Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Gait Posture ; 107: 194-198, 2024 01.
Article in English | MEDLINE | ID: mdl-37833200

ABSTRACT

BACKGROUND: Multiple sclerosis (MS) is a neurological disease characterized by demyelination disrupting the central nervous system. Persons with MS may exhibit symptomatic strength asymmetry (SA) that impacts motor gait and ankle mobility. The purpose of the present study was to investigate ankle dorsiflexion SA in people with MS and its relationship to functional performance. RESEARCH QUESTION: Is their a difference in dorsiflexion SA in MS participants compared to healthy individuals and does it impact functional performance? METHODS: 13 MS participants (EDSS 3.5 + 1.8) and 13 age matched NON-MS participants underwent maximal isometric (MVC) dynamometry testing for ankle dorsiflexion in both limbs to determine SA. Participants performed three functional tasks of walking performance. RESULTS: There was a significant intra-limb MVC difference in the MS group, and significantly greater isometric SA (p < 0.007) and isokinetic SA (p < 0.04) in the MS group compared to healthy individuals. The MS group exhibited significant correlations between outcomes of functional walking performance with isokinetic but not isometric SA. There was no significant correlation between disability status and functional task performance. SIGNIFICANCE: Ankle dorsiflexion SA is negatively correlated with functional performance in MS participants. MS disability status was not a predictor of functional task performance, and symptom testing may be appropriate to assess walking ability in persons with MS.


Subject(s)
Multiple Sclerosis , Humans , Multiple Sclerosis/complications , Ankle , Walking/physiology , Gait/physiology , Ankle Joint
2.
Neurol Neuroimmunol Neuroinflamm ; 11(4): e200268, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38885457

ABSTRACT

BACKGROUND AND OBJECTIVES: AQP4 antibody-positive NMOSD (AQP4-NMOSD), MOG antibody-associated disease (MOGAD), and seronegative NMOSD (SN-NMOSD) are neuroautoimmune conditions that have overlapping clinical manifestations. Yet, important differences exist in these diseases, particularly in B-cell depletion (BCD) efficacy. Yet, the biology driving these differences remains unclear. Our study aims to clarify biological pathways distinguishing these diseases beyond autoantibodies and investigate variable BCD effects through proteomic comparisons. METHODS: In a retrospective study, 1,463 serum proteins were measured in 53 AQP4-NMOSD, 25 MOGAD, 18 SN-NMOSD, and 49 healthy individuals. To identify disease subtype-associated signatures, we examined serum proteins in patients without anti-CD20 B-cell depletion (NoBCD). We then assessed the effect of BCD treatment within each subtype by comparing proteins between BCD-treated and NoBCD-treated patients. RESULTS: In NoBCD-treated patients, serum profiles distinguished the 3 diseases. AQP4-NMOSD showed elevated type I interferon-induced chemokines (CXCL9 and CXCL10) and TFH chemokine (CXCL13). MOGAD exhibited increased cytotoxic T-cell proteases (granzyme B and granzyme H), while SN-NMOSD displayed elevated Wnt inhibitory factor 1, a marker for nerve injury. Across all subtypes, BCD-treated patients showed reduction of B-cell-associated proteins. In AQP4-NMOSD, BCD led to a decrease in several inflammatory pathways, including IL-17 signaling, cytokine storm, and macrophage activation. By contrast, BCD elevated these pathways in patients with MOGAD. BCD had no effect on these pathways in SN-NMOSD. DISCUSSION: Proteomic profiles show unique biological pathways that distinguish AQP4-NMOSD, MOGAD, or SN-NMOSD. Furthermore, BCD uniquely affects inflammatory pathways in each disease type, providing an explanation for the disparate therapeutic response in AQP4-NMOSD and MOGAD.


Subject(s)
B-Lymphocytes , Myelin-Oligodendrocyte Glycoprotein , Neuromyelitis Optica , Proteomics , Humans , Neuromyelitis Optica/blood , Neuromyelitis Optica/immunology , Myelin-Oligodendrocyte Glycoprotein/immunology , Female , Middle Aged , Male , Adult , Retrospective Studies , B-Lymphocytes/immunology , Aquaporin 4/immunology , Autoantibodies/blood , Aged
3.
Neuroimage Clin ; 42: 103609, 2024.
Article in English | MEDLINE | ID: mdl-38718640

ABSTRACT

BACKGROUND: Prior research has established a link between thalamic pathology and cognitive impairment (CI) in people with multiple sclerosis (pwMS). However, the translation of these findings to pwMS in everyday clinical settings has been insufficient. OBJECTIVE: To assess which global and/or thalamic imaging biomarkers can be used to identify pwMS at risk for CI and cognitive worsening (CW) in a real-world setting. METHODS: This was an international, multi-center (11 centers), longitudinal, retrospective, real-word study of people with relapsing-remitting MS (pwRRMS). Brain MRI exams acquired at baseline and follow-up were collected. Cognitive status was evaluated using the Symbol Digit Modalities Test (SDMT). Thalamic volume (TV) measurement was performed on T2-FLAIR, as well as on T1-WI, when available. Thalamic dysconnectivity, T2-lesion volume (T2-LV), and volumes of gray matter (GM), whole brain (WB) and lateral ventricles (LVV) were also assessed. RESULTS: 332 pwMS were followed for an average of 2.8 years. At baseline, T2-LV, LVV, TV and thalamic dysconnectivity on T2-FLAIR (p < 0.016), and WB, GM and TV volumes on T1-WI (p < 0.039) were significantly worse in 90 (27.1 %) CI vs. 242 (62.9 %) non-CI pwRRMS. Greater SDMT decline over the follow-up was associated with lower baseline TV on T2-FLAIR (standardized ß = 0.203, p = 0.002) and greater thalamic dysconnectivity (standardized ß = -0.14, p = 0.028) in a linear regression model. CONCLUSIONS: PwRRMS with thalamic atrophy and worse thalamic dysconnectivity present more frequently with CI and experience greater CW over mid-term follow-up in a real-world setting.


Subject(s)
Atrophy , Cognitive Dysfunction , Magnetic Resonance Imaging , Multiple Sclerosis, Relapsing-Remitting , Thalamus , Humans , Multiple Sclerosis, Relapsing-Remitting/pathology , Multiple Sclerosis, Relapsing-Remitting/diagnostic imaging , Multiple Sclerosis, Relapsing-Remitting/physiopathology , Multiple Sclerosis, Relapsing-Remitting/complications , Female , Male , Adult , Thalamus/pathology , Thalamus/diagnostic imaging , Cognitive Dysfunction/pathology , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/etiology , Cognitive Dysfunction/diagnostic imaging , Atrophy/pathology , Middle Aged , Magnetic Resonance Imaging/methods , Retrospective Studies , Longitudinal Studies
4.
JAMA Neurol ; 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38466277

ABSTRACT

Importance: Biomarkers distinguishing nonrelapsing progressive disease biology from relapsing biology in multiple sclerosis (MS) are lacking. Cerebrospinal fluid (CSF) is an accessible fluid that most closely reflects central nervous system biology. Objective: To identify CSF biological measures associated with progressive MS pathobiology. Design, Setting, and Participants: This cohort study assessed data from 2 prospective MS cohorts: a test cohort provided serial CSF, clinical, and imaging assessments in a multicenter study of patients with relapsing MS (RMS) or primary progressive MS (PPMS) who were initiating anti-CD20 treatment (recruitment: 2016-2018; analysis: 2020-2023). A single-site confirmation cohort was used to assess CSF at baseline and long-term (>10 year) clinical follow-up (analysis: 2022-2023). Exposures: Test-cohort participants initiated standard-of-care ocrelizumab treatment. Confirmation-cohort participants were untreated or received standard-of-care disease-modifying MS therapies. Main Outcomes and Measures: Twenty-five CSF markers, including neurofilament light chain, neurofilament heavy chain, and glial fibrillary acid protein (GFAP); 24-week confirmed disability progression (CDP24); and brain magnetic resonance imaging measures reflecting focal injury, tissue loss, and progressive biology (slowly expanding lesions [SELs]). Results: The test cohort (n = 131) included 100 patients with RMS (mean [SD] age, 36.6 [10.4] years; 68 [68%] female and 32 [32%] male; Expanded Disability Status Scale [EDSS] score, 0-5.5), and 31 patients with PPMS (mean [SD] age, 44.9 [7.4] years; 15 [48%] female and 16 [52%] male; EDSS score, 3.0-6.5). The confirmation cohort (n = 68) included 41 patients with RMS and 27 with PPMS enrolled at diagnosis (age, 40 years [range, 20-61 years]; 47 [69%] female and 21 [31%] male). In the test cohort, GFAP was correlated with SEL count (r = 0.33), greater proportion of T2 lesion volume from SELs (r = 0.24), and lower T1-weighted intensity within SELs (r = -0.33) but not with acute inflammatory measures. Neurofilament heavy chain was correlated with SEL count (r = 0.25) and lower T1-weighted intensity within SELs (r = -0.28). Immune markers correlated with measures of acute inflammation and, unlike GFAP, were impacted by anti-CD20. In the confirmation cohort, higher baseline CSF GFAP levels were associated with long-term CDP24 (hazard ratio, 2.1; 95% CI, 1.3-3.4; P = .002). Conclusions and Relevance: In this study, activated glial markers (in particular GFAP) and neurofilament heavy chain were associated specifically with nonrelapsing progressive disease outcomes (independent of acute inflammatory activity). Elevated CSF GFAP was associated with long-term MS disease progression.

5.
JCI Insight ; 9(13)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38833310

ABSTRACT

Patients with autoimmune diseases are at higher risk for severe infection due to their underlying disease and immunosuppressive treatments. In this real-world observational study of 463 patients with autoimmune diseases, we examined risk factors for poor B and T cell responses to SARS-CoV-2 vaccination. We show a high frequency of inadequate anti-spike IgG responses to vaccination and boosting in the autoimmune population but minimal suppression of T cell responses. Low IgG responses in B cell-depleted patients with multiple sclerosis (MS) were associated with higher CD8 T cell responses. By contrast, patients taking mycophenolate mofetil (MMF) exhibited concordant suppression of B and T cell responses. Treatments with highest risk for low anti-spike IgG response included B cell depletion within the last year, fingolimod, and combination treatment with MMF and belimumab. Our data show that the mRNA-1273 (Moderna) vaccine is the most effective vaccine in the autoimmune population. There was minimal induction of either disease flares or autoantibodies by vaccination and no significant effect of preexisting anti-type I IFN antibodies on either vaccine response or breakthrough infections. The low frequency of breakthrough infections and lack of SARS-CoV-2-related deaths suggest that T cell immunity contributes to protection in autoimmune disease.


Subject(s)
Autoimmune Diseases , COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Humans , COVID-19/immunology , COVID-19/prevention & control , Female , SARS-CoV-2/immunology , Male , Autoimmune Diseases/immunology , Middle Aged , Adult , COVID-19 Vaccines/immunology , Immunosuppressive Agents/therapeutic use , Immunoglobulin G/immunology , Immunoglobulin G/blood , 2019-nCoV Vaccine mRNA-1273/immunology , 2019-nCoV Vaccine mRNA-1273/administration & dosage , Antibodies, Viral/immunology , Antibodies, Viral/blood , Mycophenolic Acid/therapeutic use , Aged , Vaccination , B-Lymphocytes/immunology , Antibodies, Monoclonal, Humanized/therapeutic use , CD8-Positive T-Lymphocytes/immunology , Spike Glycoprotein, Coronavirus/immunology
6.
Science ; 383(6682): eadi5798, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38301010

ABSTRACT

Increasing use of covalent and noncovalent inhibitors of Bruton's tyrosine kinase (BTK) has elucidated a series of acquired drug-resistant BTK mutations in patients with B cell malignancies. Here we identify inhibitor resistance mutations in BTK with distinct enzymatic activities, including some that impair BTK enzymatic activity while imparting novel protein-protein interactions that sustain B cell receptor (BCR) signaling. Furthermore, we describe a clinical-stage BTK and IKZF1/3 degrader, NX-2127, that can bind and proteasomally degrade each mutant BTK proteoform, resulting in potent blockade of BCR signaling. Treatment of chronic lymphocytic leukemia with NX-2127 achieves >80% degradation of BTK in patients and demonstrates proof-of-concept therapeutic benefit. These data reveal an oncogenic scaffold function of mutant BTK that confers resistance across clinically approved BTK inhibitors but is overcome by BTK degradation in patients.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase , Drug Resistance, Neoplasm , Ikaros Transcription Factor , Leukemia, Lymphocytic, Chronic, B-Cell , Protein Kinase Inhibitors , Proteolysis , Humans , Agammaglobulinaemia Tyrosine Kinase/genetics , Agammaglobulinaemia Tyrosine Kinase/metabolism , Ikaros Transcription Factor/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Mutation , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Signal Transduction , Proteolysis/drug effects , Drug Resistance, Neoplasm/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL