Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 775
Filter
Add more filters

Publication year range
1.
Nature ; 625(7995): 535-539, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38200315

ABSTRACT

The largest ever primate and one of the largest of the southeast Asian megafauna, Gigantopithecus blacki1, persisted in China from about 2.0 million years until the late middle Pleistocene when it became extinct2-4. Its demise is enigmatic considering that it was one of the few Asian great apes to go extinct in the last 2.6 million years, whereas others, including orangutan, survived until the present5. The cause of the disappearance of G. blacki remains unresolved but could shed light on primate resilience and the fate of megafauna in this region6. Here we applied three multidisciplinary analyses-timing, past environments and behaviour-to 22 caves in southern China. We used 157 radiometric ages from six dating techniques to establish a timeline for the demise of G. blacki. We show that from 2.3 million years ago the environment was a mosaic of forests and grasses, providing ideal conditions for thriving G. blacki populations. However, just before and during the extinction window between 295,000 and 215,000 years ago there was enhanced environmental variability from increased seasonality, which caused changes in plant communities and an increase in open forest environments. Although its close relative Pongo weidenreichi managed to adapt its dietary preferences and behaviour to this variability, G. blacki showed signs of chronic stress and dwindling populations. Ultimately its struggle to adapt led to the extinction of the greatest primate to ever inhabit the Earth.


Subject(s)
Extinction, Biological , Fossils , Hominidae , Animals , Caves , China , Diet/veterinary , Forests , Hominidae/classification , Plants , Pongo , Radiometric Dating , Seasons , Time Factors
2.
Nat Rev Neurosci ; 22(5): 275-289, 2021 05.
Article in English | MEDLINE | ID: mdl-33828309

ABSTRACT

Fragile X syndrome (FXS) is the most common inherited form of intellectual disability and the leading monogenic cause of autism. The condition stems from loss of fragile X mental retardation protein (FMRP), which regulates a wide range of ion channels via translational control, protein-protein interactions and second messenger pathways. Rapidly increasing evidence demonstrates that loss of FMRP leads to numerous ion channel dysfunctions (that is, channelopathies), which in turn contribute significantly to FXS pathophysiology. Consistent with this, pharmacological or genetic interventions that target dysregulated ion channels effectively restore neuronal excitability, synaptic function and behavioural phenotypes in FXS animal models. Recent studies further support a role for direct and rapid FMRP-channel interactions in regulating ion channel function. This Review lays out the current state of knowledge in the field regarding channelopathies and the pathogenesis of FXS, including promising therapeutic implications.


Subject(s)
Channelopathies/etiology , Channelopathies/physiopathology , Fragile X Syndrome/complications , Fragile X Syndrome/physiopathology , Animals , Channelopathies/genetics , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/genetics , Humans
3.
Proc Natl Acad Sci U S A ; 120(11): e2218987120, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36877842

ABSTRACT

Selective electroreduction of carbon dioxide (CO2RR) into ethanol at an industrially relevant current density is highly desired. However, it is challenging because the competing ethylene production pathway is generally more thermodynamically favored. Herein, we achieve a selective and productive ethanol production over a porous CuO catalyst that presents a high ethanol Faradaic efficiency (FE) of 44.1 ± 1.0% and an ethanol-to-ethylene ratio of 1.2 at a large ethanol partial current density of 501.0 ± 15.0 mA cm-2, in addition to an extraordinary FE of 90.6 ± 3.4% for multicarbon products. Intriguingly, we found a volcano-shaped relationship between ethanol selectivity and nanocavity size of porous CuO catalyst in the range of 0 to 20 nm. Mechanistic studies indicate that the increased coverage of surface-bounded hydroxyl species (*OH) associated with the nanocavity size-dependent confinement effect contributes to the remarkable ethanol selectivity, which preferentially favors the *CHCOH hydrogenation to *CHCHOH (ethanol pathway) via yielding the noncovalent interaction. Our findings provide insights in favoring the ethanol formation pathway, which paves the path toward rational design of ethanol-oriented catalysts.

