Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Lipid Res ; 56(9): 1711-9, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26195816

ABSTRACT

LCAT is intimately involved in HDL maturation and is a key component of the reverse cholesterol transport (RCT) pathway which removes excess cholesterol molecules from the peripheral tissues to the liver for excretion. Patients with loss-of-function LCAT mutations exhibit low levels of HDL cholesterol and corneal opacity. Here we report the 2.65 Å crystal structure of the human LCAT protein. Crystallization required enzymatic removal of N-linked glycans and complex formation with a Fab fragment from a tool antibody. The crystal structure reveals that LCAT has an α/ß hydrolase core with two additional subdomains that play important roles in LCAT function. Subdomain 1 contains the region of LCAT shown to be required for interfacial activation, while subdomain 2 contains the lid and amino acids that shape the substrate binding pocket. Mapping the naturally occurring mutations onto the structure provides insight into how they may affect LCAT enzymatic activity.


Subject(s)
Cholesterol/metabolism , Phosphatidylcholine-Sterol O-Acyltransferase/chemistry , Phosphatidylcholine-Sterol O-Acyltransferase/genetics , Cholesterol/genetics , Crystallography, X-Ray , Humans , Mutation , Phosphatidylcholine-Sterol O-Acyltransferase/metabolism , Protein Binding , Protein Conformation , Signal Transduction
2.
Proc Natl Acad Sci U S A ; 106(24): 9820-5, 2009 Jun 16.
Article in English | MEDLINE | ID: mdl-19443683

ABSTRACT

Proprotein convertase subtilisin/kexin type 9 (PCSK9) regulates serum LDL cholesterol (LDL-C) by interacting with the LDL receptor (LDLR) and is an attractive therapeutic target for LDL-C lowering. We have generated a neutralizing anti-PCSK9 antibody, mAb1, that binds to an epitope on PCSK9 adjacent to the region required for LDLR interaction. In vitro, mAb1 inhibits PCSK9 binding to the LDLR and attenuates PCSK9-mediated reduction in LDLR protein levels, thereby increasing LDL uptake. A combination of mAb1 with a statin increases LDLR levels in HepG2 cells more than either treatment alone. In wild-type mice, mAb1 increases hepatic LDLR protein levels approximately 2-fold and lowers total serum cholesterol by up to 36%: this effect is not observed in LDLR(-/-) mice. In cynomolgus monkeys, a single injection of mAb1 reduces serum LDL-C by 80%, and a significant decrease is maintained for 10 days. We conclude that anti-PCSK9 antibodies may be effective therapeutics for treating hypercholesterolemia.


Subject(s)
Antibodies, Monoclonal/immunology , Cholesterol/blood , Neutralization Tests , Serine Endopeptidases/immunology , Animals , Cholesterol/immunology , Crystallography, X-Ray , Macaca fascicularis , Mice , Mice, Inbred C57BL , Mice, Knockout , Proprotein Convertase 9 , Proprotein Convertases , Receptors, LDL/genetics , Receptors, LDL/physiology
3.
F1000Res ; 5: 2764, 2016.
Article in English | MEDLINE | ID: mdl-27990272

ABSTRACT

Identification of small and large molecule pain therapeutics that target the genetically validated voltage-gated sodium channel Na V1.7 is a challenging endeavor under vigorous pursuit. The monoclonal antibody SVmab1 was recently published to bind the Na V1.7 DII voltage sensor domain and block human Na V1.7 sodium currents in heterologous cells. We produced purified SVmab1 protein based on publically available sequence information, and evaluated its activity in a battery of binding and functional assays. Herein, we report that our recombinant SVmAb1 does not bind peptide immunogen or purified Na V1.7 DII voltage sensor domain via ELISA, and does not bind Na V1.7 in live HEK293, U-2 OS, and CHO-K1 cells via FACS. Whole cell manual patch clamp electrophysiology protocols interrogating diverse Na V1.7 gating states in HEK293 cells, revealed that recombinant SVmab1 does not block Na V1.7 currents to an extent greater than observed with an isotype matched control antibody. Collectively, our results show that recombinant SVmab1 monoclonal antibody does not bind Na V1.7 target sequences or specifically inhibit Na V1.7 current.

