Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Development ; 149(5)2022 03 01.
Article in English | MEDLINE | ID: mdl-35142352

ABSTRACT

Mammalian oocyte maturation is a unique asymmetric division, which is mainly because of actin-based spindle migration to the cortex. In the present study, we report that a kinesin motor KIFC1, which is associated with microtubules for the maintenance of spindle poles in mitosis, is also involved in actin dynamics in murine oocyte meiosis, co-localizing with microtubules during mouse oocyte maturation. Depletion of KIFC1 caused the failure of polar body extrusion, and we found that meiotic spindle formation and chromosome alignment were disrupted. This might be because of the effects of KIFC1 on HDAC6 and NAT10-based tubulin acetylation, which further affected microtubule stability. Mass spectroscopy analysis revealed that KIFC1 also associated with several actin nucleation factors and we found that KIFC1 was essential for the distribution of actin filaments, which further affected spindle migration. Depletion of KIFC1 leaded to aberrant expression of formin 2 and the ARP2/3 complex, and endoplasmic reticulum distribution was also disturbed. Exogenous KIFC1 mRNA supplement could rescue these defects. Taken together, as well as its roles in tubulin acetylation, our study reported a previously undescribed role of kinesin KIFC1 on the regulation of actin dynamics for spindle migration in mouse oocytes.


Subject(s)
Kinesins , Tubulin , beta Karyopherins/metabolism , Acetylation , Actins/metabolism , Animals , Kinesins/genetics , Mammals/metabolism , Meiosis , Mice , Oocytes/metabolism , Spindle Apparatus/metabolism , Tubulin/metabolism
2.
EMBO Rep ; 24(5): e56273, 2023 05 04.
Article in English | MEDLINE | ID: mdl-36951681

ABSTRACT

Microspherule protein 1 (Mcrs1) is a component of the nonspecific lethal (NSL) complex and the chromatin remodeling INO80 complex, which participates in transcriptional regulation during mitosis. Here, we investigate the roles of Mcrs1 during female meiosis in mice. We demonstrate that Mcrs1 is a novel regulator of the meiotic G2/M transition and spindle assembly in mouse oocytes. Mcrs1 is present in the nucleus and associates with spindle poles and chromosomes of oocytes during meiosis I. Depletion of Mcrs1 alters HDAC2-mediated H4K16ac, H3K4me2, and H3K9me2 levels in nonsurrounded nucleolus (NSN)-type oocytes, and reduces CDK1 activity and cyclin B1 accumulation, leading to G2/M transition delay. Furthermore, Mcrs1 depletion results in abnormal spindle assembly due to reduced Aurora kinase (Aurka and Aurkc) and Kif2A activities, suggesting that Mcrs1 also plays a transcription-independent role in regulation of metaphase I oocytes. Taken together, our results demonstrate that the transcription factor Mcrs1 has important roles in cell cycle regulation and spindle assembly in mouse oocyte meiosis.


Subject(s)
Meiosis , Spindle Apparatus , Female , Mice , Animals , Spindle Apparatus/metabolism , Metaphase , Oocytes/metabolism , Cell Cycle Checkpoints , Repressor Proteins/metabolism , Kinesins/metabolism , RNA-Binding Proteins/metabolism
3.
Cell Mol Life Sci ; 81(1): 168, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38587639

ABSTRACT

Kinesin family member 3A (KIF3A) is a microtubule-oriented motor protein that belongs to the kinesin-2 family for regulating intracellular transport and microtubule movement. In this study, we characterized the critical roles of KIF3A during mouse oocyte meiosis. We found that KIF3A associated with microtubules during meiosis and depletion of KIF3A resulted in oocyte maturation defects. LC-MS data indicated that KIF3A associated with cell cycle regulation, cytoskeleton, mitochondrial function and intracellular transport-related molecules. Depletion of KIF3A activated the spindle assembly checkpoint, leading to metaphase I arrest of the first meiosis. In addition, KIF3A depletion caused aberrant spindle pole organization based on its association with KIFC1 to regulate expression and polar localization of NuMA and γ-tubulin; and KIF3A knockdown also reduced microtubule stability due to the altered microtubule deacetylation by histone deacetylase 6 (HDAC6). Exogenous Kif3a mRNA supplementation rescued the maturation defects caused by KIF3A depletion. Moreover, KIF3A was also essential for the distribution and function of mitochondria, Golgi apparatus and endoplasmic reticulum in oocytes. Conditional knockout of epithelial splicing regulatory protein 1 (ESRP1) disrupted the expression and localization of KIF3A in oocytes. Overall, our results suggest that KIF3A regulates cell cycle progression, spindle assembly and organelle distribution during mouse oocyte meiosis.


