Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Cell ; 163(6): 1457-67, 2015 Dec 03.
Article in English | MEDLINE | ID: mdl-26627735

ABSTRACT

A variety of signals finely tune insulin secretion by pancreatic ß cells to prevent both hyper-and hypoglycemic states. Here, we show that post-translational regulation of the transcription factors ETV1, ETV4, and ETV5 by the ubiquitin ligase COP1 (also called RFWD2) in ß cells is critical for insulin secretion. Mice lacking COP1 in ß cells developed diabetes due to insulin granule docking defects that were fully rescued by genetic deletion of Etv1, Etv4, and Etv5. Genes regulated by ETV1, ETV4, or ETV5 in the absence of mouse COP1 were enriched in human diabetes-associated genes, suggesting that they also influence human ß-cell pathophysiology. In normal ß cells, ETV4 was stabilized upon membrane depolarization and limited insulin secretion under hyperglycemic conditions. Collectively, our data reveal that ETVs negatively regulate insulin secretion for the maintenance of normoglycemia.


Subject(s)
Insulin-Secreting Cells/metabolism , Insulin/metabolism , Nuclear Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , DNA-Binding Proteins/metabolism , Diabetes Mellitus/metabolism , Exocytosis , Gene Deletion , Glucose/metabolism , Humans , Hyperglycemia/metabolism , Insulin Secretion , Mice , Nuclear Proteins/genetics , Proto-Oncogene Proteins c-ets/metabolism , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/genetics
2.
Nature ; 589(7842): 442-447, 2021 01.
Article in English | MEDLINE | ID: mdl-33361811

ABSTRACT

Successful pregnancies rely on adaptations within the mother1, including marked changes within the immune system2. It has long been known that the thymus, the central lymphoid organ, changes markedly during pregnancy3. However, the molecular basis and importance of this process remain largely obscure. Here we show that the osteoclast differentiation receptor RANK4,5 couples female sex hormones to the rewiring of the thymus during pregnancy. Genetic deletion of Rank (also known as Tnfrsf11a) in thymic epithelial cells results in impaired thymic involution and blunted expansion of natural regulatory T (Treg) cells in pregnant female mice. Sex hormones, in particular progesterone, drive the development of thymic Treg cells through RANK in a manner that depends on AIRE+ medullary thymic epithelial cells. The depletion of Rank in the mouse thymic epithelium results in reduced accumulation of natural Treg cells in the placenta, and an increase in the number of miscarriages. Thymic deletion of Rank also results in impaired accumulation of Treg cells in visceral adipose tissue, and is associated with enlarged adipocyte size, tissue inflammation, enhanced maternal glucose intolerance, fetal macrosomia, and a long-lasting transgenerational alteration in glucose homeostasis, which are all key hallmarks of gestational diabetes. Transplantation of Treg cells rescued fetal loss, maternal glucose intolerance and fetal macrosomia. In human pregnancies, we found that gestational diabetes also correlates with a reduced number of Treg cells in the placenta. Our findings show that RANK promotes the hormone-mediated development of thymic Treg cells during pregnancy, and expand the functional role of maternal Treg cells to the development of gestational diabetes and the transgenerational metabolic rewiring of glucose homeostasis.


Subject(s)
Diabetes, Gestational/immunology , Fetal Death/etiology , Receptor Activator of Nuclear Factor-kappa B/metabolism , T-Lymphocytes, Regulatory/immunology , Thymus Gland/immunology , Adipocytes/pathology , Animals , Cell Proliferation , Diabetes, Gestational/etiology , Diabetes, Gestational/metabolism , Diabetes, Gestational/pathology , Epithelial Cells/immunology , Female , Fetus/immunology , Fetus/metabolism , Fetus/pathology , Glucose/metabolism , Glucose Intolerance/genetics , Humans , Intra-Abdominal Fat/pathology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Placenta/immunology , Placenta/pathology , Pregnancy , Receptor Activator of Nuclear Factor-kappa B/deficiency , Receptor Activator of Nuclear Factor-kappa B/genetics , T-Lymphocytes, Regulatory/cytology , Thymus Gland/cytology , Transcription Factors/metabolism , AIRE Protein
4.
Nature ; 563(7732): 564-568, 2018 11.
Article in English | MEDLINE | ID: mdl-30405245