4.
J Am Chem Soc ; 146(25): 17487-17494, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38865676

ABSTRACT

The redox transition between iron and its oxides is of the utmost importance in heterogeneous catalysis, biological metabolism, and geological evolution. The structural characteristics of this reaction may vary based on surrounding environmental conditions, giving rise to diverse physical scenarios. In this study, we explore the atomic-scale transformation of nanosized Fe3O4 under ambient-pressure H2 gas using in-situ environmental transmission electron microscopy. Our results reveal that the internal solid-state reactions dominated by iron diffusion are coupled with the surface reactions involving gaseous O or H species. During reduction, we observe two competitive reduction pathways, namely Fe3O4 → FeO → Fe and Fe3O4 → Fe. An intermediate phase with vacancy ordering is observed during the disproportionation reaction of Fe2+ → Fe0 + Fe3+, which potentially alleviates stress and facilitates ion migration. As the temperature decreases, an oxidation process occurs in the presence of environmental H2O and trace amounts of O2. A direct oxidation of Fe to Fe3O4 occurs in the absence of the FeO phase, likely corresponding to a change in the water vapor content in the atmosphere. This work elucidates a full dynamical scenario of iron redox under realistic conditions, which is critical for unraveling the intricate mechanisms governing the solid-solid and solid-gas reactions.

5.
BMC Plant Biol ; 24(1): 22, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38166716

ABSTRACT

BACKGROUND: Floral patterns are crucial for insect pollination and plant reproduction. Generally, once these patterns are established, they exhibit minimal changes under natural circumstances. However, the Clematis cultivar' Vyvyan Pennell', the apetalous lineage in the Ranunculaceae family, produces two distinct types of flowers during different seasons. The regulatory mechanism responsible for this phenomenon remains largely unknown. In this study, we aim to shed light on this floral development with shifting seasonal patterns by conducting extensive morphological, transcriptomic, and hormone metabolic analyses. Our findings are anticipated to contribute valuable insights into the diversity of flowers in the Ranunculaceae family. RESULTS: The morphological analysis revealed that the presence of extra petaloid structures in the spring double perianth was a result of the transformation of stamens covered with trichomes during the 5th developmental stage. A de novo reference transcriptome was constructed by comparing buds and organs within double and single perianth from both seasons. A total of 209,056 unigenes were assembled, and 5826 genes were successfully annotated in all six databases. Among the 69,888 differentially expressed genes from the comparative analysis, 48 genes of utmost significance were identified. These critical genes are associated with various aspects of floral development. Interestingly, the A-, B-, and C-class genes exhibited a wider range of expression and were distinct within two seasons. The determination of floral organ identity was attributed to the collaborative functioning of all the three classes genes, aligning with a modified "fading border model". The phytohormones GA3, salicylic acid, and trans-zeatin riboside may affect the formation of the spring double perianth, whereas GA7 and abscisic acid may affect single flowers in autumn. CONCLUSIONS: We presumed that the varying temperatures between the two seasons served as the primary factor in the alteration of floral patterns, potentially affecting the levels of plant hormones and expressions of organ identity genes. However, a more thorough investigation is necessary to fully comprehend the entire regulatory network. Nonetheless, our study provides some valuable informations for understanding the underlying mechanism of floral pattern alterations in Clematis.


Subject(s)
Clematis , Seasons , Clematis/genetics , Clematis/metabolism , Gene Expression Profiling , Transcriptome , Flowers , Plant Growth Regulators/metabolism , Gene Expression Regulation, Plant
6.
J Transl Med ; 22(1): 512, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807223

ABSTRACT

In cancer treatment, therapeutic strategies that integrate tumor-specific characteristics (i.e., precision oncology) are widely implemented to provide clinical benefits for cancer patients. Here, through in-depth integration of tumor transcriptome and patients' prognoses across cancers, we investigated dysregulated and prognosis-associated genes and catalogued such important genes in a cancer type-dependent manner. Utilizing the expression matrices of these genes, we built models to quantitatively evaluate the malignant levels of tumors across cancers, which could add value to the clinical staging system for improved prediction of patients' survival. Furthermore, we performed a transcriptome-based molecular subtyping on hepatocellular carcinoma, which revealed three subtypes with significantly diversified clinical outcomes, mutation landscapes, immune microenvironment, and dysregulated pathways. As tumor transcriptome was commonly profiled in clinical practice with low experimental complexity and cost, this work proposed easy-to-perform approaches for practical clinical promotion towards better healthcare and precision oncology of cancer patients.