4.
J Mol Biol ; 338(2): 311-27, 2004 Apr 23.
Article in English | MEDLINE | ID: mdl-15066434

ABSTRACT

Human monoclonal antibody 2F5 is one of a few human antibodies that neutralize a broad range of HIV-1 primary isolates. The 2F5 epitope on gp41 includes the sequence ELDKWA, with the core residues, DKW, being critical for antibody binding. HIV-neutralizing antibodies have never been elicited by immunization with peptides bearing ELDKWA, suggesting that important part(s) of the 2F5 paratope remain unidentified. The use of longer peptides extending beyond ELDKWA has resulted in increased epitope antigenicity, but neutralizing antibodies have not been generated. We sought to develop peptides that bind to 2F5, and that function as specific probes of the 2F5 paratope. Thus, we used 2F5 to screen a set of phage-displayed, random peptide libraries. Tight-binding clones from the random peptide libraries displayed sequence variability in the regions flanking the DKW motif. To further reveal flanking regions involved in 2F5 binding, two semi-defined libraries were constructed having 12 variegated residues either N-terminal or C-terminal to the DKW core (X(12)-AADKW and AADKW-X(12), respectively). Three clones isolated from the AADKW-X(12) library had similar high affinities, despite a lack of sequence homology among them, or with gp41. The contribution of each residue of these clones to 2F5 binding was evaluated by Ala substitution and amino acid deletion studies, and revealed that each clone bound 2F5 by a different mechanism. These results suggest that the 2F5 paratope is formed by at least two functionally distinct regions: one that displays specificity for the DKW core epitope, and another that is multispecific for sequences C-terminal to the core epitope. The implications of this second, multispecific region of the 2F5 paratope for its unique biological function are discussed.


Subject(s)
Antibodies, Monoclonal/metabolism , Epitopes , HIV Antibodies/metabolism , HIV-1/immunology , Amino Acid Sequence , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/genetics , Antibody Affinity , HIV Antibodies/chemistry , HIV Antibodies/genetics , HIV Envelope Protein gp41/chemistry , HIV Envelope Protein gp41/immunology , HIV-1/chemistry , HIV-1/genetics , Humans , Molecular Sequence Data , Peptide Library , Peptides/chemistry , Peptides/genetics , Peptides/metabolism , Protein Binding , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
5.
J Pharm Sci ; 102(10): 3545-55, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23925953

ABSTRACT

We describe a novel human immunoglobulin G2 (IgG2 )-tolerant and immune-competent heterozygous mouse model (Xeno-het) developed by crossbreeding a human Ig-tolerized XenoMouse® with a C57BL/6J wild-type mouse. The Xeno-het mouse expresses both mouse and human immunoglobulin G (IgG) genes, resulting in B-cells expressing human and mouse IgG, and secretion of human and mouse Ig into serum. This model was utilized to evaluate the immunogenicity risk of aggregated and chemically modified human antibodies. The mice were tested for their ability to break tolerance to self-tolerant monomeric antibodies. Aggregates made by mechanical stirring elicited an anti-drug antibody (ADA) response, but did not induce a robust and long-term memory B and T-cell response. Chemically modified antibodies made by oxidation were only weak and transient inducers of an immune response, as measured by a lack of both an ADA response and a B-cell antigen-specific response. Aggregate size was an important characteristic, as specific-sized protein-coated beads were able to elicit an immune response. We propose the use of this model to identify risk factors such as aggregation during manufacturing at early development for an increased potential immunogenicity risk.


Subject(s)
Antibodies/immunology , Antibody Formation/immunology , Biological Factors/immunology , Immune Tolerance/immunology , Animals , B-Lymphocytes/immunology , Humans , Immunoglobulin G/immunology , Mice , Mice, Inbred C57BL , T-Lymphocytes/immunology
SELECTION OF CITATIONS
SEARCH DETAIL