ABSTRACT

Genetic regulators and environmental stimuli modulate T cell activation in autoimmunity and cancer. The enzyme co-factor tetrahydrobiopterin (BH4) is involved in the production of monoamine neurotransmitters, the generation of nitric oxide, and pain1,2. Here we uncover a link between these processes, identifying a fundamental role for BH4 in T cell biology. We find that genetic inactivation of GTP cyclohydrolase 1 (GCH1, the rate-limiting enzyme in the synthesis of BH4) and inhibition of sepiapterin reductase (the terminal enzyme in the synthetic pathway for BH4) severely impair the proliferation of mature mouse and human T cells. BH4 production in activated T cells is linked to alterations in iron metabolism and mitochondrial bioenergetics. In vivo blockade of BH4 synthesis abrogates T-cell-mediated autoimmunity and allergic inflammation, and enhancing BH4 levels through GCH1 overexpression augments responses by CD4- and CD8-expressing T cells, increasing their antitumour activity in vivo. Administration of BH4 to mice markedly reduces tumour growth and expands the population of intratumoral effector T cells. Kynurenine-a tryptophan metabolite that blocks antitumour immunity-inhibits T cell proliferation in a manner that can be rescued by BH4. Finally, we report the development of a potent SPR antagonist for possible clinical use. Our data uncover GCH1, SPR and their downstream metabolite BH4 as critical regulators of T cell biology that can be readily manipulated to either block autoimmunity or enhance anticancer immunity.


Subject(s)
Autoimmune Diseases/immunology , Biopterins/analogs & derivatives , Neoplasms/immunology , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Administration, Oral , Alcohol Oxidoreductases/antagonists & inhibitors , Alcohol Oxidoreductases/metabolism , Animals , Autoimmune Diseases/drug therapy , Autoimmune Diseases/pathology , Biopterins/biosynthesis , Biopterins/metabolism , Biopterins/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Coenzymes/metabolism , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Female , GTP Cyclohydrolase/genetics , GTP Cyclohydrolase/metabolism , Humans , Hypersensitivity/immunology , Iron/metabolism , Kynurenine/metabolism , Kynurenine/pharmacology , Male , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Neoplasms/drug therapy , Neoplasms/pathology , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism
5.
Immunity ; 36(3): 427-37, 2012 Mar 23.
Article in English | MEDLINE | ID: mdl-22425250

ABSTRACT

The thymic medulla provides a specialized microenvironment for the negative selection of T cells, with the presence of autoimmune regulator (Aire)-expressing medullary thymic epithelial cells (mTECs) during the embryonic-neonatal period being both necessary and sufficient to establish long-lasting tolerance. Here we showed that emergence of the first cohorts of Aire(+) mTECs at this key developmental stage, prior to αß T cell repertoire selection, was jointly directed by Rankl(+) lymphoid tissue inducer cells and invariant Vγ5(+) dendritic epidermal T cell (DETC) progenitors that are the first thymocytes to express the products of gene rearrangement. In turn, generation of Aire(+) mTECs then fostered Skint-1-dependent, but Aire-independent, DETC progenitor maturation and the emergence of an invariant DETC repertoire. Hence, our data attributed a functional importance to the temporal development of Vγ5(+) γδ T cells during thymus medulla formation for αß T cell tolerance induction and demonstrated a Rank-mediated reciprocal link between DETC and Aire(+) mTEC maturation.


Subject(s)
Precursor Cells, T-Lymphoid/cytology , Precursor Cells, T-Lymphoid/immunology , Receptor Activator of Nuclear Factor-kappa B/immunology , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Transcription Factors/immunology , Animals , Cell Differentiation/immunology , Cellular Microenvironment , Epithelial Cells/immunology , Female , Fetus/cytology , Fetus/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Pregnancy , Signal Transduction/immunology , Thymus Gland/cytology , Thymus Gland/immunology , Transcription Factors/deficiency , Transcription Factors/genetics , AIRE Protein
6.
Int J Mol Sci ; 22(19)2021 Oct 06.
Article in English | MEDLINE | ID: mdl-34639141

ABSTRACT

The advent of T-cell-based immunotherapy has remarkably transformed cancer patient treatment. Despite their success, the currently approved immunotherapeutic protocols still encounter limitations, cause toxicity, and give disparate patient outcomes. Thus, a deeper understanding of the molecular mechanisms of T-cell activation and inhibition is much needed to rationally expand targets and possibilities to improve immunotherapies. Protein ubiquitination downstream of immune signaling pathways is essential to fine-tune virtually all immune responses, in particular, the positive and negative regulation of T-cell activation. Numerous studies have demonstrated that deregulation of ubiquitin-dependent pathways can significantly alter T-cell activation and enhance antitumor responses. Consequently, researchers in academia and industry are actively developing technologies to selectively exploit ubiquitin-related enzymes for cancer therapeutics. In this review, we discuss the molecular and functional roles of ubiquitination in key T-cell activation and checkpoint inhibitory pathways to highlight the vast possibilities that targeting ubiquitination offers for advancing T-cell-based immunotherapies.