Subject(s)
Gene Expression Regulation, Neoplastic , Neoplasms , Precision Medicine , Transcriptome , Humans , Transcriptome/genetics , Neoplasms/genetics , Neoplasms/classification , Neoplasms/pathology , Prognosis , Gene Expression Profiling , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/classification , Carcinoma, Hepatocellular/pathology , Mutation/genetics , Tumor Microenvironment/genetics , Liver Neoplasms/genetics , Liver Neoplasms/classification , Liver Neoplasms/pathology , Medical Oncology/methods
7.
Opt Express ; 32(6): 10373-10391, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38571251

ABSTRACT

The scene projector (SP) can provide simulated scene images with same optical characteristics as the real scenes to evaluate imaging systems in hard-ware-in-the-loop (HWIL) simulation testing. The single scene generation device (SGD) based SP typically projects 8-bit images at 220 fps, which is insufficient to fulfill the requirements of ultra-high frame rate imaging systems, such as star trackers and space debris detectors. In this paper, an innovative quaternary pulse width modulation (PWM) based SP is developed and implemented to realize the ultra-high frame rate projection. By optically overlapping modulation layers of two digital micro-mirror devices (DMDs) in parallel, and illuminating them with light intensities, a quaternary SGD is built up to modulate quaternary digit-planes (QDs) with four grayscale levels. And the quaternary digit-plane de-composition (QDD) is adopted to decompose an 8-bit image into 4 QDs. In addition, the exposure time of each QD is controlled by quaternary PWM, and the base time is optimized to 8 µs. The experimental results prove that the total exposure time of all QDs sequentially modulated by quaternary PWM is approximately 760 µs, namely projecting 8-bit images at 1300 fps. The quaternary PWM using two DMDs in parallel dramatically improves the grayscale modulation efficiency compared to the existing projection technologies, which provides a new approach for the SP design with ultra-high frame rate.

8.
Opt Lett ; 49(8): 1868-1871, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38621026

ABSTRACT

There are few reports on optical refractive index sensors that have both high resonant-wavelength resolution (RWR) and high refractive index sensitivity (RIS). Herein, based on an echelon grating, we design a refractive index sensor that combines the two advantages together. The principal fringe of echelon grating has a small full width at half maximum and a good signal-to-noise ratio, leading to a high RWR. The wavefront splitting interference makes the sensor have high RIS. The large free spectral range (FSR) of the principal fringes expands the dynamic range of the sensor. The experimentally realized RWR, RIS, and FSR are 2 × 10-2 nm, 1.14 × 104 nm/RIU (RIU: refractive index unit), and 130 nm, respectively. The detection limit of refractive index is 1.59 × 10-6 RIU. The dynamic range of the sensor is 1.14 × 10-2 RIU. In addition, there are schemes to improve RWR and RIS, which can further reduce the detection limit of refractive index. The echelon grating refractive index sensor features low detection limit, low cost, high stability, and good robustness.

9.
Rapid Commun Mass Spectrom ; 38(9): e9719, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38500352

ABSTRACT

RATIONALE: As 3-OH-containing steroids are prone to dehydration by conventional electrospray ionization, reducing detection sensitivity, Li ion adduction-based ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC/MS/MS), developed to prevent dehydration and effectively detect 3-OH steroids, was applied for profiling total and free steroids in urine. METHODS: Free urinary steroids were isolated directly from urine by solid-phase extraction (SPE) with 80% acetonitrile. The total steroids were prepared by enzymatic treatment of urine with a cocktail of sulfatase and glucronidase, protein precipitation, and separation with the above SPE. In order to detect as many steroid types as possible, UHPLC/MS/MS (Li method) with Li+ solution added after the column was used for analysis in addition to the conventional method of detecting protonated ions (H method). The 13 3-OH steroids and the remaining 16 steroids were quantified by standard curves prepared using product ion transitions derived from [M + Li]+ and MH+ , respectively. RESULTS: Two groups of human urine, male and female urine, were analyzed. 3-OH steroids could be detected with greater sensitivity using the Li method than the conventional method. The absolute amounts of each steroid were normalized based on creatinine levels. The difference between the male and female groups are clearly attributable to sex steroids. CONCLUSIONS: Twenty-nine total steroids and 19 free steroids were identified in a limited volume (240 mL) of urine. Of these, 13 3-OH steroids were better detected by Li+ adduction-based UHPLC/MS/MS.