Subject(s)
Kinesins , Oocytes , Animals , Mice , Biological Transport , Kinesins/genetics , Meiosis , Metaphase
4.
Toxicol Appl Pharmacol ; 436: 115882, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35016910

ABSTRACT

Oocyte maturation is essential for fertilization and early embryo development, and proper organelle functions guarantee this process to maintain high-quality oocytes. The type B trichothecene nivalenol (NIV) is a mycotoxin produced by Fusarium oxysporum and is commonly found in contaminated food. NIV intake affect growth, the immune system, and the female reproductive system. Here, we investigated NIV toxicity on mouse oocyte quality. Transcriptome analysis results showed that NIV exposure altered the expression of multiple genes involved in spindle formation and organelle function in mouse oocytes, indicating its toxicity on mouse oocyte maturation. Further analysis indicated that NIV exposure disrupted spindle structure and chromosome alignment, possibly through tubulin acetylation. NIV exposure induced aberrant mitochondria distribution and reduced mitochondria number, mitochondria membrane potential (MMP), and ATP levels. In addition, NIV caused the abnormal distribution of the Golgi apparatus and altered the expression of the vesicle trafficking protein Rab11. ER distribution was also disturbed under NIV exposure, indicating the effects of NIV on protein modification and transport in oocytes. Thus, our results demonstrated that NIV exposure affected spindle structure and organelles function in mouse oocytes.


Subject(s)
Embryonic Development/drug effects , Oocytes/drug effects , Organelles/drug effects , Spindle Apparatus/drug effects , Trichothecenes/adverse effects , Acetylation/drug effects , Adenosine Triphosphate/metabolism , Animals , Apoptosis/drug effects , Cell Cycle/drug effects , Chromosomes/drug effects , Female , Meiosis/drug effects , Membrane Potential, Mitochondrial/drug effects , Mice , Mice, Inbred ICR , Mitochondria/drug effects , Mitochondria/metabolism , Mycotoxins/adverse effects , Oocytes/metabolism , Oogenesis/drug effects , Organelles/metabolism , Spindle Apparatus/metabolism , Transcriptome/drug effects , Tubulin/metabolism
5.
J Cell Physiol ; 236(11): 7725-7733, 2021 11.
Article in English | MEDLINE | ID: mdl-34018605

ABSTRACT

During mouse oocyte meiotic maturation, actin filaments play multiple roles in meiosis such as spindle migration and cytokinesis. FASCIN is shown to be an actin-binding and bundling protein, making actin filaments tightly packed and parallel-aligned, and FASCIN is involved in several cellular processes like adhesion and migration. FASCIN is also a potential prognostic biomarker and therapeutic target for the treatment of metastatic disease. However, little is known about the functions of FASCIN in oocyte meiosis. In the present study, we knocked down the expression of FASCIN, and our results showed that FASCIN was essential for oocyte maturation. FASCIN was all expressed in the different stages of oocyte meiosis, and it mainly localized at the cortex of oocytes from the GV stage to the MII stage and showed a similar localization pattern with actin and DAAM1. Depletion of FASCIN affected the extrusion of the first polar body, and we also observed that some oocytes extruded from the large polar bodies. This might have resulted from the defects of actin assembly, which further affected the meiotic spindle positioning. In addition, we showed that inhibition of PKC activity decreased FASCIN expression, indicating that FASCIN might be regulated by PKC. Taken together, our results provided evidence for the important role of FASCIN on actin filaments for spindle migration and polar body extrusion in mouse oocyte meiosis.


Subject(s)
Actin Cytoskeleton/metabolism , Carrier Proteins/metabolism , Meiosis , Microfilament Proteins/metabolism , Oocytes/metabolism , Polar Bodies/metabolism , Spindle Apparatus/metabolism , Actin Cytoskeleton/genetics , Animals , Carrier Proteins/genetics , Cells, Cultured , Female , Mice, Inbred ICR , Microfilament Proteins/genetics , Protein Kinase C/metabolism , Spindle Apparatus/genetics , rho GTP-Binding Proteins/metabolism
6.
Biol Reprod ; 105(6): 1474-1483, 2021 12 20.
Article in English | MEDLINE | ID: mdl-34505141

ABSTRACT

Mammalian oocyte quality is critical for fertilization and early embryo development. The type B trichothecene nivalenol (NIV) is a mycotoxin produced by Fusarium oxysporum, and it is commonly found with deoxynivalenol in contaminated food or feed. NIV has been shown to affect the immune system and female reproductive system, cause emesis and growth retardation. Here, we investigated the toxicity of NIV on mouse oocyte quality, as well as the protective effects of melatonin on the NIV-exposed oocytes. We found NIV exposure caused meiotic arrest and further induced the failure of polar body extrusion in mouse oocytes. Transcriptome analysis data showed that NIV exposure altered the expression of multiple pathway-related genes in oocytes, indicating its wide toxicity on oocyte maturation. Based on the RNA-seq data, we showed that NIV exposure induced oxidative stress and caused DNA damage in oocytes. Besides, autophagy, and early apoptosis were also found in NIV-exposed oocytes. Treatment with melatonin significantly ameliorated these defects through its effects on ROS level. Thus, our results demonstrated that exposure to NIV affected oocyte quality and melatonin treatment could reduce the defects caused by NIV in mouse oocytes.


Subject(s)
Apoptosis , DNA Damage , Melatonin/pharmacology , Mycotoxins/toxicity , Oocytes/drug effects , Oxidative Stress , Protective Agents/pharmacology , Trichothecenes/toxicity , Animals , Mice , Oocytes/physiology
7.
FASEB J ; 34(7): 9615-9627, 2020 07.
Article in English | MEDLINE | ID: mdl-32472654

ABSTRACT

RAB7 is a small GTPase that belongs to the Rab family, and as a vesicle trafficking factor it is shown to regulate the transport to late endocytic compartments, autophagosome maturation and organelle function. In present study, we showed the critical roles of RAB7 GTPase on actin dynamics and mitochondria function in oocyte meiosis. RAB7 mainly accumulated at cortex and spindle periphery during oocyte maturation. RAB7 depletion caused the failure of polar body extrusion and asymmetric division, and Rab7 exogenous mRNA supplement could rescue the defects caused by RAB7 RNAi. Based on mass spectrometry analysis, we found that RAB7 associated with several actin nucleation factors and mitochondria-related proteins in oocytes. The depletion of RAB7 caused the decrease of actin dynamics, which further affected meiotic spindle migration to the oocyte cortex. In addition, we found that RAB7 could maintain mitochondrial membrane potential and the mitochondrial distribution in mouse oocytes, and this might be due to its effects on the phosphorylation of DRP1 at Ser616 domain. Taken together, our data indicated that RAB7 transported actin nucleation factor for actin polarization, which further affected the phosphorylation of DRP1 for mitochondria dynamics and the meiotic spindle migration in mouse oocytes.


Subject(s)
Actins/physiology , Dynamins/metabolism , Mitochondria/metabolism , Oocytes/physiology , Spindle Apparatus/physiology , rab GTP-Binding Proteins/metabolism , Animals , Dynamins/genetics , Female , Mice , Mitochondria/genetics , Oocytes/cytology , Phosphorylation , Polar Bodies , rab GTP-Binding Proteins/genetics , rab7 GTP-Binding Proteins
8.
Ecotoxicol Environ Saf ; 225: 112783, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34544023

ABSTRACT

Sudan I is one of the industry dyes and widely used in cosmetics, wax agent, solvent and textile. Sudan I has multiple toxicity such as carcinogenicity, mutagenicity, genotoxicity and oxidative damage. However, Sudan I has been illegally used as colorant in food products, triggering worldwide attention about food safety. Nevertheless, the toxicity of Sudan I on reproduction, particularly on oocyte maturation is still unclear. In the present study, using mouse in vivo models, we report the toxicity effects of Sudan I on mouse oocyte. The results reflect that Sudan I exposure disrupts spindle organization and chromosomes alignment as well as cortical actin distribution, thus leading to the failure of polar body extrusion. Based on the transcriptome results, it is found that the exposure of Sudan I leads to the change in expression of 764 genes. Moreover, it's further reflected that the damaging effects of Sudan I are mediated by the destruction of mitochondrial functions, which induces the accumulated ROS to stimulate oxidative stress-induced apoptosis. As an endogenous hormone, melatonin within the ovarian follicle plays function on improving oocyte quality and female reproduction by efficiently suppressing oxidative stress. Moreover, melatonin supplementation also improves oocyte quality and increases fertilization rate during in vitro culture. Consistent with these, we find that in vivo supplementation of melatonin efficaciously suppresses mitochondrial dysfunction and the accompanying apoptosis, thus reverses oocyte meiotic deteriorations. Collectively, our results prove the reproduction toxicity of Sudan I for the exposure of Sudan I reduces the oocyte quality, and demonstrate the protective effects of melatonin against Sudan I-induced meiotic deteriorations.


Subject(s)
Melatonin , Animals , Apoptosis , Female , Meiosis , Melatonin/metabolism , Melatonin/pharmacology , Mice , Mitochondria , Naphthols , Oocytes/metabolism , Oxidative Stress
9.
Microsc Microanal ; 27(2): 400-408, 2021 04.
Article in English | MEDLINE | ID: mdl-33478608

ABSTRACT

GBF1 [Golgi brefeldin A (BFA) resistance factor 1] is a member of the guanine nucleotide exchange factors Arf family. GBF1 localizes at the cis-Golgi and endoplasmic reticulum (ER)-Golgi intermediate compartment where it participates in ER-Golgi traffic by assisting in the recruitment of the coat protein COPI. However, the roles of GBF1 in oocyte meiotic maturation are still unknown. In the present study, we investigated the regulatory functions of GBF1 in mouse oocyte organelle dynamics. In our results, GBF1 was stably expressed during oocyte maturation, and GBF1 localized at the spindle periphery during metaphase I. Inhibiting GBF1 activity led to aberrant accumulation of the Golgi apparatus around the spindle. This may be due to the effects of GBF1 on the localization of GM130, as GBF1 co-localized with GM130 and inhibiting GBF1 induced condensation of GM130. Moreover, the loss of GBF1 activity affected the ER distribution and induced ER stress, as shown by increased GRP78 expression. Mitochondrial localization and functions were affected, as the mitochondrial membrane potential was altered. Taken together, these results suggest that GBF1 has wide-ranging effects on the distribution and functions of Golgi apparatus, ER, and mitochondria as well as normal polar body formation in mouse oocytes.


Subject(s)
ADP-Ribosylation Factors , Guanine Nucleotide Exchange Factors , ADP-Ribosylation Factors/metabolism , Animals , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Chaperone BiP , Golgi Apparatus/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Mice , Oocytes/metabolism
10.
Biol Reprod ; 102(6): 1203-1212, 2020 05 26.
Article in English | MEDLINE | ID: mdl-32167535

ABSTRACT

Formin-like 3 (FMNL3) is a member of the formin-likes (FMNLs), which belong to the formin family. As an F-actin nucleator, FMNL3 is essential for several cellular functions, such as polarity control, invasion, and migration. However, the roles of FMNL3 during oocytes meiosis remain unclear. In this study, we investigated the functions of FMNL3 during mouse oocyte maturation. Our results showed that FMNL3 mainly concentrated in the oocyte cortex and spindle periphery. Depleting FMNL3 led to the failure of polar body extrusion, and we also found large polar bodies in the FMNL3-deleted oocytes, indicating the occurrence of symmetric meiotic division. There was no effect of FMNL3 on spindle organization; however, we observed spindle migration defects at late metaphase I, which might be due to the decreased cytoplasmic actin. Microinjecting Fmnl3-EGFP mRNA into Fmnl3-depleted oocytes significantly rescued these defects. In addition, the results of co-immunoprecipitation and the perturbation of protein expression experiments suggested that FMNL3 interacted with the actin-binding protein FASCIN for the regulation of actin filaments in oocytes. Thus, our results provide the evidence that FMNL3 regulates FASCIN for actin-mediated spindle migration and cytokinesis during mouse oocyte meiosis.


Subject(s)
Actins/metabolism , Formins/metabolism , Formins/pharmacology , Microfilament Proteins/metabolism , Oocytes/physiology , Receptors, Odorant/metabolism , Spindle Apparatus/metabolism , Actins/genetics , Animals , Cytokinesis/physiology , Female , Formins/genetics , Gene Expression Regulation/drug effects , Gene Expression Regulation/physiology , Mice , Microfilament Proteins/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Small Interfering , Receptors, Odorant/genetics
11.
Environ Res ; 185: 109476, 2020 06.
Article in English | MEDLINE | ID: mdl-32278162

ABSTRACT

Citrinin (CTN) is a secondary fungal metabolite produced by several species of Aspergillins and Penicillins, and it is widely found in vegetable-derived foods such as cereals and fermented rice-based food supplements. Previous studies indicated that CTN had immunotoxicity, hepatotoxicity, nephrotoxicity, and reproductive toxicity, which caused severe effects on human and animal health. However, the potential toxicity of CTN on the organelles of mouse oocytes is still unclear. In this study, we showed that the exposure to 30 µM CTN significantly reduced the developmental capacity of mouse oocytes. Our results revealed that mitochondria exhibited abnormal distribution and mitochondrial membrane potential decreased under CTN exposure. And the endoplasmic reticulum (ER) failed to accumulate to the spindle periphery, which is accompanied by the occurrence of ER stress, showing with increased GRP78 expression. We also found that similar with ER, the Golgi apparatus showed homogenous localization pattern after CTN exposure, and the vesicle transport was disturbed, showing with aberrant expression and localization of Rab11a. Moreover, our results indicated that CTN exposure increased the expression of LAMP2, indicating the induction of lysosomal damage. In summary, our study showed that CTN exposure to mouse oocytes was toxic to the distribution and functions of organelles, which further led to a decrease of oocyte quality.


Subject(s)
Citrinin , Animals , Citrinin/metabolism , Citrinin/toxicity , Endoplasmic Reticulum Chaperone BiP , Humans , Membrane Potential, Mitochondrial , Mice , Mitochondria , Oocytes
12.
J Cell Physiol ; 234(10): 18513-18523, 2019 08.
Article in English | MEDLINE | ID: mdl-30912144

ABSTRACT

Cytoskeleton which includes microtubule and actin filaments plays important roles during mammalian oocyte maturation. In the present study, we showed that protein kinase C mu (PKC mu) was one potential key molecule which affected cytoskeleton dynamics in mouse oocytes. Our results showed that PKC mu expressed and localized at the poles of the spindle during oocyte maturation, and PKC mu expression reduced in the oocytes from 6-month-old mice or 24 hr in vitro culture. We knocked down the expression of PKC mu in oocytes using morpholino injection to explore the relationship between PKC mu and subcellular structure defects. The loss of PKC mu reduced oocyte maturation competence, showing with decreased polar body extrusion rate and increased rate of symmetric division. Further analysis indicated that PKC mu decrease caused the spindle organization defects, and this could be confirmed by the decreased tubulin acetylation level. Moreover, we found that PKC mu affected the phosphorylation level of cofilin for actin assembly, which further affected cytoplasmic actin distribution and spindle positioning. In summary, our data indicated that PKC mu is one key factor for oocyte maturation through its roles on the spindle organization and actin filament distribution.


Subject(s)
Cytoskeleton/metabolism , Meiosis , Oocytes/cytology , Oocytes/metabolism , Protein Kinase C/metabolism , Acetylation , Actin Depolymerizing Factors/metabolism , Actins/metabolism , Animals , Cell Differentiation , Female , Mice, Inbred ICR , Phosphorylation , Polar Bodies/metabolism , Spindle Apparatus , Tubulin/metabolism
13.
Biol Reprod ; 100(3): 711-720, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30285101

ABSTRACT

Actin filaments are widely involved in multiple cellular processes in oocyte meiosis, such as spindle migration and polar body extrusion. The actin nucleators like Arp2/3 complex and formins are the most recognized molecules for actin assembly in oocytes. In the present study, we report that the vesicle trafficking factor, RAB8A GTPase, is a new regulator critical for actin assembly in meiosis. Our results showed that RAB8A was localized at both the spindle periphery and cortex in mouse oocytes, which was similar to the localization patterns of actin filaments. RAB8A depletion caused spindle migration defects and the failure of polar body extrusion, which could have been due to decreases in both cytoplasmic and cortical actin filaments in oocytes. Based on mass spectrometry analysis, we showed that RAB8A promoted actin assembly through its modulation on the ROCK-LIMK signaling pathway. Moreover, we demonstrated that RAB8A colocalized and interacted with GM130 at the spindle periphery and that RAB8A depletion caused the disruption of GM130-docked Golgi distribution. Taken together, our data indicated that RAB8A was required for Golgi distribution, spindle migration, and polar body extrusion via ROCK-mediated actin assembly in mouse oocyte meiosis.


Subject(s)
Actins/metabolism , Golgi Apparatus/physiology , Oocytes/physiology , Spindle Apparatus/physiology , rab GTP-Binding Proteins/metabolism , rho-Associated Kinases/metabolism , Animals , Meiosis/physiology , Mice , Polar Bodies/physiology , rab GTP-Binding Proteins/genetics , rho-Associated Kinases/genetics
14.
Mol Hum Reprod ; 25(7): 359-372, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31152166

ABSTRACT

Mammalian oocyte maturation involves a unique asymmetric cell division, in which meiotic spindle formation and actin filament-mediated spindle migration to the oocyte cortex are key processes. Here, we report that the vesicle trafficking regulator, RAB35 GTPase, is involved in regulating cytoskeleton dynamics in mouse oocytes. RAB35 GTPase mainly accumulated at the meiotic spindle periphery and cortex during oocyte meiosis. Depletion of RAB35 by morpholino microinjection led to aberrant polar body extrusion and asymmetric division defects in almost half the treated oocytes. We also found that RAB35 affected SIRT2 and αTAT for tubulin acetylation, which further modulated microtubule stability and meiotic spindle formation. Additionally, we found that RAB35 associated with RHOA in oocytes and modulated the ROCK-cofilin pathway for actin assembly, which further facilitated spindle migration for oocyte asymmetric division. Importantly, microinjection of Myc-Rab35 cRNA into RAB35-depleted oocytes could significantly rescue these defects. In summary, our results suggest that RAB35 GTPase has multiple roles in spindle stability and actin-mediated spindle migration in mouse oocyte meiosis.


Subject(s)
Meiosis/physiology , Oocytes/metabolism , Spindle Apparatus/metabolism , rab GTP-Binding Proteins/metabolism , Actins/metabolism , Animals , Female , Meiosis/genetics , Mice , Monomeric GTP-Binding Proteins/metabolism , Phosphorylation , Spindle Apparatus/genetics , rab GTP-Binding Proteins/genetics
15.
J Pineal Res ; 65(1): e12477, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29453798

ABSTRACT

Deoxynivalenol (DON) is one of the most prevalent fusarium mycotoxins in feedstuff and food. DON causes detrimental effects on human and animal reproductive systems by inducing oxidative stress and apoptosis. However, melatonin is a multifunctional endogenous hormone that plays crucial roles in the development of animal germ cells and embryos as a robust deoxidizer. In this study, we explored the effects of melatonin on the DON exposure mouse oocytes. Our in vitro and in vivo results showed that DON adversely affected mouse oocyte maturation and early embryo cleavage, while melatonin administration ameliorated the toxic effects of DON. DON exposure disrupted the meiotic spindle formation and kinetochore-microtubule attachment, which induced aneuploidy in oocytes. This might be through DON effects on the acetylated tubulin level. Moreover, we found that DON exposure caused the alteration of DNA and histone methylation level, which might affect early embryo cleavage. The toxic effects of DON on oocytes might be through its induction of oxidative stress-mediated early apoptosis, while the treatment with melatonin significantly ameliorated these phenotypes in DON-exposed mouse oocytes. Collectively, our results indicated the protection effects of melatonin against defects induced by DON during mouse oocyte meiotic maturation.


Subject(s)
Melatonin/pharmacology , Oocytes/drug effects , Oocytes/metabolism , Trichothecenes/pharmacology , Animals , Blotting, Western , Female , In Situ Nick-End Labeling , Mice , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Real-Time Polymerase Chain Reaction
16.
Adv Sci (Weinh) ; 11(4): e2303009, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38014604

ABSTRACT

ADP-ribosylation factor 1 (Arf1) is a small GTPase belonging to the Arf family. As a molecular switch, Arf1 is found to regulate retrograde and intra-Golgi transport, plasma membrane signaling, and organelle function during mitosis. This study aimed to explore the noncanonical roles of Arf1 in cell cycle regulation and cytoskeleton dynamics in meiosis with a mouse oocyte model. Arf1 accumulated in microtubules during oocyte meiosis, and the depletion of Arf1 led to the failure of polar body extrusion. Unlike mitosis, it finds that Arf1 affected Myt1 activity for cyclin B1/CDK1-based G2/M transition, which disturbed oocyte meiotic resumption. Besides, Arf1 modulated GM130 for the dynamic changes in the Golgi apparatus and Rab35-based vesicle transport during meiosis. Moreover, Arf1 is associated with Ran GTPase for TPX2 expression, further regulating the Aurora A-polo-like kinase 1 pathway for meiotic spindle assembly and microtubule stability in oocytes. Further, exogenous Arf1 mRNA supplementation can significantly rescue these defects. In conclusion, results reported the noncanonical functions of Arf1 in G2/M transition and meiotic spindle organization in mouse oocytes.


Subject(s)
ADP-Ribosylation Factor 1 , Spindle Apparatus , Mice , Animals , ADP-Ribosylation Factor 1/genetics , ADP-Ribosylation Factor 1/metabolism , Spindle Apparatus/metabolism , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Meiosis , Oocytes/metabolism , Golgi Apparatus/metabolism
17.
Elife ; 122024 May 15.
Article in English | MEDLINE | ID: mdl-38747713

ABSTRACT

During mammalian oocyte meiosis, spindle migration and asymmetric cytokinesis are unique steps for the successful polar body extrusion. The asymmetry defects of oocytes will lead to the failure of fertilization and embryo implantation. In present study, we reported that an actin nucleating factor Formin-like 2 (FMNL2) played critical roles in the regulation of spindle migration and organelle distribution in mouse and porcine oocytes. Our results showed that FMNL2 mainly localized at the oocyte cortex and periphery of spindle. Depletion of FMNL2 led to the failure of polar body extrusion and large polar bodies in oocytes. Live-cell imaging revealed that the spindle failed to migrate to the oocyte cortex, which caused polar body formation defects, and this might be due to the decreased polymerization of cytoplasmic actin by FMNL2 depletion in the oocytes of both mice and pigs. Furthermore, mass spectrometry analysis indicated that FMNL2 was associated with mitochondria and endoplasmic reticulum (ER)-related proteins, and FMNL2 depletion disrupted the function and distribution of mitochondria and ER, showing with decreased mitochondrial membrane potential and the occurrence of ER stress. Microinjecting Fmnl2-EGFP mRNA into FMNL2-depleted oocytes significantly rescued these defects. Thus, our results indicate that FMNL2 is essential for the actin assembly, which further involves into meiotic spindle migration and ER/mitochondria functions in mammalian oocytes.


Subject(s)
Actins , Endoplasmic Reticulum , Formins , Meiosis , Mitochondria , Oocytes , Animals , Endoplasmic Reticulum/metabolism , Oocytes/metabolism , Formins/metabolism , Formins/genetics , Mitochondria/metabolism , Mice , Actins/metabolism , Swine , Female , Spindle Apparatus/metabolism
18.
J Mol Cell Biol ; 14(1)2022 03 26.
Article in English | MEDLINE | ID: mdl-34918122

ABSTRACT

Leucine-rich-repeat kinase 2 (LRRK2) belongs to the Roco GTPase family and is a large multidomain protein harboring both GTPase and kinase activities. LRRK2 plays indispensable roles in many processes, such as autophagy and vesicle trafficking in mitosis. In this study, we showed the critical roles of LRRK2 in mammalian oocyte meiosis. LRRK2 is mainly accumulated at the meiotic spindle periphery during oocyte maturation. Depleting LRRK2 led to the polar body extrusion defects and also induced large polar bodies in mouse oocytes. Mass spectrometry analysis and co-immunoprecipitation results showed that LRRK2 was associated with several actin-regulating factors, such as Fascin and Rho-kinase (ROCK), and depletion of LRRK2 affected the expression of ROCK, phosphorylated cofilin, and Fascin. Further analysis showed that LRRK2 depletion did not affect spindle organization but caused the failure of spindle migration, which was largely due to the decrease of cytoplasmic actin filaments. Moreover, LRRK2 showed a similar localization pattern to mitochondria, and LRRK2 was associated with several mitochondria-related proteins. Indeed, mitochondrial distribution and function were both disrupted in LRRK2-depleted oocytes. In summary, our results indicated the critical roles of LRRK2 in actin assembly for spindle migration and mitochondrial function in mouse oocyte meiosis.


Subject(s)
Actins , Meiosis , Actins/metabolism , Animals , GTP Phosphohydrolases/metabolism , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Mammals , Mice , Mitochondria/metabolism , Oocytes/metabolism
19.
Reprod Toxicol ; 110: 172-179, 2022 06.
Article in English | MEDLINE | ID: mdl-35504548

ABSTRACT

Zearalenone is a mycotoxin produced by fungi of the genus Fusarium, which has severe toxicity on animal and human health including reproduction. Previous study showed that zearalenone exposure inhibited oocyte polar body extrusion, while in present study we found that high dose zearalenone disturbed oocyte meiosis resumption. Our results showed that a high concentration of 100 µM zearalenone reduced the rate of germinal vesicle (GV) breakdown in mouse oocytes. Further analysis indicated that zearalenone caused the decrease of Cyclin B1 and CDK1 expression, indicating MPF activity was affected, which further induced G2/M arrest, and this could be rescued by the inhibition of Wee1 activity. We found that the oocytes under high concentration of zearalenone showed lower γ-H2A.X expression, suggesting that DNA damage repair was disturbed, which further activated of DNA damage checkpoints. This could be confirmed by the altered expression of CHK1 and CHK2 after zearalenone treatment. Moreover, the organelles such as mitochondria, ribosome, endoplasmic reticulum and Golgi apparatus were diffused from germinal vesicle periphery after zearalenone exposure, indicating that zearalenone affected protein synthesis, modification and transport, which further induced the arrest of G2/M transition. Taken together, our results showed that high dose of zearalenone exposure induced G2/M transition defect by affecting organelle function-related CHK1/2-Wee1-MPF pathway.


Subject(s)
Zearalenone , Animals , Apoptosis , Cell Line, Tumor , G2 Phase Cell Cycle Checkpoints/genetics , Meiosis , Mice , Oocytes/metabolism , Zearalenone/toxicity
20.
J Hazard Mater ; 416: 125862, 2021 08 15.
Article in English | MEDLINE | ID: mdl-34492810

ABSTRACT

Di (2-ethylhexyl) phthalate (DEHP) is widely used as a plastic additive and it could induce reproduction defects and fertility in mammals as environmental endocrine disruptor. However, the effects and potential mechanism of DEHP exposure during lactation stage on follicular development of offspring are still unclear. In this study, we found that the total primordial follicle number and antral follicles in the suckling of mice exposed to DEHP during lactation was significantly reduced. RNA-seq analysis results showed that the transcription levels of genes related to steroid production, ovarian hormone secretion and oxidative stress were significantly changed, which led to a decrease in 17ß-estradiol and an increase in oxidative stress. The proportion of DNA damage marker γH2AX in the ovary of female suckling exposed to DEHP was significantly increased. We also found an increase in the level of ovarian apoptosis, and the proliferation of ovarian granulosa cells was inhibited. These alterations also lead to abnormal spindle and chromosome misalignment during oocyte maturation. Overall, our data indicate that lactation exposure to DEHP can affect the secretion of hormones and the development of antral follicles in suckling mice by affecting the secretion pathways of ovarian hormone enzymes and oxidative stress pathway.


Subject(s)
Diethylhexyl Phthalate , Ovary , Animals , Diethylhexyl Phthalate/toxicity , Estradiol , Female , Lactation , Mice , Ovarian Follicle
SELECTION OF CITATIONS
SEARCH DETAIL