity by interacting with Grb2.


Subject(s)
GRB2 Adaptor Protein , Nucleocapsid Proteins , Virus Replication , Animals , Swine , GRB2 Adaptor Protein/metabolism , GRB2 Adaptor Protein/genetics , Nucleocapsid Proteins/metabolism , Nucleocapsid Proteins/genetics , Swine Diseases/virology , Swine Diseases/metabolism , Deltacoronavirus/metabolism , Deltacoronavirus/genetics , MAP Kinase Signaling System , Coronavirus Infections/virology , Coronavirus Infections/metabolism , Humans , Signal Transduction , Cell Line , raf Kinases/metabolism , raf Kinases/genetics , HEK293 Cells
11.
Anal Chem ; 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39298294

ABSTRACT

Tumor-derived small extracellular vesicle (sEV) microRNAs (miRNAs) are emerging biomarkers for cancer diagnostics. Conventional sEV miRNA detection methods necessitate the lysis of sEVs, rendering them laborious and time-consuming and potentially leading to damage or loss of miRNAs. Membrane fusion-based in situ detection of sEV miRNAs involves the preparation of probe-loaded vesicles (e.g., liposomes or cellular vesicles), which are typically sophisticated and require specialist equipment. Membrane perforation methods employ chemical treatments that can induce severe miRNA degradation or leaks. Inspired by previous studies that loaded nucleic acids into EVs or cells using hydrophobic tethers for therapeutic applications, herein, we repurposed this strategy by conjugating a hydrophobic tether onto molecular beacons to aid their transportation into sEVs, allowing for in situ detection of miRNAs in a fusion-free and multiplexing manner. This method enables simultaneous detection of multiple miRNA species within serum-derived sEVs for the diagnosis of prostate cancer, breast cancer, and gastric cancer with an accuracy of 83.3%, 81.8%, and 100%, respectively, in a cohort of 66 individuals, indicating that it holds a high application potential in clinical diagnostics.

12.
Chembiochem ; 25(13): e202400227, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38700476

ABSTRACT

Biomarkers are crucial physiological and pathological indicators in the host. Over the years, numerous detection methods have been developed for biomarkers, given their significant potential in various biological and biomedical applications. Among these, the detection system based on functionalized DNA origami has emerged as a promising approach due to its precise control over sensing modules, enabling sensitive, specific, and programmable biomarker detection. We summarize the advancements in biomarker detection using functionalized DNA origami, focusing on strategies for DNA origami functionalization, mechanisms of biomarker recognition, and applications in disease diagnosis and monitoring. These applications are organized into sections based on the type of biomarkers - nucleic acids, proteins, small molecules, and ions - and concludes with a discussion on the advantages and challenges associated with using functionalized DNA origami systems for biomarker detection.


Subject(s)
Biomarkers , DNA , DNA/chemistry , DNA/analysis , Biomarkers/analysis , Humans , Biosensing Techniques , Nanostructures/chemistry , Proteins/analysis , Proteins/chemistry , Nucleic Acid Conformation
13.
J Virol ; 97(11): e0106723, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37855618

ABSTRACT

IMPORTANCE: Many plant viruses are transmitted by insect vectors in a circulative manner. For efficient transmission, the entry of the virus from vector hemolymph into the primary salivary gland (PSG) is a step of paramount importance. Yet, vector components mediating virus entry into PSG remain barely characterized. Here, we demonstrate the role of clathrin-mediated endocytosis and early endosomes in begomovirus entry into whitefly PSG. Our findings unravel the key components involved in begomovirus transport within the whitefly body and transmission by their whitefly vectors and provide novel clues for blocking begomovirus transmission.