Subject(s)
Lithium , Tandem Mass Spectrometry , Male , Female , Humans , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Dehydration , Steroids/urine , Ions
10.
Bioorg Med Chem Lett ; 101: 129672, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38387691

ABSTRACT

Influenza and COVID-19 continue to pose global threats to public health. Classic antiviral drugs have certain limitations, coupled with frequent viral mutations leading to many drugs being ineffective, the development of new antiviral drugs is urgent. Meanwhile, the invasion of influenza virus can cause an immune response, and an excessive immune response can generate a large number of inflammatory storms, leading to tissue damage. Toll-like receptor 3 (TLR3) recognizes virus dsRNA to ignite the innate immune response, and inhibit TLR3 can block the excess immune response and protect the host tissues. Taking TLR3 as the target, SMU-CX1 was obtained as the specific TLR3 inhibitor by high-throughput screening of 15,700 compounds with IC50 value of 0.11 µM. Its anti-influenza A virus activity with IC50 ranged from 0.14 to 0.33 µM against multiple subtypes of influenza A virus and also showed promising anti-SARS-CoV-2 activity with IC50 at 0.43 µM. Primary antiviral mechanism study indicated that SMU-CX1 significantly inhibited PB2 and NP protein of viruses, it can also inhibit inflammatory factors in host cells including IFN-ß, IP-10 and CCL-5. In conclusion, this study demonstrates the potential of SMU-CX1 in inhibiting IAV and SARS-CoV-2 activity, thereby offering a novel approach for designing antiviral drugs against highly pathogenic viruses.


Subject(s)
COVID-19 , Ellipticines , Influenza A virus , Humans , Influenza A virus/metabolism , SARS-CoV-2/metabolism , Toll-Like Receptor 3/genetics , Toll-Like Receptor 3/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use
11.
J Pathol ; 260(2): 222-234, 2023 06.
Article in English | MEDLINE | ID: mdl-36853094

ABSTRACT

Autoimmune regulator (Aire) and TGF-ß signaling play important roles in central tolerance and peripheral tolerance, respectively, by eliminating or suppressing the activity of autoreactive T cells. We previously demonstrated that dnTGFßRII mice develop a defect in peripheral tolerance and a primary biliary cholangitis (PBC)-like disease. We hypothesized that by introducing the Aire gene to this model, we would observe a more severe PBC phenotype. Interestingly, however, we demonstrated that, while dnTGFßRII Aire-/- mice do manifest key histological and serological features of autoimmune cholangitis, they also develop mild to moderate interface hepatitis and show high levels of alanine transaminase (ALT) and antinuclear antibodies (ANA), characteristics of autoimmune hepatitis (AIH). To further understand this unique phenotype, we performed RNA sequencing (RNA-seq) and flow cytometry to explore the functional pathways and immune cell pathways in the liver of dnTGFßRII Aire-/- mice. Our data revealed enrichments of programmed cell death pathways and predominant CD8+ T cell infiltrates. Depleting CD8+ T cells using an anti-CD8α antibody significantly alleviated hepatic inflammation and prolonged the life span of these mice. Finally, RNA-seq data indicated the clonal expansion of hepatic CD8+ T cells. In conclusion, these mice developed an autoreactive CD8+ T-cell-mediated autoimmune cholangitis with concurrent hepatitis that exhibited key histological and serological features of the AIH-PBC overlap syndrome, representing a novel model for the study of tolerance and autoimmune liver disease. © 2023 The Pathological Society of Great Britain and Ireland.