Subject(s)
Immune Checkpoint Inhibitors/therapeutic use , Immunotherapy/methods , Lymphocyte Activation/immunology , Neoplasms/drug therapy , T-Lymphocytes/immunology , Ubiquitination , Animals , Humans , Neoplasms/immunology , Neoplasms/pathology
7.
Nature ; 507(7493): 508-12, 2014 Mar 27.
Article in English | MEDLINE | ID: mdl-24553136

ABSTRACT

Tumour metastasis is the primary cause of mortality in cancer patients and remains the key challenge for cancer therapy. New therapeutic approaches to block inhibitory pathways of the immune system have renewed hopes for the utility of such therapies. Here we show that genetic deletion of the E3 ubiquitin ligase Cbl-b (casitas B-lineage lymphoma-b) or targeted inactivation of its E3 ligase activity licenses natural killer (NK) cells to spontaneously reject metastatic tumours. The TAM tyrosine kinase receptors Tyro3, Axl and Mer (also known as Mertk) were identified as ubiquitylation substrates for Cbl-b. Treatment of wild-type NK cells with a newly developed small molecule TAM kinase inhibitor conferred therapeutic potential, efficiently enhancing anti-metastatic NK cell activity in vivo. Oral or intraperitoneal administration using this TAM inhibitor markedly reduced murine mammary cancer and melanoma metastases dependent on NK cells. We further report that the anticoagulant warfarin exerts anti-metastatic activity in mice via Cbl-b/TAM receptors in NK cells, providing a molecular explanation for a 50-year-old puzzle in cancer biology. This novel TAM/Cbl-b inhibitory pathway shows that it might be possible to develop a 'pill' that awakens the innate immune system to kill cancer metastases.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Killer Cells, Natural/immunology , Mammary Neoplasms, Experimental/pathology , Melanoma, Experimental/pathology , Neoplasm Metastasis/immunology , Proto-Oncogene Proteins c-cbl/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Ubiquitin-Protein Ligases/metabolism , Adaptor Proteins, Signal Transducing/deficiency , Adaptor Proteins, Signal Transducing/genetics , Animals , Anticoagulants/pharmacology , Anticoagulants/therapeutic use , Female , Killer Cells, Natural/drug effects , Killer Cells, Natural/metabolism , Male , Mammary Neoplasms, Experimental/drug therapy , Mammary Neoplasms, Experimental/genetics , Mammary Neoplasms, Experimental/immunology , Melanoma, Experimental/drug therapy , Melanoma, Experimental/genetics , Melanoma, Experimental/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Neoplasm Metastasis/drug therapy , Neoplasm Metastasis/prevention & control , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-cbl/deficiency , Proto-Oncogene Proteins c-cbl/genetics , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Ubiquitin-Protein Ligases/deficiency , Ubiquitin-Protein Ligases/genetics , Ubiquitination , Warfarin/pharmacology , Warfarin/therapeutic use , c-Mer Tyrosine Kinase , Axl Receptor Tyrosine Kinase
8.
Nature ; 487(7408): 477-81, 2012 Jul 25.
Article in English | MEDLINE | ID: mdl-22837003

ABSTRACT

Malnutrition affects up to one billion people in the world and is a major cause of mortality. In many cases, malnutrition is associated with diarrhoea and intestinal inflammation, further contributing to morbidity and death. The mechanisms by which unbalanced dietary nutrients affect intestinal homeostasis are largely unknown. Here we report that deficiency in murine angiotensin I converting enzyme (peptidyl-dipeptidase A) 2 (Ace2), which encodes a key regulatory enzyme of the renin-angiotensin system (RAS), results in highly increased susceptibility to intestinal inflammation induced by epithelial damage. The RAS is known to be involved in acute lung failure, cardiovascular functions and SARS infections. Mechanistically, ACE2 has a RAS-independent function, regulating intestinal amino acid homeostasis, expression of antimicrobial peptides, and the ecology of the gut microbiome. Transplantation of the altered microbiota from Ace2 mutant mice into germ-free wild-type hosts was able to transmit the increased propensity to develop severe colitis. ACE2-dependent changes in epithelial immunity and the gut microbiota can be directly regulated by the dietary amino acid tryptophan. Our results identify ACE2 as a key regulator of dietary amino acid homeostasis, innate immunity, gut microbial ecology, and transmissible susceptibility to colitis. These results provide a molecular explanation for how amino acid malnutrition can cause intestinal inflammation and diarrhoea.


