ABSTRACT
Dysregulation of MLL complex-mediated histone methylation plays a pivotal role in gene expression associated with diseases, but little is known about cellular factors modulating MLL complex activity. Here, we report that SON, previously known as an RNA splicing factor, controls MLL complex-mediated transcriptional initiation. SON binds to DNA near transcription start sites, interacts with menin, and inhibits MLL complex assembly, resulting in decreased H3K4me3 and transcriptional repression. Importantly, alternatively spliced short isoforms of SON are markedly upregulated in acute myeloid leukemia. The short isoforms compete with full-length SON for chromatin occupancy but lack the menin-binding ability, thereby antagonizing full-length SON function in transcriptional repression while not impairing full-length SON-mediated RNA splicing. Furthermore, overexpression of a short isoform of SON enhances replating potential of hematopoietic progenitors. Our findings define SON as a fine-tuner of the MLL-menin interaction and reveal short SON overexpression as a marker indicating aberrant transcriptional initiation in leukemia.
Subject(s)
DNA-Binding Proteins/genetics , Histone-Lysine N-Methyltransferase/biosynthesis , Leukemia, Myeloid, Acute/genetics , Myeloid-Lymphoid Leukemia Protein/biosynthesis , Proto-Oncogene Proteins/genetics , Transcription, Genetic , Alternative Splicing/genetics , Cell Line, Tumor , Chromatin/genetics , DNA-Binding Proteins/biosynthesis , Gene Expression Regulation, Leukemic , Histone-Lysine N-Methyltransferase/genetics , Humans , Leukemia, Myeloid, Acute/pathology , Methylation , Minor Histocompatibility Antigens , Myeloid-Lymphoid Leukemia Protein/genetics , Protein Binding , Protein Isoforms/genetics , Proto-Oncogene Proteins/metabolismABSTRACT
RATIONALE: Vascular smooth muscle cells (SMCs) exhibit remarkable plasticity and can undergo dedifferentiation upon pathological stimuli associated with disease and interventions. OBJECTIVE: Although epigenetic changes are critical in SMC phenotype switching, a fundamental regulator that governs the epigenetic machineries regulating the fate of SMC phenotype has not been elucidated. METHODS AND RESULTS: Using SMCs, mouse models, and human atherosclerosis specimens, we found that FAK (focal adhesion kinase) activation elicits SMC dedifferentiation by stabilizing DNMT3A (DNA methyltransferase 3A). FAK in SMCs is activated in the cytoplasm upon serum stimulation in vitro or vessel injury and active FAK prevents DNMT3A from nuclear FAK-mediated degradation. However, pharmacological or genetic FAK catalytic inhibition forced FAK nuclear localization, which reduced DNMT3A protein via enhanced ubiquitination and proteasomal degradation. Reduced DNMT3A protein led to DNA hypomethylation in contractile gene promoters, which increased SMC contractile protein expression. RNA-sequencing identified SMC contractile genes as a foremost upregulated group by FAK inhibition from injured femoral artery samples compared with vehicle group. DNMT3A knockdown in injured arteries reduced DNA methylation and enhanced contractile gene expression supports the notion that nuclear FAK-mediated DNMT3A degradation via E3 ligase TRAF6 (TNF [tumor necrosis factor] receptor-associated factor 6) drives differentiation of SMCs. Furthermore, we observed that SMCs of human atherosclerotic lesions exhibited decreased nuclear FAK, which was associated with increased DNMT3A levels and decreased contractile gene expression. CONCLUSIONS: This study reveals that nuclear FAK induced by FAK catalytic inhibition specifically suppresses DNMT3A expression in injured vessels resulting in maintaining SMC differentiation by promoting the contractile gene expression. Thus, FAK inhibitors may provide a new treatment option to block SMC phenotypic switching during vascular remodeling and atherosclerosis.
Subject(s)
Cell Dedifferentiation , Contractile Proteins/genetics , DNA Methylation , Focal Adhesion Kinase 1/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Animals , Cells, Cultured , Contractile Proteins/metabolism , DNA Methyltransferase 3A/genetics , DNA Methyltransferase 3A/metabolism , Focal Adhesion Kinase 1/genetics , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Mice , Mice, Inbred C57BL , Muscle, Smooth, Vascular/cytology , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/physiology , Proteolysis , Ubiquitination , Up-RegulationABSTRACT
RATIONALE: Neointimal hyperplasia is characterized by excessive accumulation of vascular smooth muscle cells (SMCs) leading to occlusive disorders, such as atherosclerosis and stenosis. Blood vessel injury increases growth factor secretion and matrix synthesis, which promotes SMC proliferation and neointimal hyperplasia via FAK (focal adhesion kinase). OBJECTIVE: To understand the mechanism of FAK action in SMC proliferation and neointimal hyperplasia. METHODS AND RESULTS: Using combined pharmacological FAK catalytic inhibition (VS-4718) and SMC-specific FAK kinase-dead (Myh11-Cre-ERT2) mouse models, we report that FAK regulates SMC proliferation and neointimal hyperplasia in part by governing GATA4- (GATA-binding protein 4) cyclin D1 signaling. Inhibition of FAK catalytic activity facilitates FAK nuclear localization, which is required for proteasome-mediated GATA4 degradation in the cytoplasm. Chromatin immunoprecipitation identified GATA4 binding to the mouse cyclin D1 promoter, and loss of GATA4-mediated cyclin D1 transcription diminished SMC proliferation. Stimulation with platelet-derived growth factor or serum activated FAK and redistributed FAK from the nucleus to cytoplasm, leading to concomitant increase in GATA4 protein and cyclin D1 expression. In a femoral artery wire injury model, increased neointimal hyperplasia was observed in parallel with elevated FAK activity, GATA4 and cyclin D1 expression following injury in control mice, but not in VS-4718-treated and SMC-specific FAK kinase-dead mice. Finally, lentiviral shGATA4 knockdown in the wire injury significantly reduced cyclin D1 expression, SMC proliferation, and neointimal hyperplasia compared with control mice. CONCLUSIONS: Nuclear enrichment of FAK by inhibition of FAK catalytic activity during vessel injury blocks SMC proliferation and neointimal hyperplasia through regulation of GATA4-mediated cyclin D1 transcription.
Subject(s)
Cell Proliferation , Cyclin D1/metabolism , Focal Adhesion Kinase 1/metabolism , GATA4 Transcription Factor/metabolism , Myocytes, Smooth Muscle/metabolism , Tunica Intima/metabolism , Active Transport, Cell Nucleus , Animals , Cell Nucleus/metabolism , Cells, Cultured , Cyclin D1/genetics , Focal Adhesion Kinase 1/antagonists & inhibitors , Hyperplasia/metabolism , Mice , Mice, Inbred C57BL , Myocytes, Smooth Muscle/physiology , Tunica Intima/pathologyABSTRACT
This study was conducted to monitor the macrophage infiltration of atopic dermatitis (AD)-like skin lesions and to evaluate the effects of anti-AD therapeutic agents in immunocompetent mice via optical reporter-gene-based molecular imaging. The enhanced firefly luciferase (effluc)-expressing macrophage cell line (Raw264.7/effluc) was intravenously introduced into mice with 2,4-dinitrochlorobenzene (DNCB)-induced AD, followed by bioluminescent imaging (BLI). After in vivo imaging, AD-like skin lesions were excised, and ex vivo imaging and Western blotting were conducted to determine the presence of infused macrophages. Finally, the therapeutic effect of dexamethasone (DEX), an AD-modulating agent, was evaluated via macrophage tracking. In vivo imaging with BLI revealed the migration of the reporter macrophages to DNCB-induced AD-like skin lesions on day 1 post-transfer. The greatest recruitment was observed on day 3, and a decline in BLI signal was observed on day 14. Notably, in vivo BLI clearly showed the inhibition of the reporter macrophage infiltration of DNCB-induced AD-like skin lesions by DEX, which was consistent with the reduced AD symptoms observed in DEX-treated mice. We successfully visualized the macrophage migration to DNCB-induced AD-like skin lesions, proving the feasibility of macrophage imaging for evaluating AD-regulating drugs in living organisms.
Subject(s)
Dermatitis, Atopic/metabolism , Dexamethasone/administration & dosage , Dinitrochlorobenzene/adverse effects , Luciferases, Firefly/genetics , Macrophages/transplantation , Administration, Intravenous , Animals , Cell Line , Dermatitis, Atopic/chemically induced , Dexamethasone/pharmacology , Disease Models, Animal , Female , Genes, Reporter , Luciferases, Firefly/metabolism , Macrophages/drug effects , Macrophages/metabolism , Mice , Mice, Inbred BALB C , Molecular Imaging , Optical Imaging , RAW 264.7 Cells , Treatment OutcomeABSTRACT
We investigate Huygens' optical vector wave field synthesis scheme for electric dipole metasurfaces with the capability of modulating in-plane polarization and complex amplitude and discuss the practical issues involved in realizing multi-modulation metasurfaces. The proposed Huygens' vector wave field synthesis scheme identifies the vector Airy disk as a synthetic unit element and creates a designed vector optical field by integrating polarization-controlled and complex-modulated Airy disks. The metasurface structure for the proposed vector field synthesis is analyzed in terms of the signal-to-noise ratio of the synthesized field distribution. The design of practical metasurface structures with true vector modulation capability is possible through the analysis of the light field modulation characteristics of various complex modulated geometric phase metasurfaces. It is shown that the regularization of meta-atoms is a key factor that needs to be considered in field synthesis, given that it is essential for a wide range of optical field synthetic applications, including holographic displays, microscopy, and optical lithography.
ABSTRACT
Huygens' principle states that point sources are the basis of optical wave field generation, and an array of point sources with complex amplitudes that are separated by subwavelength distances can generate a desired optical field distribution. In field synthesis based on the Huygens' principle, the construction of ideal point sources has been overlooked when compared to other elements in optical field synthesis engineering, such as complex modulation. However, the construction of ideal point sources should be considered an important goal because the use of non-ideal point sources generates considerable optical noise in the background of the synthesized field distribution. In this Letter, we investigate Huygens' plasmonic wave field synthesis and its regularization by analyzing the noise features that arise during wave field synthesis based on non-ideal point sources and proposing a novel structure for regularized point source construction. It is shown that the quality of plasmonic wave field synthesis based on the Huygens' principle is greatly improved with the proposed design of a structure that generates a unit point source. Practical field synthesis examples involving plasmonic focusing and Airy beams are presented in support of the proposed design.
ABSTRACT
Electromagnetic metamaterials (MMs) and metasurfaces (MSs) are artificial media and surfaces with subwavelength separations of meta-atoms designed for anomalous manipulations of light properties. Owing to large scattering cross-sections of metallic/dielectric meta-atoms, it is possible to not only localize strong electromagnetic fields in deep subwavelength volume but also decompose and analyze incident light signal with ultracompact setup using MMs and MSs. Hence, by probing resonant spectral responses from extremely boosted interactions between analyte layer and optical MMs or MSs, sensing the variation of refractive index has been a popular and practical application in the field of photonics. Moreover, decomposing and analyzing incident light signal can be easily achieved with anisotropic MSs, which can scatter light to different directions according to its polarization or wavelength. In this paper, we present recent advances and potential applications of optical MMs and MSs for refractive index sensing and sensing light properties, which can be easily integrated with various electronic devices. The characteristics and performances of devices are summarized and compared qualitatively with suggestions of design guidelines.
ABSTRACT
A cavity-aperture has a problem of low transmission efficiency due to its nano-sized aperture despite its potential for plasmonic color filters. In this study, a triple-slit aperture is proposed as the nanoaperture in the center of the cavity-aperture to improve the transmittance. It provides one centered nanoslit and two symmetric wedge structures to each of three cavities corresponding to incident polarization, and induces the strong confinement and transmission of electric fields due to plasmonic resonances at the two types of nanostructures. The transmittance of the triple-slit aperture is theoretically five times and experimentally two times higher than that of a circular aperture. Furthermore, expansive studies on polarization-insensitive nanoapertures with six-fold rotational symmetry will contribute to the development of plasmonic color filters and imaging devices.
ABSTRACT
Peroxisome proliferator-activated receptor gamma (PPARγ) has recently been recognized to regulate adaptive immunity through Th17 differentiation, Treg functions, and TFH responses. However, its role in adaptive immunity and autoimmune disease is still not clear, possibly due to sexual differences. Here, we investigated in vitro treatment study with the PPARγ agonist pioglitazone to compare Th1, Th2, and Th17 differentiation in male and female mouse splenic T cells. Pioglitazone treatment significantly inhibited various effector T cell differentiations including Th1, Th2, and Th17 cells from female naïve T cells, but it selectively reduced IL-17 production in male Th17 differentiation. Interestingly, pioglitazone and estradiol (E2) co-treatment of T cells in males inhibited differentiation of Th1, Th2, and Th17 cells, suggesting a mechanism for the greater sensitivity of PPARγ to ligand treatment in the regulation of effector T cell differentiation in females. Collectively, these results demonstrate that PPARγ selectively inhibits Th17 differentiation only in male T cells and modulates Th1, Th2, and Th17 differentiation in female T cells based on different level of estrogen exposure. Accordingly, PPARγ could be an important immune regulator of sexual differences in adaptive immunity.
Subject(s)
PPAR gamma/metabolism , Animals , Cell Differentiation/drug effects , Cells, Cultured , Estrogens/pharmacology , Female , Male , Mice , Mice, Inbred C57BL , PPAR gamma/agonists , Pioglitazone , Sex Factors , Th1 Cells/cytology , Th1 Cells/drug effects , Th1 Cells/metabolism , Th17 Cells/cytology , Th17 Cells/drug effects , Th17 Cells/metabolism , Th2 Cells/cytology , Th2 Cells/drug effects , Th2 Cells/metabolism , Thiazolidinediones/pharmacologyABSTRACT
A compact transmissive plasmonic waveguide mode converter which aims for the elimination of reflection and transmission of unconverted mode is proposed. The proposed scheme exploits a cavity formed by mode selective mirrors, which only allows two output modes: the transmission of the target mode and the reflection of the input mode. By appropriately tuning cavity lengths, the reflection of the input mode can also be suppressed to near zero by destructive interference, thereby all the residual outgoing modes are suppressed. The proposed device might be useful in the design of integrated photonic system since it relaxes the problem of unwanted reflection.
ABSTRACT
We propose a design of ultra-compact plasmonic coherent perfect absorber (CPA) working in the near-infrared band. The main operating mechanism is the magnetic-dipole resonant coherent absorption in the metal-insulator-metal waveguide, which enables the CPA in the near-infrared band and can be also flexibly adjusted to place the magnetic-dipole resonance at any position in the near-infrared band. Numerical analysis verifies our proposal that the magnetic resonant CPA is crucial for near-IR CPA in the ultra-compact metal-insulator-metal waveguide.
ABSTRACT
A scheme for the excitation of slow surface plasmon pulses using photonic interband transition in a metal-insulator-metal (MIM) waveguide is proposed. An investigation the mode transition behavior inside the binary grating confirmed that the proposed concept can be understood in terms of the coupling of symmetric and anti-symmetric plasmonic modes. We observed that, although a binary grating that is optimized for a single frequency can excite slow surface plasmon pulses, it is inadequate for broadband mode conversion. To rectify this, a chirped grating was designed for the demonstration of broadband mode conversion by applying a cascade mode transition with different frequencies.
ABSTRACT
Concomitant administration of lobeglitazone, empagliflozin, and metformin is expected to enhance blood glucose-lowering effects and improve medication compliance in patients with diabetes mellitus. In this study, we investigated the pharmacokinetic (PK) interactions and safety of lobeglitazone and co-administered empagliflozin and metformin, which are approved agents used in clinical settings. Two randomized, open-label, multiple-dose, 2-treatment, 2-period, 2-sequence crossover clinical trials (parts 1 and 2) were conducted independently. In part 1, lobeglitazone monotherapy or lobeglitazone, empagliflozin, and metformin triple therapy was administered for 5 days. In part 2, empagliflozin and metformin dual therapy or the abovementioned triple therapy were administered for 5 days. Serial blood samples were collected up to 24 hours after the last dose in each period for PK evaluation. The primary PK parameters (AUCtau,ss, Cmax,ss) of treatment regimens in each study part were calculated and compared. For lobeglitazone, the geometric mean ratios (GMRs) with 90% confidence intervals (CI) for triple therapy over monotherapy were 1.08 (1.03-1.14) for Cmax,ss and 0.98 (0.90-1.07) for AUCtau,ss. For empagliflozin, the GMRs and 90% CIs for triple therapy over dual therapy were 0.87 (0.78-0.97) for Cmax,ss and 0.97 (0.93-1.00) for AUCtau,ss. For metformin, the GMRs and 90% CIs for triple therapy over dual therapy were 1.06 (0.95-1.17) for Cmax,ss and 1.04 (0.97-1.12) for AUCtau,ss. All reported adverse events were mild. The triple therapy consisting of lobeglitazone, empagliflozin, and metformin did not show any clinically relevant drug interactions in relation to the PKs and safety of each drug substance. Trial Registration: ClinicalTrials.gov Identifier: NCT04334213.
ABSTRACT
Aim of the Study. Citrus species is used in traditional medicine as medicinal herb in several Asian countries including Korea. Flavonioids became known as various properties, such as anti-oxidants, anti-inflammation and anti-cancer, and so forth. The present study, the anti-cancer effect of flavonioids isolated from Citrus aurantium L. in human gastric cancer AGS cells has been investigated. Materials and Methods. The anti-proliferative activity was assayed using MTT assay. Cell cycle analysis was done using flow cytometry and apoptosis detection was done using by hoechst fluorescent staining and Annexin V-propidium iodide double staining. Western blot was used to detect the expression of protein related with cell cycle and apoptosis. Results. Flavonoids isolated from Citrus aurantium L. have the effect of anti proliferation on AGS cells with IC50 value of 99 µg/mL. Flavonoids inhibited cell cycle progression in the G2/M phase and decrease expression level of cyclin B1, cdc 2, cdc 25c. Flavonoids induced apoptosis through activate caspase and inactivate PARP. Conclusions. Flavonoids isolated from Citrus aurantium L. induced G2/M phase arrest through the modulation of cell cycle related proteins and apoptosis through activation caspase. These finding suggest flavonoids isolated from Citrus aurantium L. were useful agent for the chemoprevention of gastric cancer.
ABSTRACT
Lonicera japonica THUNB., which abundantly contains polyphenols, has been used as a traditional medicine for thousands of years in East Asian countries because of the anti-inflammation properties. This study aimed to investigate the anti-inflammatory mechanism of polyphenol components isolated from Korea L. japonica T. by nuclear factor-kappaB (NF-κB) and mitogen-activated protein kinases (MAPKs) pathway. Polyphenols significantly decreased lipopolysaccharide- (LPS-) induced mRNA and protein expression of inducible nitric oxide synthase and cyclooxygenase-2, as well as mRNA expression of tumor necrosis factor-alpha, interleukin- (IL-) 1ß, and IL-6. Moreover, polyphenols inhibited nuclear translocation of NF-κB p65, phosphorylation/degradation of the inhibitor of κB, and phosphorylation of p38 MAPK, whereas the extracellular signal-regulated kinase and Janus N-terminal kinase were not affected. These results indicate that polyphenol components isolated from Korea L. japonica T. should have anti-inflammatory effect on LPS-stimulated RAW 264.7 cells through the decrease of proinflammatory mediators expression by suppressing NF-κB and p38 MAPK activity.
ABSTRACT
Citrus fruits (Citrus aurantium L.) have long been used as a traditional herbal medicine. The benefits of the flavonoids found in Citrus aurantium L. include anti-inflammation, anti-cancer, anti-viral and anti-bacterial activities, and enhancement of the immune response. The study investigated the effect of the flavonoids isolated from Citrus aurantium L. native to Korea on the production of pro-inflammatory mediators by blocking signal transduction mediated by nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) in lipopolysaccharide (LPS)-induced L6 skeletal muscle cells. The flavonoids decreased the production of inducible nitric oxide synthase, cyclooxygenase-2, interleukin-6 and tumor necrosis factor-alpha by suppressing NF-κB and MAPKs signal pathways in LPS-induced L6 skeletal muscle cells. These findings suggest that the flavonoids isolated from Korea Citrus aurantium L. might have anti-inflammatory effects that regulate the expression of inflammatory mediators in L6 skeletal muscle cells.
Subject(s)
Citrus/chemistry , Flavonoids/pharmacology , Inflammation Mediators/metabolism , Muscle Cells/drug effects , Anti-Inflammatory Agents/pharmacology , Cell Line , Cyclooxygenase 2/metabolism , Humans , Interleukin-6/metabolism , Mitogen-Activated Protein Kinases/metabolism , Muscle Cells/metabolism , NF-kappa B/metabolism , Nitric Oxide Synthase Type II/metabolism , Tumor Necrosis Factor-alpha/metabolismABSTRACT
Citrus fruits have been used as an edible fruit and a traditional medicine since ancient times. In particular, the peels of immature citrus fruits are used widely in traditional herbal medicine in Korea, as they are believed to contain bioactive components exerting anti-inflammatory activity. This study examined whether the crude methanol extract of Citrus aurantium L. (CME) has a suppressive effect on inducible enzymes and proinflammatory cytokines by inhibiting the NF-κB pathway in LPS-stimulated macrophage RAW 264.7 cells. The cells were pretreated with the indicated concentrations of CME (5, 10, 20, and 50 µg/mL) and then treated with LPS (1 µg/mL). The results showed that CME (10, 20, and 50 µg/mL) inhibited the LPS- (1 µg/mL) induced mRNA and protein expression of iNOS in macrophage Raw 264.7 cells. In addition, the expression of COX-2 was inhibited at the mRNA and protein levels by CME in a dose-dependent manner. The mRNA expression of proinflammatory cytokines, such as TNF-α and IL-6, were markedly reduced by CME (10, 20, and 50 µg/mL). Moreover, CME clearly suppressed the nuclear translocation of the NF-κB p65 subunits, which was correlated with its inhibitory effect on I-κB phosphorylation. These results suggest that CME has anti-inflammatory properties by modulating the expression of COX-2, iNOS, and proinflammatory cytokines, such as TNF-α and IL-6, in macrophage RAW 264.7 cells via the NF-κB pathway.
ABSTRACT
YH4808 is a novel potassium-competitive acid blocker developed for gastric acid-related disorders. Previous studies indicate its potential to improve symptoms of gastric acid-related disorders. The current study was aimed to find the optimal regimen of YH4808 for night time pH control. This study was performed in two parts. Each was a randomized, open-label, active-controlled, multiple-doses, two-treatment, two-period crossover study conducted in 20 healthy Korean volunteers. Subjects were randomly assigned to one of the four groups. The three groups received different dosage regimens of YH4808 (100 mg twice a day, 200 mg once a day, or 200 mg twice a day), and the fourth group received esomeprazole 40 mg twice a day. The pharmacokinetic parameters demonstrated that the systemic exposure of YH4808 increased in a dose-proportional manner. The difference in the proportion of time above pH 4 over 24 h from the baseline was the greatest in the group receiving YH4808 200 mg twice a day. The values of the area under the effect curve at night time (12 A.M.-7 A.M.) were higher in all YH4808 groups than in the esomeprazole group. However, the differences among the YH4808 groups were not statistically significant (p > 0.05). YH4808 exhibited potential for better pH control during the night in comparison to esomeprazole. The optimal regimen for night time pH control among all the YH4808 regimens was 200 mg twice a day. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT01761513.
ABSTRACT
BACKGROUND: Despite significant technological advances in the implantable pulse generator (IPG), complications can still occur. We report a case that unexpected extrusion of the IPG of spinal cord stimulation (SCS) was promptly identified and successfully removed without any complications. CASE: After a car accident 4 years ago, a 55-year-old male who was diagnosed with complex local pain syndrome in his right leg. The SCS was inserted with 2 leads, with the IPG being implanted in the right lower abdomen region. Four years later, he developed extrusion of the IPG from his abdominal region. This unexpected extrusion may have been related to pressure necrosis caused by continued compression of pocket site where a belt was frequently tied. The IPG and the leads were successfully removed without infection occurring. CONCLUSIONS: To prevent unexpected extrusion of IPG, it is necessary to consider in advance whether the pocket site is pressed against the belt.
ABSTRACT
Although esophagectomy is a standard treatment for esophageal cancer, anastomotic leak after esophagectomy is a relatively common complication and its incidence is 10-25% for cervical anastomosis. Endoscopic vacuum therapy (EVT) is a feasible primary treatment of esophageal perforations and leaks. Currently, there are no anesthesia guidelines for EVT, however, it is usually performed under general anesthesia with endotracheal intubation, especially for cervical EVT. Here, we report a successful EVT under monitored anesthesia care (MAC) without any complication, which doesn't need to intubate the patient. A 64-year-old male with upper esophageal cancer underwent an Ivor-Lewis operation with cervical anastomosis. Vacuum assisted closure (VAC) was performed for cervical leak under general anesthesia, but there was no further improvement. Although EVT was attempted under sedation with midazolam in an endoscopy room, the procedure was discontinued because of desaturation. Furthermore, the thoracic surgeon was concerned about the possibility of dyspnea and hypoxia even after the procedure. EVT was scheduled under MAC at the request of a thoracic surgeon and medical doctor, as EVT was expected to lead to patient discomfort and difficult airway. EVT was performed successfully with no respiratory depression or patient movement using target controlled infusion with 2% propofol and remifentanil. The patient was discharged on the 78th POD without any other complications. EVT for cervical leak after esophagectomy can be successfully performed with MAC, and understanding the general condition of the patient, cooperation with the patient and the surgeon, and providing continuous oxygen supply to the patient are necessary for a successful procedure under MAC.