Subject(s)
Cholangitis , Hepatitis, Autoimmune , Liver Cirrhosis, Biliary , Mice , Animals , Hepatitis, Autoimmune/genetics , Hepatitis, Autoimmune/metabolism , Liver Cirrhosis, Biliary/genetics , Liver Cirrhosis, Biliary/metabolism , CD8-Positive T-Lymphocytes , Cholangitis/genetics , Cholangitis/metabolism
12.
Nicotine Tob Res ; 26(2): 151-160, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-37688562

ABSTRACT

INTRODUCTION: Youth represent a high-priority group for e-cigarette health communication. This study examined youth exposure to the Food and Drug Administration (FDA) e-cigarette warning label over 4 years and its association with change in youth harm perception and intention. AIMS AND METHODS: We pooled data from the 2018-2021 National Youth Tobacco Survey (age 10-17; n = 67 159). Participants were divided into four groups: never users (58.5%), susceptible nonusers (16.3%), former users (12.7%), and current users (12.5%). We examined the prevalence, time-trend, correlates, and association of youth exposure to the warning with addictiveness and harm perception, intention to use e-cigarettes, and intention to quit all tobacco products. RESULTS: Only 24.5% of youth were exposed to the warning. Exposure increased from 14.9% in 2018 to 30.8% in 2019, then declined to 25.2% in 2021. Hispanic (adjusted odds ratio (aOR) = 0.76 [95% CI = 0.641 to 0.89]) and non-Hispanic black current users (0.53 [0.40 to 0.69]) were less likely to be exposed to the warning than white current users. Youth exposure was positively associated with a higher perception of e-cigarette addictiveness (1.12 [1.04 to 1.19]) and intention to quit all tobacco products (1.28 [1.13 to 1.46]). However, exposure was negatively associated with harm perception (0.91 [0.85 to 0.96]) and the intention to use e-cigarettes among e-cigarette nonusers (2.38 [1.99 to 2.84]). CONCLUSIONS: The decline in youth exposure to the warning indicates wear-out effects. Strengthening the label by using compelling designs, adding themes on e-cigarette harm to youth, periodically rotating warning content, and using culturally tailored messaging may improve its impact on youth and address racial/ethnic disparities. IMPLICATIONS: The FDA e-cigarette label reached only 24.5% of youth, and exposure to the warning declined to indicate wear-out effects. Exposure was significantly lower among minorities. Exposure was associated with a higher perception of e-cigarette addictiveness and intention to quit all tobacco products. Still, it did not increase harm perception or reduce intention to use e-cigarettes among nonusers. Strengthening the label by using more compelling designs, including diverse themes focusing on e-cigarette harm relevant to youth, and periodically rotating warning content may improve its impact on youth. Continued surveillance of the implementation of e-cigarette policies is needed to ensure that they equally affect youth across racial/ethnic subpopulations.


Subject(s)
Electronic Nicotine Delivery Systems , Tobacco Products , United States/epidemiology , Humans , Adolescent , Child , Smoking/epidemiology , United States Food and Drug Administration , Tobacco Products/adverse effects , Prevalence
13.
Mol Biol Rep ; 51(1): 520, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38625436

ABSTRACT

BACKGROUND: Mutations in human ether-à-go-go-related gene (hERG) potassium channels are closely associated with long QT syndrome (LQTS). Previous studies have demonstrated that macrolide antibiotics increase the risk of cardiovascular diseases. To date, the mechanisms underlying acquired LQTS remain elusive. METHODS: A novel hERG mutation I1025N was identified in an azithromycin-treated patient with acquired long QT syndrome via Sanger sequencing. The mutant I1025N plasmid was transfected into HEK-293 cells, which were subsequently incubated with azithromycin. The effect of azithromycin and mutant I1025N on the hERG channel was evaluated via western blot, immunofluorescence, and electrophysiology techniques. RESULTS: The protein expression of the mature hERG protein was down-regulated, whereas that of the immature hERG protein was up-regulated in mutant I1025N HEK-293 cells. Azithromycin administration resulted in a negative effect on the maturation of the hERG protein. Additionally, the I1025N mutation exerted an inhibitory effect on hERG channel current. Moreover, azithromycin inhibited hERG channel current in a concentration-dependent manner. The I1025N mutation and azithromycin synergistically decreased hERG channel expression and hERG current. However, the I1025N mutation and azithromycin did not alter channel gating dynamics. CONCLUSIONS: These findings suggest that hERG gene mutations might be involved in the genetic susceptibility mechanism underlying acquired LQTS induced by azithromycin.