Subject(s)
Colitis/etiology , Colitis/microbiology , Intestines/microbiology , Malnutrition/complications , Metagenome , Peptidyl-Dipeptidase A/metabolism , Tryptophan/metabolism , Angiotensin-Converting Enzyme 2 , Animals , Biocatalysis , Colitis/drug therapy , Colitis/pathology , Dextran Sulfate , Diarrhea/complications , Dietary Proteins/metabolism , Dietary Proteins/pharmacology , Female , Gene Deletion , Genetic Predisposition to Disease , Germ-Free Life , Homeostasis , Immunity, Innate , Intestines/pathology , Male , Malnutrition/metabolism , Mice , Models, Biological , Niacinamide/metabolism , Niacinamide/pharmacology , Niacinamide/therapeutic use , Peptidyl-Dipeptidase A/deficiency , Peptidyl-Dipeptidase A/genetics , Renin-Angiotensin System/physiology , TOR Serine-Threonine Kinases/metabolism , Trinitrobenzenesulfonic Acid , Tryptophan/pharmacology , Tryptophan/therapeutic use
9.
Nature ; 462(7272): 505-9, 2009 Nov 26.
Article in English | MEDLINE | ID: mdl-19940926

ABSTRACT

Receptor-activator of NF-kappaB ligand (TNFSF11, also known as RANKL, OPGL, TRANCE and ODF) and its tumour necrosis factor (TNF)-family receptor RANK are essential regulators of bone remodelling, lymph node organogenesis and formation of a lactating mammary gland. RANKL and RANK are also expressed in the central nervous system. However, the functional relevance of RANKL/RANK in the brain was entirely unknown. Here we report that RANKL and RANK have an essential role in the brain. In both mice and rats, central RANKL injections trigger severe fever. Using tissue-specific Nestin-Cre and GFAP-Cre rank(floxed) deleter mice, the function of RANK in the fever response was genetically mapped to astrocytes. Importantly, Nestin-Cre and GFAP-Cre rank(floxed) deleter mice are resistant to lipopolysaccharide-induced fever as well as fever in response to the key inflammatory cytokines IL-1beta and TNFalpha. Mechanistically, RANKL activates brain regions involved in thermoregulation and induces fever via the COX2-PGE(2)/EP3R pathway. Moreover, female Nestin-Cre and GFAP-Cre rank(floxed) mice exhibit increased basal body temperatures, suggesting that RANKL and RANK control thermoregulation during normal female physiology. We also show that two children with RANK mutations exhibit impaired fever during pneumonia. These data identify an entirely novel and unexpected function for the key osteoclast differentiation factors RANKL/RANK in female thermoregulation and the central fever response in inflammation.


Subject(s)
Body Temperature Regulation/drug effects , Body Temperature Regulation/physiology , Fever/chemically induced , Fever/metabolism , RANK Ligand/pharmacology , Receptor Activator of Nuclear Factor-kappa B/metabolism , Sex Characteristics , Animals , Astrocytes/drug effects , Astrocytes/metabolism , Child , Dinoprostone/metabolism , Female , Fever/complications , Gene Expression Profiling , Humans , Injections, Intraventricular , Male , Mice , Mice, Inbred C57BL , Pneumonia/complications , Pneumonia/metabolism , RANK Ligand/administration & dosage , RANK Ligand/antagonists & inhibitors , RANK Ligand/metabolism , Rats , Rats, Wistar , Receptor Activator of Nuclear Factor-kappa B/genetics , Receptors, Prostaglandin E/metabolism , Receptors, Prostaglandin E, EP3 Subtype
10.
J Immunol ; 186(4): 2138-47, 2011 Feb 15.
Article in English | MEDLINE | ID: mdl-21248250

