Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
2.
Genome Med ; 12(1): 22, 2020 02 28.
Article in English | MEDLINE | ID: mdl-32111241

ABSTRACT

BACKGROUND: T cells exhibit heterogeneous functional states in the tumor microenvironment. Immune checkpoint inhibitors (ICIs) can reinvigorate only the stem cell-like progenitor exhausted T cells, which suggests that inhibiting the exhaustion progress will improve the efficacy of immunotherapy. Thus, regulatory factors promoting T cell exhaustion could serve as potential targets for delaying the process and improving ICI efficacy. METHODS: We analyzed the single-cell transcriptome data derived from human melanoma and non-small cell lung cancer (NSCLC) samples and classified the tumor-infiltrating (TI) CD8+ T cell population based on PDCD1 (PD-1) levels, i.e., PDCD1-high and PDCD1-low cells. Additionally, we identified differentially expressed genes as candidate factors regulating intra-tumoral T cell exhaustion. The co-expression of candidate genes with immune checkpoint (IC) molecules in the TI CD8+ T cells was confirmed by single-cell trajectory and flow cytometry analyses. The loss-of-function effect of the candidate regulator was examined by a cell-based knockdown assay. The clinical effect of the candidate regulator was evaluated based on the overall survival and anti-PD-1 responses. RESULTS: We retrieved many known factors for regulating T cell exhaustion among the differentially expressed genes between PDCD1-high and PDCD1-low subsets of the TI CD8+ T cells in human melanoma and NSCLC. TOX was the only transcription factor (TF) predicted in both tumor types. TOX levels tend to increase as CD8+ T cells become more exhausted. Flow cytometry analysis revealed a correlation between TOX expression and severity of intra-tumoral T cell exhaustion. TOX knockdown in the human TI CD8+ T cells resulted in downregulation of PD-1, TIM-3, TIGIT, and CTLA-4, which suggests that TOX promotes intra-tumoral T cell exhaustion by upregulating IC proteins in cancer. Finally, the TOX level in the TI T cells was found to be highly predictive of overall survival and anti-PD-1 efficacy in melanoma and NSCLC. CONCLUSIONS: We predicted the regulatory factors involved in T cell exhaustion using single-cell transcriptome profiles of human TI lymphocytes. TOX promoted intra-tumoral CD8+ T cell exhaustion via upregulation of IC molecules. This suggested that TOX inhibition can potentially impede T cell exhaustion and improve ICI efficacy. Additionally, TOX expression in the TI T cells can be used for patient stratification during anti-tumor treatments, including anti-PD-1 immunotherapy.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , High Mobility Group Proteins/genetics , Lung Neoplasms/genetics , Lymphocytes, Tumor-Infiltrating/immunology , Melanoma/genetics , Transcriptome , Animals , Carcinoma, Non-Small-Cell Lung/drug therapy , Female , High Mobility Group Proteins/metabolism , Humans , Immune Checkpoint Inhibitors/therapeutic use , Lung Neoplasms/drug therapy , Melanoma/drug therapy , Mice , Mice, Inbred C57BL , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/metabolism , RNA-Seq , Single-Cell Analysis , Tumor Cells, Cultured
3.
Cancer Immunol Res ; 8(11): 1393-1406, 2020 11.
Article in English | MEDLINE | ID: mdl-32878747

ABSTRACT

Regulatory T cells (Treg) are enriched in the tumor microenvironment (TME) and suppress antitumor immunity; however, the molecular mechanism underlying the accumulation of Tregs in the TME is poorly understood. In various tumor models, tumor-infiltrating Tregs were highly enriched in the TME and had significantly higher expression of immune checkpoint molecules. To characterize tumor-infiltrating Tregs, we performed bulk RNA sequencing (RNA-seq) and found that proliferation-related genes, immune suppression-related genes, and cytokine/chemokine receptor genes were upregulated in tumor-infiltrating Tregs compared with tumor-infiltrating CD4+Foxp3- conventional T cells or splenic Tregs from the same tumor-bearing mice. Single-cell RNA-seq and T-cell receptor sequencing also revealed active proliferation of tumor infiltrating Tregs by clonal expansion. One of these genes, ST2, an IL33 receptor, was identified as a potential factor driving Treg accumulation in the TME. Indeed, IL33-directed ST2 signaling induced the preferential proliferation of tumor-infiltrating Tregs and enhanced tumor progression, whereas genetic deletion of ST2 in Tregs limited their TME accumulation and delayed tumor growth. These data demonstrated the IL33/ST2 axis in Tregs as one of the critical pathways for the preferential accumulation of Tregs in the TME and suggests that the IL33/ST2 axis may be a potential therapeutic target for cancer immunotherapy.


Subject(s)
Immunotherapy/methods , Interleukin-33/metabolism , T-Lymphocytes, Regulatory/metabolism , Animals , Disease Models, Animal , Female , Humans , Mice , Signal Transduction , Tumor Microenvironment
4.
Sci Rep ; 10(1): 9050, 2020 06 03.
Article in English | MEDLINE | ID: mdl-32493990

ABSTRACT

Inhibition of immune checkpoint proteins like programmed death 1 (PD-1) is a promising therapeutic approach for several cancers, including non-small cell lung cancer (NSCLC). Although PD-1 ligand (PD-L1) expression is used to predict anti-PD-1 therapy responses in NSCLC, its accuracy is relatively less. Therefore, we sought to identify a more accurate predictive blood biomarker for evaluating anti-PD-1 response. We evaluated the frequencies of T cells, B cells, natural killer (NK) cells, polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs), mononuclear myeloid-derived suppressor cells (M-MDSCs), and Lox-1+ PMN-MDSCs in peripheral blood samples of 62 NSCLC patients before and after nivolumab treatment. Correlation of immune-cell population frequencies with treatment response, progression-free survival, and overall survival was also determined. After the first treatment, the median NK cell percentage was significantly higher in responders than in non-responders, while the median Lox-1+ PMN-MDSC percentage showed the opposite trend. NK cell frequencies significantly increased in responders but not in non-responders. NK cell frequency inversely correlated with that of Lox-1+ PMN-MDSCs after the first treatment cycle. The NK cell-to-Lox-1+ PMN-MDSC ratio (NMR) was significantly higher in responders than in non-responders. Patients with NMRs ≥ 5.75 after the first cycle had significantly higher objective response rates and longer progression-free and overall survival than those with NMRs <5.75. NMR shows promise as an early predictor of response to further anti-PD-1 therapy.


Subject(s)
Carcinoma, Non-Small-Cell Lung/immunology , Killer Cells, Natural/immunology , Lung Neoplasms/immunology , Myeloid-Derived Suppressor Cells/immunology , Programmed Cell Death 1 Receptor/immunology , Adult , Aged , Aged, 80 and over , B-Lymphocytes/immunology , Carcinoma, Non-Small-Cell Lung/drug therapy , Female , Humans , Lung Neoplasms/drug therapy , Male , Middle Aged , Nivolumab/therapeutic use , Progression-Free Survival , Prospective Studies , T-Lymphocytes/immunology
5.
Arch Pharm Res ; 42(7): 560-566, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31147902

ABSTRACT

Over the past decade, immune checkpoint inhibitor (ICI) therapy has demonstrated improved therapeutic efficacy in a wide range of cancers. However, the benefits are restricted to a small population of patients. Therefore, studies on understanding the mechanisms resistant to ICI therapy and for finding predictive biomarkers for ICI therapy are being actively conducted. Recent studies have demonstrated that myeloid-derived suppressor cells (MDSC) inhibit ICI therapy by various mechanisms, and that the response to ICI therapy can be improved by blocking MDSC activity. Moreover, low level of MDSC in patients with cancer has been shown to be correlated with their good prognosis after ICI treatment, thereby suggesting MDSC as a predictive biomarker in this regard. This review focuses on the roles of MDSC in ICI therapy and their relevant applications.


Subject(s)
Immunologic Factors/immunology , Immunotherapy , Myeloid-Derived Suppressor Cells/immunology , Neoplasms/immunology , Neoplasms/therapy , Animals , Humans
6.
Oncoimmunology ; 7(8): e1466769, 2018.
Article in English | MEDLINE | ID: mdl-30221069

ABSTRACT

The use of inhibitory checkpoint blockade in the management of glioblastoma has been studied in both preclinical and clinical settings. TIGIT is a novel checkpoint inhibitor recently discovered to play a role in cancer immunity. In this study, we sought to determine the effect of anti-PD-1 and anti-TIGIT combination therapy on survival in a murine glioblastoma (GBM) model, and to elucidate the underlying immune mechanisms. Using mice with intracranial GL261-luc+ tumors, we found that TIGIT expression was upregulated on CD8+ and regulatory T cells (Tregs) in the brain compared to draining cervical lymph nodes (CLN) and spleen. We then demonstrated that treatment using anti-PD-1 and anti-TIGIT dual therapy significantly improved survival compared to control and monotherapy groups. The therapeutic effect was correlated with both increased effector T cell function and downregulation of suppressive Tregs and tumor-infiltrating dendritic cells (TIDCs). Clinically, TIGIT expression on tumor-infiltrating lymphocytes was shown to be elevated in patient GBM samples, suggesting that the TIGIT pathway may be a valuable therapeutic target. Expression of the TIGIT ligand, PVR, further portended a poor survival outcome in patients with low-grade glioma. We conclude that anti-TIGIT is an effective treatment strategy against murine GBM when used in combination with anti-PD-1, improving overall survival via modifications of both the T cell and myeloid compartments. Given evidence of PVR expression on human GBM cells, TIGIT presents as a promising immune therapeutic target in the management of these patients.

SELECTION OF CITATIONS
SEARCH DETAIL