Subject(s)
Azithromycin , Long QT Syndrome , Humans , Azithromycin/adverse effects , HEK293 Cells , Anti-Bacterial Agents/adverse effects , Long QT Syndrome/chemically induced , Long QT Syndrome/genetics , Mutation
14.
Hepatol Res ; 54(3): 261-271, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37877524

ABSTRACT

AIM: It is unclear whether nonalcoholic fatty liver disease (NAFLD) acts as a direct contributing factor to multiple extrahepatic cancers. We aimed to systematically investigate the causal relationships of NAFLD with extrahepatic cancers. METHODS: We conducted a two-sample Mendelian randomization analysis to assess the causal effects of NAFLD on 22 extrahepatic cancers. We examined the association of NAFLD with extrahepatic cancers using multiple methods in the largest genome-wide association study meta-analysis to date. We also replicated the analyses and performed two independent sensitivity analysis in the largest genome-wide association study of UK Biobank. RESULTS: Using the weighted median method, genetically predicted NAFLD was significantly associated with female breast cancer risk (odds ratio [OR] 15.99; 95% confidence interval [CI] 9.58-26.69). Genetically predicted NAFLD is associated with cervical and laryngeal cancers using the inverse variance weighting method, and the ORs were 2.44 (95% CI 1.43-4.14) and 1.94 (95% CI 1.35-2.78), respectively. We observed that patatin-like phospholipase domain-containing protein 3-driven and transmembrane 6 superfamily member 2-driven NAFLD were associated with increased risks of leukemia, lung cancer, and prostate cancers (all with p < 0.05). Furthermore, we confirmed the causal association between NAFLD and breast cancer using five known single-nucleotide polymorphisms of NAFLD and six genome-wide association study-identified variants. The ORs of the weighted median estimator was 10.76 (95% CI 8.27-13.98) and 10.76 (95% CI 8.25-14.04), respectively (p < 0.001). CONCLUSION: Genetically predicted NAFLD is associated with an increased risk of female breast cancer, as well as cervical, laryngeal, leukemia, lung, and prostate cancers.

15.
Appl Microbiol Biotechnol ; 108(1): 84, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38189953

ABSTRACT

The flavonoid naringenin is abundantly present in pomelo peels, and the unprocessed naringenin in wastes is not friendly for the environment once discarded directly. Fortunately, the hydroxylated product of eriodictyol from naringenin exhibits remarkable antioxidant and anticancer properties. The P450s was suggested promising for the bioconversion of the flavonoids, but less naturally existed P450s show hydroxylation activity to C3' of the naringenin. By well analyzing the catalytic mechanism and the conformations of the naringenin in P450, we proposed that the intermediate Cmpd I ((porphyrin)Fe = O) is more reasonable as key conformation for the hydrolyzation, and the distance between C3'/C5' of naringenin to the O atom of CmpdI determines the hydroxylating activity for the naringenin. Thus, the "flying kite model" that gradually drags the C-H bond of the substrate to the O atom of CmpdI was put forward for rational design. With ab initio design, we successfully endowed the self-sufficient P450-BM3 hydroxylic activity to naringenin and obtained mutant M5-5, with kcat, Km, and kcat/Km values of 230.45 min-1, 310.48 µM, and 0.742 min-1 µM-1, respectively. Furthermore, the mutant M4186 was screened with kcat/Km of 4.28-fold highly improved than the reported M13. The M4186 also exhibited 62.57% yield of eriodictyol, more suitable for the industrial application. This study provided a theoretical guide for the rational design of P450s to the nonnative compounds. KEY POINTS: •The compound I is proposed as the starting point for the rational design of the P450BM3 •"Flying kite model" is proposed based on the distance between O of Cmpd I and C3'/C5' of naringenin •Mutant M15-5 with 1.6-fold of activity than M13 was obtained by ab initio modification.


