Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Nature ; 478(7367): 103-9, 2011 Sep 11.
Article in English | MEDLINE | ID: mdl-21909115

ABSTRACT

Blood pressure is a heritable trait influenced by several biological pathways and responsive to environmental stimuli. Over one billion people worldwide have hypertension (≥140 mm Hg systolic blood pressure or ≥90 mm Hg diastolic blood pressure). Even small increments in blood pressure are associated with an increased risk of cardiovascular events. This genome-wide association study of systolic and diastolic blood pressure, which used a multi-stage design in 200,000 individuals of European descent, identified sixteen novel loci: six of these loci contain genes previously known or suspected to regulate blood pressure (GUCY1A3-GUCY1B3, NPR3-C5orf23, ADM, FURIN-FES, GOSR2, GNAS-EDN3); the other ten provide new clues to blood pressure physiology. A genetic risk score based on 29 genome-wide significant variants was associated with hypertension, left ventricular wall thickness, stroke and coronary artery disease, but not kidney disease or kidney function. We also observed associations with blood pressure in East Asian, South Asian and African ancestry individuals. Our findings provide new insights into the genetics and biology of blood pressure, and suggest potential novel therapeutic pathways for cardiovascular disease prevention.


Subject(s)
Blood Pressure/genetics , Cardiovascular Diseases/genetics , Genetic Predisposition to Disease/genetics , Polymorphism, Single Nucleotide/genetics , Africa/ethnology , Asia/ethnology , Blood Pressure/physiology , Coronary Artery Disease/genetics , Europe/ethnology , Genome-Wide Association Study , Humans , Hypertension/genetics , Kidney Diseases/genetics , Stroke/genetics
2.
PLoS Genet ; 5(11): e1000730, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19936222

ABSTRACT

While conventional LDL-C, HDL-C, and triglyceride measurements reflect aggregate properties of plasma lipoprotein fractions, NMR-based measurements more accurately reflect lipoprotein particle concentrations according to class (LDL, HDL, and VLDL) and particle size (small, medium, and large). The concentrations of these lipoprotein sub-fractions may be related to risk of cardiovascular disease and related metabolic disorders. We performed a genome-wide association study of 17 lipoprotein measures determined by NMR together with LDL-C, HDL-C, triglycerides, ApoA1, and ApoB in 17,296 women from the Women's Genome Health Study (WGHS). Among 36 loci with genome-wide significance (P<5x10(-8)) in primary and secondary analysis, ten (PCCB/STAG1 (3q22.3), GMPR/MYLIP (6p22.3), BTNL2 (6p21.32), KLF14 (7q32.2), 8p23.1, JMJD1C (10q21.3), SBF2 (11p15.4), 12q23.2, CCDC92/DNAH10/ZNF664 (12q24.31.B), and WIPI1 (17q24.2)) have not been reported in prior genome-wide association studies for plasma lipid concentration. Associations with mean lipoprotein particle size but not cholesterol content were found for LDL at four loci (7q11.23, LPL (8p21.3), 12q24.31.B, and LIPG (18q21.1)) and for HDL at one locus (GCKR (2p23.3)). In addition, genetic determinants of total IDL and total VLDL concentration were found at many loci, most strongly at LIPC (15q22.1) and APOC-APOE complex (19q13.32), respectively. Associations at seven more loci previously known for effects on conventional plasma lipid measures reveal additional genetic influences on lipoprotein profiles and bring the total number of loci to 43. Thus, genome-wide associations identified novel loci involved with lipoprotein metabolism-including loci that affect the NMR-based measures of concentration or size of LDL, HDL, and VLDL particles-all characteristics of lipoprotein profiles that may impact disease risk but are not available by conventional assay.


Subject(s)
Cholesterol/blood , Genetic Loci/genetics , Genome-Wide Association Study , Lipoproteins/blood , Lipoproteins/chemistry , Female , Humans , Magnetic Resonance Spectroscopy , Middle Aged , Models, Genetic , Particle Size , Polymorphism, Single Nucleotide/genetics , Reproducibility of Results , Triglycerides/blood
3.
Circ Cardiovasc Genet ; 3(6): 523-30, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20884846

ABSTRACT

BACKGROUND: Elevated serum urate levels can lead to gout and are associated with cardiovascular risk factors. We performed a genome-wide association study to search for genetic susceptibility loci for serum urate and gout and investigated the causal nature of the associations of serum urate with gout and selected cardiovascular risk factors and coronary heart disease (CHD). METHODS AND RESULTS: Meta-analyses of genome-wide association studies (GWAS) were performed in 5 population-based cohorts of the Cohorts for Heart and Aging Research in Genome Epidemiology consortium for serum urate and gout in 28 283 white participants. The effect of the most significant single-nucleotide polymorphism at all genome-wide significant loci on serum urate was added to create a genetic urate score. Findings were replicated in the Women's Genome Health Study (n=22 054). Single-nucleotide polymorphisms at 8 genetic loci achieved genome-wide significance with serum urate levels (P=4×10(-8) to 2×10(-242) in SLC22A11, GCKR, R3HDM2-INHBC region, RREB1, PDZK1, SLC2A9, ABCG2, and SLC17A1). Only 2 loci (SLC2A9, ABCG2) showed genome-wide significant association with gout. The genetic urate score was strongly associated with serum urate and gout (odds ratio, 12.4 per 100 µmol/L; P=3×10(-39)) but not with blood pressure, glucose, estimated glomerular filtration rate, chronic kidney disease, or CHD. The lack of association between the genetic score and the latter phenotypes also was observed in the Women's Genome Health Study. CONCLUSIONS: The genetic urate score analysis suggested a causal relationship between serum urate and gout but did not provide evidence for one between serum urate and cardiovascular risk factors and CHD.


Subject(s)
Cardiovascular Diseases/genetics , Genetic Loci , Gout/genetics , Uric Acid/blood , Cardiovascular Diseases/blood , Coronary Disease , Female , Genome-Wide Association Study/statistics & numerical data , Gout/blood , Humans , Male , Risk Factors
4.
Circ Cardiovasc Genet ; 2(1): 26-33, 2009 Feb.
Article in English | MEDLINE | ID: mdl-20031564

ABSTRACT

BACKGROUND: Recent trial data have challenged the hypothesis that cholesteryl ester transfer protein (CETP) and high-density lipoprotein cholesterol (HDL-C) have causal roles in atherothrombosis. One method to evaluate this issue is to examine whether polymorphisms in the CETP gene that impact on HDL-C levels also impact on the future development of myocardial infarction. METHODS AND RESULTS: In a prospective cohort of 18 245 initially healthy American women, we examined over 350 000 singe-nucleotide polymorphisms (SNPs) first to identify loci associated with HDL-C and then to evaluate whether significant SNPs within these loci also impact on rates of incident myocardial infarction during an average 10-year follow-up period. Nine loci on 9 chromosomes had 1 or more SNPs associated with HDL-C at genome-wide statistical significance (P<5x10(-8)). However, only SNPs near or in the CETP gene at 16q13 were associated with both HDL-C and risk of incident myocardial infarction (198 events). For example, SNP rs708272 in the CETP gene was associated with a per-allele increase in HDL-C levels of 3.1 mg/dL and a concordant 24% lower risk of future myocardial infarction (age-adjusted hazard ratio, 0.76; 95% CI, 0.62 to 0.94), consistent with recent meta-analysis. Independent and again concordant effects on HDL-C and incident myocardial infarction were also observed at the CETP locus for rs4329913 and rs7202364. Adjustment for HDL-C attenuated but did not eliminate these effects. CONCLUSIONS: In this prospective cohort of initially healthy women, SNPs at the CETP locus impact on future risk of myocardial infarction, supporting a causal role for CETP in atherothrombosis, possibly through an HDL-C mediated pathway.


Subject(s)
Cholesterol Ester Transfer Proteins/genetics , Cholesterol, HDL/blood , Myocardial Infarction/genetics , Alleles , Apolipoprotein A-I/blood , Cholesterol, HDL/genetics , Chromosomes, Human, Pair 16 , Cohort Studies , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Genotype , Humans , Middle Aged , Polymorphism, Single Nucleotide , Risk Factors
5.
Circ Cardiovasc Genet ; 1(1): 21-30, 2008 Oct.
Article in English | MEDLINE | ID: mdl-19802338

ABSTRACT

BACKGROUND: Genome-wide genetic association analysis represents an opportunity for a comprehensive survey of the genes governing lipid metabolism, potentially revealing new insights or even therapeutic strategies for cardiovascular disease and related metabolic disorders. METHODS AND RESULTS: We have performed large-scale, genome-wide genetic analysis among 6382 white women with replication in 2 cohorts of 970 additional white men and women for associations between common single-nucleotide polymorphisms and low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, triglycerides, apolipoprotein(Apo) A1, and ApoB. Genome-wide associations (P < 5 x 10(-8)) were found at the PCSK9 gene, the APOB gene, theLPL gene, the APOA1-APOA5 locus, the LIPC gene, the CETP gene, the LDLR gene, and the APOE locus. In addition,genome-wide associations with triglycerides at the GCKR gene confirm and extend emerging links between glucose and lipid metabolism. Still other genome-wide associations at the 1p13.3 locus are consistent with emerging biological properties for a region of the genome, possibly related to the SORT1 gene. Below genome-wide significance, our study provides confirmatory evidence for associations at 5 novel loci with low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, or triglycerides reported recently in separate genome-wide association studies. The total proportion of variance explained by common variation at the genome-wide candidate loci ranges from 4.3% for triglycerides to 12.6% for ApoB. CONCLUSION: Genome-wide associations at the GCKR gene and near the SORT1 gene, as well as confirmatory associations at 5 additional novel loci, suggest emerging biological pathways for lipid metabolism among white women.


Subject(s)
Genetic Loci/genetics , Genome-Wide Association Study , Lipids/blood , Lipids/genetics , White People/genetics , Aged , Apolipoprotein A-I/blood , Apolipoprotein A-I/genetics , Apolipoproteins B/blood , Apolipoproteins B/genetics , Cholesterol, HDL/blood , Cholesterol, HDL/genetics , Cholesterol, LDL/blood , Cholesterol, LDL/genetics , Female , Genetic Predisposition to Disease , Genome, Human/genetics , Humans , Lipid Metabolism/genetics , Middle Aged , Polymorphism, Single Nucleotide/genetics , Reproducibility of Results , Triglycerides/blood , Triglycerides/genetics
SELECTION OF CITATIONS
SEARCH DETAIL