ABSTRACT
OBJECTIVE: To develop a core outcome set for heavy menstrual bleeding (HMB). DESIGN: Core outcome set (COS) development methodology described by the COMET initiative. SETTING: University hospital gynaecology department, online international survey and web-based international consensus meetings. POPULATION OR SAMPLE: An international collaboration of stakeholders (clinicians, patients, academics, guideline developers) from 20 countries and 6 continents. METHODS: Phase 1: Systematic review of previously reported outcomes to identify potential core outcomes. Phase 2: Qualitative studies with patients to identify outcomes most important to them. Phase 3: Online two-round Delphi survey to achieve consensus about which outcomes are most important. Phase 4: A consensus meeting to finalise the COS. MAIN OUTCOME MEASURES: Outcome importance was assessed in the Delphi survey on a 9-point scale. RESULTS: From the 'long list' of 114, 10 outcomes were included in the final COS: subjective blood loss; flooding; menstrual cycle metrics; severity of dysmenorrhoea; number of days with dysmenorrhoea; quality of life; adverse events; patient satisfaction; number of patients going on to have further treatment for HMB and haemoglobin level. CONCLUSIONS: The final COS includes variables that are feasible for use in clinical trials in all resource settings and apply to all known underlying causes of the symptom of HMB. These outcomes should be reported in all future trials of interventions, their systematic reviews, and clinical guidelines to underpin policy.
Subject(s)
Menorrhagia , Female , Humans , Delphi Technique , Dysmenorrhea , Menorrhagia/therapy , Outcome Assessment, Health Care/methods , Quality of Life , Research Design , Treatment Outcome , Clinical Trials as TopicABSTRACT
The cell's response to hypoxia depends on stabilization of the hypoxia-inducible factor 1 complex and transactivation of nuclear factor kappa-B (NF-κB). HIF target gene transcription in cells resident to atherosclerotic lesions adjoins a complex interplay of cytokines and mediators of inflammation affecting cholesterol uptake, migration, and inflammation. Maladaptive activation of the HIF-pathway and transactivation of nuclear factor kappa-B causes monocytes to invade early atherosclerotic lesions, maintaining inflammation and aggravating a low-oxygen environment. Meanwhile HIF-dependent upregulation of the ATP-binding cassette transporter ABCA1 causes attenuation of cholesterol efflux and ultimately macrophages becoming foam cells. Hypoxia facilitates neovascularization by upregulation of vascular endothelial growth factor (VEGF) secreted by endothelial cells and vascular smooth muscle cells lining the arterial wall destabilizing the plaque. HIF-knockout animal models and inhibitor studies were able to show beneficial effects on atherogenesis by counteracting the HIF-pathway in the cell wall. In this review the authors elaborate on the up-to-date literature on regulation of cells of the arterial wall through activation of HIF-1α and its effect on atherosclerotic plaque formation.