Subject(s)
Citrus , Flavanones , Hydroxylation , Flavonoids
16.
Arch Gynecol Obstet ; 309(3): 1053-1063, 2024 03.
Article in English | MEDLINE | ID: mdl-38310145

ABSTRACT

INTRODUCTION: This study used an unsupervised machine learning algorithm, sidClustering and random forests, to identify clusters of risk behaviors of Bacterial Vaginosis (BV), the most common cause of abnormal vaginal discharge linked to STI and HIV acquisition.  METHODS: Participants were 391 cisgender women in Miami, Florida, with a mean of 30.8 (SD = 7.81) years of age; 41.7% identified as Hispanic; 41.7% as Black and 44.8% as White. Participants completed measures of demographics, risk behaviors [sexual, medical, and reproductive history, substance use, and intravaginal practices (IVP)], and underwent collection of vaginal samples; 135 behavioral variables were analyzed. BV was diagnosed using Nugent criteria. RESULTS: We identified four clusters, and variables were ranked by importance in distinguishing clusters: Cluster 1: nulliparous women who engaged in IVPs to clean themselves and please sexual partners, and used substances frequently [n = 118 (30.2%)]; Cluster 2: primiparous women who engaged in IVPs using vaginal douches to clean themselves (n = 112 (28.6%)]; Cluster 3: primiparous women who did not use IVPs or substances [n = 87 (22.3%)]; and Cluster 4: nulliparous women who did not use IVPs but used substances [n = 74 (18.9%)]. Clusters were related to BV (p < 0.001). Cluster 2, the cluster of women who used vaginal douches as IVPs, had the highest prevalence of BV (52.7%). CONCLUSIONS: Machine learning methods may be particularly useful in identifying specific clusters of high-risk behaviors, in developing interventions intended to reduce BV and IVP, and ultimately in reducing the risk of HIV infection among women.


Subject(s)
HIV Infections , Vaginosis, Bacterial , Female , Humans , Vaginosis, Bacterial/diagnosis , Vaginosis, Bacterial/epidemiology , Vaginosis, Bacterial/microbiology , HIV Infections/diagnosis , HIV Infections/epidemiology , HIV Infections/complications , Unsupervised Machine Learning , Vagina/microbiology , Sexual Behavior
17.
Sensors (Basel) ; 24(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38793853

ABSTRACT

Accurately acquiring crucial data on tube furnaces and real-time temperature monitoring of different temperature zones is vital for material synthesis technology in production. However, it is difficult to achieve real-time monitoring of the temperature field of tube furnaces with existing technology. Here, we proposed a method to fabricate silver (Ag) resistance temperature detectors (RTDs) based on a blade-coating process directly on the surface of a quartz ring, which enables precise positioning and real-time temperature monitoring of tube furnaces within 100-600 °C range. The Ag RTDs exhibited outstanding electrical properties, featuring a temperature coefficient of resistance (TCR) of 2854 ppm/°C, an accuracy of 1.8% FS (full scale), and a resistance drift rate of 0.05%/h over 6 h at 600 °C. These features ensured accurate and stable temperature measurement at high temperatures. For demonstration purposes, an array comprising four Ag RTDs was installed in a tube furnace. The measured average temperature gradient in the central region of the tube furnace was 5.7 °C/mm. Furthermore, successful real-time monitoring of temperature during the alloy sintering process revealed approximately a 20-fold difference in resistivity for silver-palladium alloys sintered at various positions within the tubular furnace. The proposed strategy offers a promising approach for real-time temperature monitoring of tube furnaces.

18.
J Sci Food Agric ; 104(7): 4331-4341, 2024 May.
Article in English | MEDLINE | ID: mdl-38299439

ABSTRACT

BACKGROUND: Human milk fat analog emulsion (HMFAE) is an emulsion that mimics the composition and structure of human milk (HM) fat globules. The application of HMFAE in infant formula requires a series of milk powder processing steps, such as pasteurization and spray drying. However, the effect of milk powder processing on fat digestion of HMFAE is still unclear. In this study, the influence of pasteurization and spray drying on the lipolysis behavior of HMFAE was studied and compared with HM using a simulated infant in vitro digestion model. RESULTS: Pasteurization and spray drying increased the flocculation and aggregation of lipid droplets in HMFAE during digestion. Spray drying destroyed the lipid droplet structure of HMFAE, and partial milk fat globule membrane-covered lipid droplets turned into protein-covered lipid droplets, which aggravated lipid-protein aggregation during gastric digestion and hindered fat digestion in the small intestine. The final lipolysis degree was in the order HM (64.55%) > HMFAE (63.41%) > pasteurized HMFAE (61.75%) > spray-dried HMFAE (60.57%). After complete gastrointestinal digestion, there were no significant differences in free fatty acid and sn-2 monoacylglycerol profile among the HMFAE, pasteurized HMFAE, and spray-dried HMFAE. CONCLUSION: Milk powder processing can reduce lipolysis by altering the lipid droplet structure of HMFAE and the degree of lipid droplet aggregation during digestion. © 2024 Society of Chemical Industry.


Subject(s)
Milk, Human , Pasteurization , Infant , Humans , Milk, Human/chemistry , Emulsions/analysis , Spray Drying , Powders/analysis , Digestion
19.
Angew Chem Int Ed Engl ; : e202408522, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38828837

ABSTRACT

The development of deep-blue organic light-emitting diodes (OLEDs) featuring high efficiency and narrowband emission is of great importance for ultrahigh-definition displays with wide color gamut. Herein, based on the nitrogen-embedding strategy for modifying the short range charge transfer excited state energies of multi-resonance (MR) thermally activated delayed fluorescence (TADF) emitters, we introduce one or two nitrogen atoms into the central benzene ring of a versatile boron-embedded 1,3-bis(carbazol-9-yl)benzene skeleton. This approach resulted in the stabilization of the highest occupied molecular orbital energy levels and the formation of intramolecular hydrogen bonds, and thus systematic hypsochromic shifts and narrowing spectra. In toluene solution, two heterocyclic-based MR-TADF molecules, Py-BN and Pm-BN, exhibit deep-blue emissions with high photoluminescence quantum yields of 93% and 94%, and narrow full width at half maximum of 14 and 13 nm, respectively. A deep-blue hyperfluorescent OLED based on Py-BN exhibited a maximum external quantum efficiency of 27.7% and desired color purity with Commission Internationale de L'Eclairage (CIE) coordinates of (0.150, 0.052). These results demonstrate the significant potential for the development of deep blue narrowband MR-TADF emitters.

20.
BMC Bioinformatics ; 24(1): 256, 2023 Jun 17.
Article in English | MEDLINE | ID: mdl-37330471

ABSTRACT

BACKGROUND: Modeling of single cell RNA-sequencing (scRNA-seq) data remains challenging due to a high percentage of zeros and data heterogeneity, so improved modeling has strong potential to benefit many downstream data analyses. The existing zero-inflated or over-dispersed models are based on aggregations at either the gene or the cell level. However, they typically lose accuracy due to a too crude aggregation at those two levels. RESULTS: We avoid the crude approximations entailed by such aggregation through proposing an independent Poisson distribution (IPD) particularly at each individual entry in the scRNA-seq data matrix. This approach naturally and intuitively models the large number of zeros as matrix entries with a very small Poisson parameter. The critical challenge of cell clustering is approached via a novel data representation as Departures from a simple homogeneous IPD (DIPD) to capture the per-gene-per-cell intrinsic heterogeneity generated by cell clusters. Our experiments using real data and crafted experiments show that using DIPD as a data representation for scRNA-seq data can uncover novel cell subtypes that are missed or can only be found by careful parameter tuning using conventional methods. CONCLUSIONS: This new method has multiple advantages, including (1) no need for prior feature selection or manual optimization of hyperparameters; (2) flexibility to combine with and improve upon other methods, such as Seurat. Another novel contribution is the use of crafted experiments as part of the validation of our newly developed DIPD-based clustering pipeline. This new clustering pipeline is implemented in the R (CRAN) package scpoisson.


Subject(s)
RNA , Single-Cell Analysis , Sequence Analysis, RNA/methods , Poisson Distribution , Single-Cell Analysis/methods , Cluster Analysis , RNA/genetics , Gene Expression Profiling/methods
SELECTION OF CITATIONS
SEARCH DETAIL