Subject(s)
Begomovirus , Endocytosis , Hemiptera , Animals , Begomovirus/physiology , Clathrin/metabolism , Endosomes , Hemiptera/metabolism , Hemiptera/virology , Plant Diseases , Salivary Glands/metabolism , Salivary Glands/virology
14.
J Exp Bot ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829390

ABSTRACT

The interactions of insect vector-virus-plant have important ecological and evolutionary implications. The constant struggle of plants against viruses and insect vectors has driven the evolution of multiple defense strategies in the host as well as counter-defense strategies in the viruses and insect vectors. Cotton leaf curl Multan virus (CLCuMuV) is a major causal agent of cotton leaf curl disease in Asia and is exclusively transmitted by the whitefly Bemisia tabaci. Here, we report that plants infected with CLCuMuV and its betasatellite, cotton leaf curl Multan betasatellite (CLCuMuB) enhance the performance of B. tabaci vector, and ßC1 encoded by CLCuMuB plays an important role in begomovirus-whitefly-tobacco tripartite interactions. We showed that CLCuMuB ßC1 suppresses the jasmonic acid signaling pathway by interacting with the subtilisin-like protease 1.7 (NtSBT1.7) protein, thereby enhancing whitefly performance on tobacco plants. Further studies revealed that in the wild type plants, NtSBT1.7 could process tobacco preprohydroxyproline-rich systemin B (NtpreproHypSysB). After CLCuMuB infection, CLCuMuB ßC1 could interfere with the processing of NtpreproHypSysB by NtSBT1.7, thereby impairing plant defenses against whitefly. These results contribute to our understanding of the tripartite interactions among virus, plant, and whitefly, thus offering ecological insights into the spread of vector insect populations and the prevalence of viral diseases.

15.
Microb Pathog ; 195: 106852, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39147213

ABSTRACT

The purpose of this study was to evaluate the ability of Bacillus subtilis JATP3 to stimulate immune response and improve intestinal health in piglets during the critical weaning period. Twelve 28-day-old weaned piglets were randomly divided into two groups. One group was fed a basal diet, while the other group was fed a basal diet supplemented with B. subtilis JATP3 (1 × 109 CFU/mL; 10 mL) for 28 days. The results revealed a significant increase in the intestinal villus gland ratio of weaned piglets following the inclusion of B. subtilis JATP3 (P < 0.05). Inclusion of a probiotic supplement improve the intestinal flora of jejunum and ileum of weaned piglets. Metabolomics analysis demonstrated a notable rise in citalopram levels in the jejunum and ileum, along with elevated levels of isobutyric acid and isocitric acid in the ileum. The results of correlation analysis show that indicated a positive correlation between citalopram and microbial changes. Furthermore, the probiotic-treated group exhibited a significant upregulation in the relative expression of Claudin, Zonula Occludens 1 (ZO-1), and Interleukin 10 (IL-10) in the jejunum and ileum, while displaying a noteworthy reduction in the relative expression of Interleukin 1ß (IL-1ß). Overall, these findings suggest that B. subtilis JATP3 can safeguard intestinal health by modulating the structure of the intestinal microbiota and their metabolites, wherein citalopram might be a key component contributing to the therapeutic effects of B. subtilis JATP3.


Subject(s)
Bacillus subtilis , Citalopram , Gastrointestinal Microbiome , Ileum , Jejunum , Probiotics , Weaning , Animals , Gastrointestinal Microbiome/drug effects , Bacillus subtilis/metabolism , Swine , Probiotics/administration & dosage , Probiotics/pharmacology , Ileum/microbiology , Ileum/immunology , Citalopram/pharmacology , Jejunum/microbiology , Jejunum/immunology , Jejunum/metabolism , Interleukin-10/metabolism , Interleukin-1beta/metabolism , Metabolomics , Intestinal Mucosa/metabolism , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Zonula Occludens-1 Protein/metabolism , Dietary Supplements
16.
Cancer Cell Int ; 24(1): 57, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38317214

ABSTRACT

BACKGROUND: AlkB homolog 1, histone H2A dioxygenase (ALKBH1), a crucial enzyme involved in RNA demethylation in humans, plays a significant role in various cellular processes. While its role in tumor progression is well-established, its specific contribution to stomach adenocarcinoma (STAD) remains elusive. This study seeks to explore the clinical and pathological relevance of ALKBH1, its impact on the tumor immune microenvironment, and its potential for precision oncology in STAD. METHODS: We adopted a comprehensive multi-omics approach to identify ALKBH1 as an potential diagnostic biomarker for STAD, demonstrating its association with advanced clinical stages and reduced overall survival rates. Our analysis involved the utilization of publicly available datasets from GEO and TCGA. We identified differentially expressed genes in STAD and scrutinized their relationships with immune gene expression, overall survival, tumor stage, gene mutation profiles, and infiltrating immune cells. Moreover, we employed spatial transcriptomics to investigate ALKBH1 expression across distinct regions of STAD. Additionally, we conducted spatial transcriptomic and single-cell RNA-sequencing analyses to elucidate the correlation between ALKBH1 expression and immune cell populations. Our findings were validated through immunohistochemistry and bioinformatics on 60 STAD patient samples. RESULTS: Our study unveiled crucial gene regulators in STAD linked with genetic variations, deletions, and the tumor microenvironment. Mutations in these regulators demonstrated a positive association with distinct immune cell populations across six immune datasets, exerting a substantial influence on immune cell infiltration in STAD. Furthermore, we established a connection between elevated ALKBH1 expression and macrophage infiltration in STAD. Pharmacogenomic analysis of gastric cancer cell lines further indicated that ALKBH1 inactivation correlated with heightened sensitivity to specific small-molecule drugs. CONCLUSION: In conclusion, our study highlights the potential role of ALKBH1 alterations in the advancement of STAD, shedding light on novel diagnostic and prognostic applications of ALKBH1 in this context. We underscore the significance of ALKBH1 within the tumor immune microenvironment, suggesting its utility as a precision medicine tool and for drug screening in the management of STAD.

17.
Article in English | MEDLINE | ID: mdl-39285310

ABSTRACT

BACKGROUND AND AIM: Currently, hepatitis B virus-related acute liver failure (HBV-ALF) has limited treatment options. Studies have shown that histone lactylation plays a role in the progression of liver-related diseases. Therefore, it is essential to explore lactylation-related gene (LRGs) biomarkers in HBV-ALF to provide new information for the treatment of HBV-ALF. METHODS: Two HBV-ALF-related datasets (GSE38941 and GSE14668) and 65 LRGs were used. First, the differentially expressed genes (DEGs) were derived from differential expression analysis, the key module genes from weighted gene co-expression network analysis; and LRGs were used to intersect to obtain the candidate genes. Subsequently, the feature genes obtained from least absolute shrinkage and selection operator regression analysis and support vector machine analysis were intersected to obtain the candidate key genes. Among them, genes with consistent and significant expression trends in both GSE38941 and GSE14668 were used as biomarkers. Subsequently, biomarkers were analyzed for functional enrichment, immune infiltration, and sensitive drug prediction. RESULTS: In this study, five candidate genes (PIGM, PIGA, EGR1, PIGK, and PIGL) were identified by intersecting 6461 DEGs and 2496 key module genes with 65 LRGs. We then screened four candidate key genes from the machine learning algorithm, among which PIGM and PIGA were considered biomarkers in HBV-ALF. Moreover, the results of enrichment analysis showed that the significant enrichment signaling pathways for biomarkers included allograft rejection and valine, leucine, and isoleucine degradation. Thereafter, 11 immune cells differed significantly between groups, with resting memory CD4+ T cells having the strongest positive correlation with biomarkers. Methylphenidate hydrochloride is a potential therapeutic drug for PIGM. CONCLUSION: Two genes, PIGM and PIGA, were identified as biomarkers related to LRGs in HBV-ALF, providing a basis for understanding HBV-ALF pathogenesis.

18.
Phys Chem Chem Phys ; 26(14): 10989-10997, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38526437

ABSTRACT

The oxidation of 3,3,4,4,5,5,5-heptafluoro-1-pentene (HFC-1447fz) by hydroxyl radicals plays a crucial role in atmospheric conditions. By employing the CCSD(T)/cc-pVTZ//M06-2X/6-311++G(d,p) level of theory, the detailed reaction mechanism, kinetics and atmospheric implications of the degradation of HFC-1447fz by hydroxyl radicals were investigated. Compared to H-abstraction channels, the OH addition reaction is determined to be more favorable initial pathways in the degradation processes of HFC-1447fz. The overall rate coefficient of the degradation of HFC-1447fz by OH radicals is estimated to be 1.66 × 10-12 cm3 molecule-1 s-1 and the lifetime of HFC-1447fz is found to be 7 days at 298 K, which are in good agreement with the reported experimental results. The global warming potential (GWP) for HFC-1447fz on the 50, 100 and 500-year time horizons is estimated using the calculated rate coefficient. Furthermore, the mechanisms of the subsequent reactions of two OH-addition adducts have also been investigated. By TD-DFT calculations, it was found that eleven species can undergo photodissociation, while ten other species are photolytically stable under sunlight.

19.
BMC Cardiovasc Disord ; 24(1): 174, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38515030

ABSTRACT

BACKGROUND: Atrial fibrillation (AF) is a common cardiac arrhythmia. The ratio of red cell distribution width (RDW) to albumin has been recognized as a reliable prognostic marker for poor outcomes in a variety of diseases. However, the evidence regarding the association between RDW to albumin ratio (RAR) and in hospital mortality in patients with AF admitted to the Intensive Care Unit (ICU) currently was unclear. The purpose of this study was to explore the association between RAR and in hospital mortality in patients with AF in the ICU. METHODS: This retrospective cohort study used data from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database for the identification of patients with atrial fibrillation (AF). The primary endpoint investigated was in-hospital mortality. Multivariable-adjusted Cox regression analysis and forest plots were utilized to evaluate the correlation between the RAR and in-hospital mortality among patients with AF admitted to ICU. Additionally, receiver operating characteristic (ROC) curves were conducted to assess and compare the predictive efficacy of RDW and the RAR. RESULTS: Our study included 4,584 patients with AF with a mean age of 75.1 ± 12.3 years, 57% of whom were male. The in-hospital mortality was 20.3%. The relationship between RAR and in-hospital mortality was linear. The Cox proportional hazard model, adjusted for potential confounders, found a high RAR independently associated with in hospital mortality. For each increase of 1 unit in RAR, there is a 12% rise in the in-hospital mortality rate (95% CI 1.06-1.19). The ROC curves revealed that the discriminatory ability of the RAR was better than that of RDW. The area under the ROC curves (AUCs) for RAR and RDW were 0.651 (95%CI: 0.631-0.671) and 0.599 (95% CI: 0.579-0.620). CONCLUSIONS: RAR is independently correlated with in hospital mortality and in AF. High level of RAR is associated with increased in-hospital mortality rates.


Subject(s)
Atrial Fibrillation , Erythrocyte Indices , Humans , Male , Middle Aged , Aged , Aged, 80 and over , Female , Atrial Fibrillation/diagnosis , Hospital Mortality , Retrospective Studies , Critical Care , Prognosis
20.
Bioorg Chem ; 144: 107067, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38232683

ABSTRACT

Due to the antibiotics abuse, bacterial infection has become one of the leading causes of human death worldwide. Novel selective antimicrobial agents are urgently needed, with the hope of maintaining the balance of the microbial environment. Photo-activated chemotherapeutics have shown great potential to eliminate bacteria with appealing spatiotemporal selectivity. In this work, we reported the structural modification to enhance the triplet excited state property of Rhodamine B, synthesizing a rhodamine-based photosensitizer RBPy. Upon light activation, RBPy exhibited much stronger photosensitization ability than the parent compound Rhodamine B both in solution and in bacteria. Importantly, RBPy can selectively inactivate Staphylococcus aureus and inhibit biofilm formation with high biocompatibility. This work provides a new strategy to develop rhodamine-based photoactive chemotherapeutics for antimicrobial photodynamic therapy.


Subject(s)
Photochemotherapy , Staphylococcal Infections , Humans , Photosensitizing Agents/pharmacology , Superoxides , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Staphylococcal Infections/drug therapy , Rhodamines/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL