ABSTRACT
The three-striped roofed (Batagur dhongoka) is a semi-aquatic turtle that belongs to family Geoemydidae. Due to anthropogenic pressure, it has been facing an intense decline of over 80% in its distribution range in the past 50 years. It is considered as 'Critically Endangered' so effective conservation strategies are needed to protect the species by determining their genetic diversity and population genetic structure. This study investigates the genetic diversity, population structure and demographic pattern of B. dhongoka from two Turtle Rescue and Rehabilitation Centre established near Ganga river using mitochondrial cytochrome b (Cyt b: 1140 bp) ; control region (CR: 451 bp) and ten nuclear microsatellite loci. mtDNA results show low levels of nucleotide diversity (π = 0.0022) in B. dhongoka haplotypes and provide evidence for a low substitution rate. The demographic pattern estimated by the Bayesian skyline plot (BSP) analysis indicates historical stability followed by growth in the effective population size, with a recent reduction in population size from ~ 2 thousand years ago. The microsatellite findings show a moderate level of observed heterozygosity (Ho: 0.49). Bayesian-based clustering analysis revealed weak genetic structures in B. dhongoka and presence of admixed assignations suggesting close genetic relationships. These findings shed light on B. dhongoka's genetic status and underline the necessity of comprehensive rehabilitation and relocation programs and conservation and management techniques to ensure the species' long-term survival. In order to ensure the effective protection and conservation of B. dhongoka, the Government of India has taken a proactive measure by incorporating it into Schedule I of the Wildlife (Protection) Act, 1972, as amended in 2022.
Subject(s)
DNA, Mitochondrial , Turtles , Animals , DNA, Mitochondrial/genetics , Turtles/genetics , Genetic Variation , Endangered Species , Conservation of Natural Resources , Rivers , Bayes Theorem , Genetics, Population , Haplotypes , Microsatellite Repeats/geneticsABSTRACT
Background: Large-scale changes in habitat conditions due to human modifications and climate change require management practices to consider how species communities can alter amidst these changes. Understanding species interactions across the gradient of space, anthropogenic pressure, and season provide the opportunity to anticipate possible dynamics in the changing scenarios. We studied the interspecific interactions of carnivore species in a high-altitude ecosystem over seasonal (summer and winter) and resource gradients (livestock grazing) to assess the impact of changing abiotic and biotic settings on coexistence. Methods: The study was conducted in the Upper Bhagirathi basin, Western Himalaya, India. We analyzed around 4 years of camera trap monitoring data to understand seasonal spatial and temporal interactions of the snow leopard with common leopard and woolly wolf were assessed in the greater and trans-Himalayan habitats, respectively. We used two species occupancy models to assess spatial interactions, and circadian activity patterns were used to assess seasonal temporal overlap amongst carnivores. In addition, we examined scats to understand the commonalities in prey selection. Results: The result showed that although snow leopard and wolves depend on the same limited prey species and show high temporal overlap, habitat heterogeneity and differential habitat use facilitate co-occurrence between these two predators. Snow leopard and common leopard were spatially independent in the summer. Conversely, the common leopard negatively influences the space use of snow leopard in the winter. Limited prey resources (lack of livestock), restricted space (due to snow cover), and similar activity patterns in winter might result in strong competition, causing these species to avoid each other on a spatial scale. The study showed that in addition to species traits and size, ecological settings also play a significant role in deciding the intensity of competition between large carnivores. Climate change and habitat shifts are predicted to increase the spatial overlap between snow leopard and co-predators in the future. In such scenarios, wolves and snow leopards may coexist in a topographically diverse environment, provided sufficient prey are available. However, shifts in tree line might lead to severe competition between common leopards and snow leopards, which could be detrimental to the latter. Further monitoring of resource use across abiotic and biotic environments may improve our understanding of how changing ecological conditions can affect resource partitioning between snow leopards and predators.