ABSTRACT

E3 ubiquitin ligases have been placed among the essential molecules involved in the regulation of T cell functions and T cell tolerance. However, it has never been experimentally proven in vivo whether these functions indeed depend on the catalytic E3 ligase activity. The Casitas B-cell lymphoma (Cbl) family protein Cbl-b was the first E3 ubiquitin ligase directly implicated in the activation and tolerance of the peripheral T cell. In this study, we report that selective genetic inactivation of Cbl-b E3 ligase activity phenocopies the T cell responses observed when total Cbl-b is ablated, resulting in T cell hyperactivation, spontaneous autoimmunity, and impaired induction of T cell anergy in vivo. Moreover, mice carrying a Cbl-b E3 ligase-defective mutation spontaneously reject tumor cells that express human papilloma virus Ags. These data demonstrate for the first time, to our knowledge, that the catalytic function of an E3 ligase, Cbl-b, is essential for negative regulation of T cells in vivo. Thus, modulation of the E3 ligase activity of Cbl-b might be a novel modality to control T cell immunity in vaccination, cancer biology, or autoimmunity.


Subject(s)
Adaptor Proteins, Signal Transducing/physiology , Proto-Oncogene Proteins c-cbl/physiology , T-Lymphocyte Subsets/enzymology , T-Lymphocyte Subsets/immunology , Ubiquitin-Protein Ligases/antagonists & inhibitors , Ubiquitin-Protein Ligases/physiology , Adaptor Proteins, Signal Transducing/deficiency , Adaptor Proteins, Signal Transducing/genetics , Animals , Autoimmune Diseases/enzymology , Autoimmune Diseases/immunology , Autoimmune Diseases/pathology , Cell Line, Tumor , Clonal Anergy/genetics , Enzyme Activation/genetics , Enzyme Activation/immunology , Female , Gene Knock-In Techniques , Immunophenotyping , Lymphocyte Activation/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Point Mutation , Proto-Oncogene Proteins c-cbl/deficiency , Proto-Oncogene Proteins c-cbl/genetics , RING Finger Domains/genetics , T-Lymphocyte Subsets/pathology , T-Lymphocytes, Cytotoxic/enzymology , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/pathology , Ubiquitin-Protein Ligases/genetics
11.
J Zhejiang Univ Sci B ; 23(2): 141-152, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35187887

ABSTRACT

Clustered regulatory interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 nuclease (Cas9), the third-generation genome editing tool, has been favored because of its high efficiency and clear system composition. In this technology, the introduced double-strand breaks (DSBs) are mainly repaired by non-homologous end joining (NHEJ) or homology-directed repair (HDR) pathways. The high-fidelity HDR pathway is used for genome modification, which can introduce artificially controllable insertions, deletions, or substitutions carried by the donor templates. Although high-level knock-out can be easily achieved by NHEJ, accurate HDR-mediated knock-in remains a technical challenge. In most circumstances, although both alleles are broken by endonucleases, only one can be repaired by HDR, and the other one is usually recombined by NHEJ. For gene function studies or disease model establishment, biallelic editing to generate homozygous cell lines and homozygotes is needed to ensure consistent phenotypes. Thus, there is an urgent need for an efficient biallelic editing system. Here, we developed three pairs of integrated selection systems, where each of the two selection cassettes contained one drug-screening gene and one fluorescent marker. Flanked by homologous arms containing the mutated sequences, the selection cassettes were integrated into the target site, mediated by CRISPR/Cas9-induced HDR. Positively targeted cell clones were massively enriched by fluorescent microscopy after screening for drug resistance. We tested this novel method on the amyloid precursor protein (APP) and presenilin 1 (PSEN1) loci and demonstrated up to 82.0% biallelic editing efficiency after optimization. Our results indicate that this strategy can provide a new efficient approach for biallelic editing and lay a foundation for establishment of an easier and more efficient disease model.


Subject(s)
CRISPR-Cas Systems , Recombinational DNA Repair , Alleles , DNA End-Joining Repair , Gene Editing/methods
12.
Eur J Immunol ; 39(9): 2337-44, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19714573

ABSTRACT

The immune system uses several mechanisms of central and peripheral tolerance in order to prevent the activation of T lymphocytes toward self-antigens. Although the importance of immune self-tolerance has been established for a long time, some essential cellular and molecular mechanisms of T-cell tolerance have only been recently revealed. Once thought to be a recycling system, protein ubiquitylation by E3 ligases has now emerged as a regulated and crucial modulator of immune responses, and more importantly as a key signaling pathway involved in T-cell tolerance. In this review, we highlight our current understanding of the transcriptional and molecular signaling mechanisms involved in ubiquitylation-mediated T-cell tolerance.


Subject(s)
Self Tolerance , T-Lymphocytes/immunology , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Animals , Humans , Interleukin-2/immunology , Interleukin-2/metabolism , NFATC Transcription Factors/immunology , NFATC Transcription Factors/metabolism , Signal Transduction/immunology , T-Lymphocytes/enzymology , Ubiquitin-Protein Ligases/genetics
13.
Cancers (Basel) ; 8(10)2016 Oct 21.
Article in English | MEDLINE | ID: mdl-27775650

ABSTRACT

The TAM receptor protein tyrosine kinases-Tyro3, Axl, and Mer-are essential regulators of immune homeostasis. Guided by their cognate ligands Growth arrest-specific gene 6 (Gas6) and Protein S (Pros1), these receptors ensure the resolution of inflammation by dampening the activation of innate cells as well as by restoring tissue function through promotion of tissue repair and clearance of apoptotic cells. Their central role as negative immune regulators is highlighted by the fact that deregulation of TAM signaling has been linked to the pathogenesis of autoimmune, inflammatory, and infectious diseases. Importantly, TAM receptors have also been associated with cancer development and progression. In a cancer setting, TAM receptors have a dual regulatory role, controlling the initiation and progression of tumor development and, at the same time, the associated anti-tumor responses of diverse immune cells. Thus, modulation of TAM receptors has emerged as a potential novel strategy for cancer treatment. In this review, we discuss our current understanding of how TAM receptors control immunity, with a particular focus on the regulation of anti-tumor responses and its implications for cancer immunotherapy.

14.
Semin Immunopathol ; 32(2): 137-48, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20458601

ABSTRACT

Peripheral activation of antigen-specific T cells is stringently controlled to prevent immune responses against self-antigens. Only after a T cell is presented with two signals, an antigen and a co-stimulatory signal, can they be fully activated. In case antigen presentation occurs without co-stimulation, T-cell receptor (TCR) signaling pathways are regulated to prevent T-cell activation and induce T-cell tolerance. Thus, for a productive T-cell response to occur, co-stimulatory receptors need to serve the dual role of amplifying the TCR signaling while concomitantly releasing T cells from suppression. Biochemical and genetic studies during the last 10 years have documented the critical role of the E3 ubiquitin-ligase Cbl-b in this fundamental two-signal modulation of T-cell responses. In this review, we will discuss our current understanding on how Cbl-b controls T-cell activation and tolerance, its in vivo implications, as well as mechanisms for tuning T-cell-mediated immune responses by this essential E3 ligase.


Subject(s)
Immune Tolerance/immunology , Lymphocyte Activation/immunology , Proto-Oncogene Proteins c-cbl/immunology , T-Lymphocytes/immunology , Animals , Antigen Presentation/immunology , Humans , Immune Tolerance/genetics , Isoenzymes , Lymphocyte Activation/genetics , Proto-Oncogene Proteins c-cbl/genetics , T-Lymphocytes/metabolism
15.
PLoS One ; 2(10): e992, 2007 Oct 03.
Article in English | MEDLINE | ID: mdl-17912369

ABSTRACT

BACKGROUND: The thymus constitutes the primary lymphoid organ for the majority of T cells. The phosphatidyl-inositol 3 kinase (PI3K) signaling pathway is involved in lymphoid development. Defects in single components of this pathway prevent thymocytes from progressing beyond early T cell developmental stages. Protein kinase B (PKB) is the main effector of the PI3K pathway. METHODOLOGY/PRINCIPAL FINDINGS: To determine whether PKB mediates PI3K signaling in the thymus, we characterized PKB knockout thymi. Our results reveal a significant thymic hypocellularity in PKBalpha(-/-) neonates and an accumulation of early thymocyte subsets in PKBalpha(-/-) adult mice. Using thymic grafting and fetal liver cell transfer experiments, the latter finding was specifically attributed to the lack of PKBalpha within the lymphoid component of the thymus. Microarray analyses show that the absence of PKBalpha in early thymocyte subsets modifies the expression of genes known to be involved in pre-TCR signaling, in T cell activation, and in the transduction of interferon-mediated signals. CONCLUSIONS/SIGNIFICANCE: This report highlights the specific requirements of PKBalpha for thymic development and opens up new prospects as to the mechanism downstream of PKBalpha in early thymocytes.


Subject(s)
Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/physiology , Thymus Gland/embryology , Thymus Gland/pathology , Animals , Animals, Newborn , Cell Separation , Cell Transplantation/methods , Gene Deletion , Mice , Mice, Transgenic , Models, Biological , Oligonucleotide Array Sequence Analysis , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction , T-Lymphocytes/metabolism , Thymus Gland/cytology , Thymus Gland/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL