Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 207
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nucleic Acids Res ; 52(11): 6459-6471, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38726868

ABSTRACT

CRISPR-Cas systems serve as adaptive immune systems in bacteria and archaea, protecting against phages and other mobile genetic elements. However, phages and archaeal viruses have developed countermeasures, employing anti-CRISPR (Acr) proteins to counteract CRISPR-Cas systems. Despite the revolutionary impact of CRISPR-Cas systems on genome editing, concerns persist regarding potential off-target effects. Therefore, understanding the structural and molecular intricacies of diverse Acrs is crucial for elucidating the fundamental mechanisms governing CRISPR-Cas regulation. In this study, we present the structure of AcrIIA28 from Streptococcus phage Javan 128 and analyze its structural and functional features to comprehend the mechanisms involved in its inhibition of Cas9. Our current study reveals that AcrIIA28 is a metalloprotein that contains Zn2+ and abolishes the cleavage activity of Cas9 only from Streptococcus pyrogen (SpyCas9) by directly interacting with the REC3 domain of SpyCas9. Furthermore, we demonstrate that the AcrIIA28 interaction prevents the target DNA from being loaded onto Cas9. These findings indicate the molecular mechanisms underlying AcrIIA28-mediated Cas9 inhibition and provide valuable insights into the ongoing evolutionary battle between bacteria and phages.


Subject(s)
CRISPR-Associated Protein 9 , CRISPR-Cas Systems , Streptococcus Phages , Streptococcus , CRISPR-Associated Protein 9/metabolism , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/chemistry , DNA/metabolism , DNA/genetics , Gene Editing , Metalloproteins/metabolism , Metalloproteins/genetics , Metalloproteins/chemistry , Models, Molecular , Protein Binding , Protein Domains , Streptococcus/genetics , Streptococcus/virology , Streptococcus Phages/genetics , Streptococcus Phages/metabolism , Viral Proteins/metabolism , Viral Proteins/genetics , Viral Proteins/chemistry , Zinc/metabolism
2.
Biochem Biophys Res Commun ; 717: 150040, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38718566

ABSTRACT

Mtb12, a small protein secreted by Mycobacterium tuberculosis, is known to elicit immune responses in individuals infected with the pathogen. It serves as an antigen recognized by the host's immune system. Due to its immunogenic properties and pivotal role in tuberculosis (TB) pathogenesis, Mtb12 is considered a promising candidate for TB diagnosis and vaccine development. However, the structural and functional properties of Mtb12 are largely unexplored, representing a significant gap in our understanding of M. tuberculosis biology. In this study, we present the first structure of Mtb12, which features a unique tertiary configuration consisting of four beta strands and four alpha helices. Structural analysis reveals that Mtb12 has a surface adorned with a negatively charged pocket adjacent to a central cavity. The features of these structural elements and their potential effects on the function of Mtb12 warrant further exploration. These findings offer valuable insights for vaccine design and the development of diagnostic tools.


Subject(s)
Antigens, Bacterial , Bacterial Proteins , Mycobacterium tuberculosis , Mycobacterium tuberculosis/immunology , Mycobacterium tuberculosis/metabolism , Antigens, Bacterial/chemistry , Antigens, Bacterial/immunology , Bacterial Proteins/chemistry , Bacterial Proteins/immunology , Bacterial Proteins/metabolism , Models, Molecular , Molecular Weight , Amino Acid Sequence , Protein Conformation , Humans
3.
Biochem Biophys Res Commun ; 729: 150368, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38986258

ABSTRACT

Penicillin-binding protein 2 (PBP2), a vital protein involved in bacterial cell-wall synthesis, serves a target for ß-lactam antibiotics. Acinetobacter baumannii is a pathogen notorious for multidrug resistance; therefore, exploration of PBPs is pivotal in the development of new antimicrobial strategies. In this study, the tertiary structure of PBP2 from A. baumannii (abPBP2) was elucidated using X-ray crystallography. The structural analysis demonstrated notable movement in the head domain, potentially critical for its glycosyltransferase function, suggesting that abPBP2 assumes a fully closed conformation. Our findings offer valuable information for developing novel antimicrobial agents targeting abPBP2 that are applicable in combating multidrug-resistant infections.

4.
Biochem Biophys Res Commun ; 727: 150318, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38945066

ABSTRACT

MltG, positioned within the inner membrane of bacteria, functions as a lytic transglycosylase (LT) essential for integrating into the cell wall by cleaving the newly synthesized glycan strand, emphasizing its critical involvement in bacterial cell wall biosynthesis and remodeling. Current study reported the first structure of MltG family of LT. We have elucidated the structure of MltG from Acinetobacter baumannii (abMltG), a formidable superbug renowned for its remarkable antibiotic resistance. Our structural and biochemical investigations unveiled the presence of a flexible peptidoglycan (PG)-binding domain (PGD) within MltG family, which exists as a monomer in solution. Furthermore, we delineated the putative active site of abMltG via a combination of structural analysis and sequence comparison. This discovery enhances our comprehension of the transglycosylation process mediated by the MltG family, offering insights that could inform the development of novel antibiotics tailored to combat A. baumannii.


Subject(s)
Acinetobacter baumannii , Bacterial Proteins , Catalytic Domain , Models, Molecular , Acinetobacter baumannii/metabolism , Crystallography, X-Ray , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Peptidoglycan/metabolism , Peptidoglycan/chemistry , Amino Acid Sequence , Protein Domains , Glycosyltransferases/metabolism , Glycosyltransferases/chemistry
5.
Biochem Biophys Res Commun ; 722: 150164, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38797150

ABSTRACT

As a response to viral infections, bacteria have evolved the CRISPR-Cas system as an adaptive immune mechanism, enabling them to target and eliminate viral genetic material introduced during infection. However, viruses have also evolved mechanisms to counteract this bacterial defense, including anti-CRISPR proteins, which can inactivate the CRISPR-Cas adaptive immune system, thus aiding the viruses in their survival and replication within bacterial hosts. In this study, we establish the high-resolution crystal structure of the Type IE anti-CRISPR protein, AcrIE3. Our structural examination showed that AcrIE3 adopts a helical bundle fold comprising four α-helices, with a notably extended loop at the N-terminus. Additionally, surface analysis of AcrIE3 revealed the presence of three acidic regions, which potentially play a crucial role in the inhibitory function of this protein. The structural information we have elucidated for AcrIE3 will provide crucial insights into fully understanding its inhibitory mechanism. Furthermore, this information is anticipated to be important for the application of the AcrIE family in genetic editing, paving the way for advancements in gene editing technologies.


Subject(s)
CRISPR-Associated Proteins , CRISPR-Cas Systems , Models, Molecular , Amino Acid Sequence , CRISPR-Associated Proteins/chemistry , CRISPR-Associated Proteins/metabolism , CRISPR-Associated Proteins/genetics , Crystallography, X-Ray , Protein Conformation
6.
Nucleic Acids Res ; 50(15): 8919-8928, 2022 08 26.
Article in English | MEDLINE | ID: mdl-35920325

ABSTRACT

CRISPR-Cas systems are bacterial defense systems for fighting against invaders such as bacteriophages and mobile genetic elements. To escape destruction by these bacterial immune systems, phages have co-evolved multiple anti-CRISPR (Acr) proteins, which inhibit CRISPR-Cas function. Many acr genes form an operon with genes encoding transcriptional regulators, called anti-CRISPR-associated (Aca) proteins. Aca10 is the most recently discovered Aca family that is encoded within an operon containing acrIC7 and acrIC6 in Pseudomonas citronellolis. Here, we report the high-resolution crystal structure of an Aca10 protein to unveil the molecular basis of transcriptional repressor role of Aca10 in the acrIC7-acrIC6-aca10 operon. We identified that Aca10 forms a dimer in solution, which is critical for binding specific DNA. We also showed that Aca10 directly recognizes a 21 bp palindromic sequence in the promoter of the acr operon. Finally, we revealed that R44 of Aca10 is a critical residue involved in the DNA binding, which likely results in a high degree of DNA bending.


Subject(s)
Bacteriophages , CRISPR-Associated Proteins , Bacteria/genetics , Bacteriophages/genetics , CRISPR-Associated Proteins/genetics , CRISPR-Cas Systems/genetics , Operon/genetics , Transcription Factors/genetics
7.
Nucleic Acids Res ; 50(19): 11344-11358, 2022 10 28.
Article in English | MEDLINE | ID: mdl-36243977

ABSTRACT

CRISPR-Cas systems are adaptive immune systems in bacteria and archaea that provide resistance against phages and other mobile genetic elements. To fight against CRISPR-Cas systems, phages and archaeal viruses encode anti-CRISPR (Acr) proteins that inhibit CRISPR-Cas systems. The expression of acr genes is controlled by anti-CRISPR-associated (Aca) proteins encoded within acr-aca operons. AcrIF24 is a recently identified Acr that inhibits the type I-F CRISPR-Cas system. Interestingly, AcrIF24 was predicted to be a dual-function Acr and Aca. Here, we elucidated the crystal structure of AcrIF24 from Pseudomonas aeruginosa and identified its operator sequence within the regulated acr-aca operon promoter. The structure of AcrIF24 has a novel domain composition, with wing, head and body domains. The body domain is responsible for recognition of promoter DNA for Aca regulatory activity. We also revealed that AcrIF24 directly bound to type I-F Cascade, specifically to Cas7 via its head domain as part of its Acr mechanism. Our results provide new molecular insights into the mechanism of a dual functional Acr-Aca protein.


Subject(s)
Bacteriophages , CRISPR-Associated Proteins , CRISPR-Cas Systems , CRISPR-Associated Proteins/genetics , CRISPR-Associated Proteins/metabolism , Bacteriophages/genetics , Pseudomonas aeruginosa/metabolism , Operon/genetics
8.
Biochem Biophys Res Commun ; 645: 147-153, 2023 02 19.
Article in English | MEDLINE | ID: mdl-36689811

ABSTRACT

PIDDosome formation followed by caspase-2 activation is critical for genotoxic stress-induced apoptotic cell death. Failure of proper caspase-2 activation causes a neurodevelopmental disorder and intellectual disability. R815W, R862W, and Q863stop mutations in p53-induced protein with a death domain (PIDD), a component of the PIDDosome, also lead to this disorder. However, the molecular mechanisms underlying this pathogenesis remain elusive. In this study, we analyzed the molecular mechanisms underlying the pathogenesis of the PIDD DD pathogenic variants R815W, R862W, and Q863stop. We determined that these mutations prevented the interaction between PIDD and RIP-associated Ich-1/Ced-3 homologous protein with a death domain (RAIDD), a molecule that mediates PIDDosome formation. The disruption of this interaction affects PIDDosome formation and caspase-2 activation.


Subject(s)
Death Domain Receptor Signaling Adaptor Proteins , Neurodevelopmental Disorders , Humans , Apoptosis/genetics , Caspase 2/genetics , Caspase 2/metabolism , CRADD Signaling Adaptor Protein/genetics , CRADD Signaling Adaptor Protein/metabolism , Death Domain Receptor Signaling Adaptor Proteins/genetics , Death Domain Receptor Signaling Adaptor Proteins/metabolism , Neurodevelopmental Disorders/genetics
9.
Biochem Biophys Res Commun ; 664: 27-34, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37130458

ABSTRACT

Bacterial sugar kinase is a central enzyme for proper sugar degradation in bacteria, essential for survival and growth. Therefore, this enzyme family is a primary target for antibacterial drug development, with YdjH most preferring to phosphorylate higher-order monosaccharides with a carboxylate terminus. Sugar kinases express diverse specificity and functions, making specificity determination of this family a prominent issue. This study examines the YdjH crystal structure from Acinetobacter baumannii (abYdjH), which has an exceptionally high antibiotic resistance and is considered a superbug. Our structural and biochemical study revealed that abYdjH has a widely open lid domain and is a solution dimer. In addition, the putative active site of abYdjH was determined based on structural analysis, sequence comparison, and in silico docking. Finally, we proposed the active site-forming residues that determine various sugar specificities from abYdjH. This study contributes towards a deeper understanding of the phosphorylation process and bacterial sugar metabolism of YdjH family to design the next-generation antibiotics for targeting A. baumannii.


Subject(s)
Acinetobacter baumannii , Sugars , Catalytic Domain , Sugars/metabolism , Acinetobacter baumannii/metabolism , Bacterial Proteins/metabolism , Phosphotransferases/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism
10.
Biochem Biophys Res Commun ; 688: 149175, 2023 12 25.
Article in English | MEDLINE | ID: mdl-37976815

ABSTRACT

Protein quality control mechanisms are essential for maintaining cellular integrity, and the HtrA family of serine proteases plays a crucial role in handling folding stress in prokaryotic periplasm. Escherichia coli harbors three HtrA members, namely, DegS, DegP, and DegQ, which share a common domain structure. MucD, a putative HtrA family member that resembles DegP, is involved in alginate biosynthesis regulation and the stress response. Pseudomonas syringae causes plant diseases and opportunistic infections in humans. This study presents the high-resolution structure of MucD from Pseudomonas syringae (psMucD), revealing its composition as a typical HtrA family serine protease with protease and PDZ domains. Its findings suggest that psMucD containing one PDZ domain is a trimer in solution, and psMucD trimerization is mediated by its N-terminal loop. Sequence and structural analyses revealed similarities and differences with other HtrA family members. Additionally, this study provides a model of psMucD's catalytic process, comparing it with other members of the HtrA family of serine proteases.


Subject(s)
Escherichia coli Proteins , Periplasmic Proteins , Humans , Serine Proteases , Pseudomonas syringae/metabolism , Serine Endopeptidases/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Periplasmic Proteins/chemistry , Bacterial Proteins/metabolism
11.
Fish Shellfish Immunol ; 132: 108462, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36455779

ABSTRACT

Due to an increasing interest in immunity and signal transduction in teleost fish, important key signaling molecules associated with the immune response, including TRAF molecules, have been recently cloned and characterized. To better understand the role of TRAF4 in fish immune signaling and compare it with the human system, our study cloned the TRAF4 gene from the Antarctic yellowbelly rockcod Notothenia coriiceps (ncTRAF4) and purified the protein. Here, we report the first crystal structure of teleost fish TRAF4. Based on biochemical characterization, our findings elucidated the mechanisms through which signaling molecules gain cold adaptivity. Additionally, we identified a platelet receptor GPIbß homolog in N. coriiceps (ncGPIbß) and found that the "RRFERLFKEARRTS" region of this homolog directly binds to ncTRAF4, indicating that ncTRAF4 also recognizes the "RLXA" motif for receptor interactions and further TARF4-mediated cellular signaling. Collectively, our findings provide novel insights into the mechanisms of TRAF4-mediated immune cell and platelet signaling in fish and the structural flexibility-mediated cold adaptiveness of signaling molecules.


Subject(s)
Signal Transduction , TNF Receptor-Associated Factor 4 , Animals , Blood Platelets , Fishes/genetics , Fishes/metabolism , Protein Binding , Proteins/metabolism , TNF Receptor-Associated Factor 4/genetics , TNF Receptor-Associated Factor 4/chemistry , Humans
12.
Biochem Biophys Res Commun ; 608: 1-7, 2022 06 11.
Article in English | MEDLINE | ID: mdl-35378360

ABSTRACT

Thioredoxin (Trx) is a central component of the redox control system that maintains the redox homeostasis critical for organism survival. Owing to its central role in survival, Trx is a prospective target for novel antimicrobial agents. Herein, we report a 1.45 Å high-resolution structure of Trx1 of Acinetobacter baumannii (abTrx1), an antibiotic-resistant pathogenic superbug. Although abTrx1 exhibited the canonical Trx fold, which consists of a four-stranded ß-sheet surrounded by four α-helices, structural differences were detected in the loop forming the C-X-X-C redox center and the C-terminal. The unique CAPC sequence of the C-X-X-C motif in the abTrx1 redox center was characterized by mutagenesis. This study contributes to the field of drug designing against superbugs.


Subject(s)
Acinetobacter baumannii , Acinetobacter baumannii/metabolism , Amino Acid Sequence , Oxidation-Reduction , Prospective Studies , Thioredoxins/metabolism
13.
Biochem Biophys Res Commun ; 625: 102-108, 2022 10 15.
Article in English | MEDLINE | ID: mdl-35952606

ABSTRACT

As a result of the long-term battle of bacteria and archaea against invaders such as viruses and genetic mobile elements, they have developed CRISPR-Cas systems for self-defense, which allows them to remove the viral genetic material introduced into host cells via infection. To fight against this bacterial immune system, however, viruses have also evolved to produce multiple anti-CRISPR proteins that can inhibit the bacterial CRISPR-Cas system. In this study, we introduced a tentative inhibitory activity against a type I-C CRISPR-Cas system by determining the crystal structure of AcrIC5 from Pseudomonas delhiensis. Structural analysis revealed that AcrIC5 was composed of noble folds comprising two antiparallel sheets and three helices. Although AcrIC5 did not directly interact with either the type I-C cascade from Neisseria lactamia or the type I-F cascade from Pseudomonas aeruginosa in our analysis, a highly acidic surface feature indicated that AcrIC5 may be DNA mimic Acrs that directly binds to the target DNA binding site in type I-C cascade and inhibits the recruitment of the target DNA to this cascade.


Subject(s)
CRISPR-Associated Proteins , CRISPR-Cas Systems , Archaea , Bacteria/genetics , CRISPR-Associated Proteins/chemistry , Pseudomonas aeruginosa/metabolism
14.
Biochem Biophys Res Commun ; 629: 159-164, 2022 11 12.
Article in English | MEDLINE | ID: mdl-36122453

ABSTRACT

S-Formylglutathione hydrolase was originally known to catalyze the hydrolysis of S-formylglutathione to formate and glutathione. However, this enzyme has a broader esterase activity toward substrates containing thioester and ester bonds. In a previous study, we identified a new S-formylglutathione hydrolase (VaSFGH) gene in the Antarctic bacterium Variovorax sp. PAMC 28711, and recombinant VaSFGH protein was purified and characterized. Previous enzyme activity assays showed that VaSFGH has high activity, especially toward short-chain p-nitrophenyl esters (C2-C4). In this study, we determined the crystal structure of substrate-free VaSFGH at a resolution of 2.38 Å. In addition, p-nitrophenyl ester-bound VaSFGH structure models were generated by molecular docking simulations to obtain structural evidence of its substrate specificity. Comparative structural analysis of the apo-form and p-nitrophenyl ester-bound VaSFGH model structures revealed that large substrates could not bind inside the hydrophobic substrate-binding pocket because of the intrinsically static and relatively small substrate-binding pocket size of VaSFGH. This study provides useful information for further protein engineering of SFGHs for industrial use.


Subject(s)
Formates , Thiolester Hydrolases , Crystallography, X-Ray , Esters , Glutathione , Molecular Docking Simulation , Recombinant Proteins/metabolism , Substrate Specificity , Thiolester Hydrolases/metabolism
15.
Biochem Biophys Res Commun ; 585: 48-54, 2021 12 31.
Article in English | MEDLINE | ID: mdl-34784551

ABSTRACT

Sugar isomerases (SIs) catalyze the reversible conversion of aldoses to ketoses. A novel putative SI gene has been identified from the genome sequence information on the psychrophilic bacterium Paenibacillus sp. R4. Here, we report the crystal structure of the putative SI from Paenibacillus sp. R4 (PbSI) at 2.98 Å resolution. It was found that the overall structure of PbSI adopts the triose-phosphate isomerase (TIM) barrel fold. PbSI was also identified to have two heterogeneous metal ions as its cofactors at the active site in the TIM barrel, one of which was confirmed as a Zn ion through X-ray anomalous scattering and inductively coupled plasma mass spectrometry analysis. Structural comparison with homologous SI proteins from mesophiles, hyperthermophiles, and a psychrophile revealed that key residues in the active site are well conserved and that dimeric PbSI is devoid of the extended C-terminal region, which tetrameric SIs commonly have. Our results provide novel structural information on the cold-adaptable SI, including information on the metal composition in the active site.


Subject(s)
Bacterial Proteins/chemistry , Catalytic Domain , Paenibacillus/enzymology , Protein Conformation , Triose-Phosphate Isomerase/chemistry , Amino Acids/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites/genetics , Crystallography, X-Ray , Metals/chemistry , Metals/metabolism , Models, Molecular , Paenibacillus/genetics , Triose-Phosphate Isomerase/genetics , Triose-Phosphate Isomerase/metabolism
16.
Molecules ; 26(16)2021 Aug 10.
Article in English | MEDLINE | ID: mdl-34443418

ABSTRACT

Silicon-carbon nanocomposite materials are widely adopted in the anode of lithium-ion batteries (LIB). However, the lithium ion (Li+) transportation is hampered due to the significant accumulation of silicon nanoparticles (Si) and the change in their volume, which leads to decreased battery performance. In an attempt to optimize the electrode structure, we report on a self-assembly synthesis of silicon nanoparticles@nitrogen-doped reduced graphene oxide/carbon nanofiber (Si@N-doped rGO/CNF) composites as potential high-performance anodes for LIB through electrostatic attraction. A large number of vacancies or defects on the graphite plane are generated by N atoms, thus providing transmission channels for Li+ and improving the conductivity of the electrode. CNF can maintain the stability of the electrode structure and prevent Si from falling off the electrode. The three-dimensional composite structure of Si, N-doped rGO, and CNF can effectively buffer the volume changes of Si, form a stable solid electrolyte interface (SEI), and shorten the transmission distance of Li+ and the electrons, while also providing high conductivity and mechanical stability to the electrode. The Si@N-doped rGO/CNF electrode outperforms the Si@N-doped rGO and Si/rGO/CNF electrodes in cycle performance and rate capability, with a reversible specific capacity reaching 1276.8 mAh/g after 100 cycles and a Coulomb efficiency of 99%.

17.
Glia ; 68(9): 1794-1809, 2020 09.
Article in English | MEDLINE | ID: mdl-32077526

ABSTRACT

Finding causative genetic mutations is important in the diagnosis and treatment of hereditary peripheral neuropathies. This study was conducted to find new genes involved in the pathophysiology of hereditary peripheral neuropathy. We identified a new mutation in the EBP50 gene, which is co-segregated with neuropathic phenotypes, including motor and sensory deficit in a family with Charcot-Marie-Tooth disease. EBP50 is known to be important for the formation of microvilli in epithelial cells, and the discovery of this gene mutation allowed us to study the function of EBP50 in the nervous system. EBP50 was strongly expressed in the nodal and paranodal regions of sciatic nerve fibers, where Schwann cell microvilli contact the axolemma, and at the growth tips of primary Schwann cells. In addition, EBP50 expression was decreased in mouse models of peripheral neuropathy. Knockout mice were used to study EBP50 function in the peripheral nervous system. Interestingly motor function deficit and abnormal histology of nerve fibers were observed in EBP50+/- heterozygous mice at 12 months of age, but not 3 months. in vitro studies using Schwann cells showed that NRG1-induced AKT activation and migration were significantly reduced in cells overexpressing the I325V mutant of EBP50 or cells with knocked-down EBP50 expression. In conclusion, we show for the first time that loss of function due to EBP50 gene deficiency or mutation can cause peripheral neuropathy.


Subject(s)
Charcot-Marie-Tooth Disease , Animals , Charcot-Marie-Tooth Disease/genetics , Mice , Mice, Knockout , Mutation , Peripheral Nerves , Peripheral Nervous System
18.
Biochem Biophys Res Commun ; 533(4): 751-757, 2020 12 17.
Article in English | MEDLINE | ID: mdl-32988588

ABSTRACT

As a result of bacterial infection with viruses, bacteria have developed CRISPR-Cas as an adaptive immune system, which allows them to destroy the viral genetic material introduced via infection. However, viruses have also evolved to develop multiple anti-CRISPR proteins, which are capable of inactivating the CRISPR-Cas adaptive immune system to combat bacteria. In this study, we aimed to elucidate the molecular mechanisms associated with anti-CRISPR proteins by determining a high-resolution crystal structure (1.3 Å) of Type I-E anti-CRISPR protein called AcrIE2. Our structural analysis revealed that AcrIE2 was composed of unique folds comprising five antiparallel ß-sheets (ß1∼ß5) surrounding one α-helix (α1) in the order, ß2ß1α1ß5ß4ß3. Structural comparison of AcrIE2 with a structural homolog called AcrIF9 showed that AcrIE2 contained a long and flexible ß4-ß5 connecting loop and a distinct surface feature. These results indicated that the inhibitory mechanism of AcrIE2 might be different from that of AcrIF9. This unique structure of AcrIE2 indicates its special mode of CRISPR-Cas inhibitory activity. Therefore, this study helps us understand the diversity in the inhibitory mechanisms of Acr family.


Subject(s)
CRISPR-Associated Proteins/chemistry , Pseudomonas aeruginosa/virology , Viral Proteins/chemistry , CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats , Crystallography, X-Ray , Models, Molecular , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Viral Proteins/metabolism
19.
Biochem Biophys Res Commun ; 522(3): 585-591, 2020 02 12.
Article in English | MEDLINE | ID: mdl-31785813

ABSTRACT

The RidA subfamily proteins catalyze the deamination reaction of enamine/imine intermediates, which are metabolites of amino acids such as threonine and serine. Numerous structural and functional studies have been conducted on RidA isolated from mesophiles and thermophiles. However, little is known about the structure of the RidA proteins isolated from psychrophiles. In the present study, we elucidated the crystal structure of RidA from the Antarctic bacterium Psychrobacter sp. PAMC 21119 (Pp-RidA) at 1.6 Å resolution to identify the structural properties contributing to cold-adaptability. Although the overall structure of Pp-RidA is similar to those of its homologues, it exhibits specific structural arrangements of a loop positioned near the active site, which is assumed to play a role in covering the active site of catalysis. In addition, the surface electrostatic potential of Pp-RidA suggested that it exhibits stronger electrostatic distribution relative to its homologues. Our results provide novel insights into the key determinants of cold-adaptability.


Subject(s)
Aminohydrolases/chemistry , Bacterial Proteins/chemistry , Psychrobacter/chemistry , Acclimatization , Amino Acid Sequence , Aminohydrolases/metabolism , Bacterial Proteins/metabolism , Catalytic Domain , Cold-Shock Response , Crystallography, X-Ray , Deamination , Imines/metabolism , Protein Conformation , Psychrobacter/enzymology , Psychrobacter/physiology
20.
Soft Matter ; 16(29): 6812-6818, 2020 Aug 07.
Article in English | MEDLINE | ID: mdl-32632426

ABSTRACT

As highly integrated electronic devices and automotive parts are becoming used in high-power and load-bearing systems, thermal conductivity and mechanical damping properties have become critical factors. In this study, we applied two different fillers of aluminium nitride (AlN) and boron nitride (BN), having polygonal and platelet shapes, respectively, into ethylene-propylene-diene monomer (EPDM) rubber to ensure improved thermo-mechanical properties of EPDM composites. These two different shapes are considered advantageous in providing effective pathways of phonon transfer as well as facilitating sliding movement of packed particles. When the volume ratio of AlN : BN was 1 : 1, the thermal conductivity of the hybrid-filler system (EPDM/AlN/BN) increased in comparison to that of the single-filler system (EPDM/AlN) of 3.03 to 4.76 W m-1 K-1. The coefficient of thermal expansion (CTE) and thermal distortion parameter (TDP) substantially decreased from 59.3 ppm °C-1 and 17.5 m K-1 of EPDM/AlN, to 39.7 ppm °C-1 and 8.4 m K-1 of EPDM/AlN/BN, representing reductions of 33 and 52%, respectively. Moreover, the damping coefficient of EPDM/AlN/BN was greatly increased to 0.5 of at 50 °C, compared to 0.03 of neat EPDM. These excellent performances likely stem from the effective packing of AlN/BN hybrid fillers, which could induce facile energy transfer and effective energy dissipation by the sliding movement of the adjacent hybrid fillers in the EPDM matrix.

SELECTION OF CITATIONS
SEARCH DETAIL