Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nucleic Acids Res ; 51(D1): D933-D941, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36318249

ABSTRACT

Ensembl (https://www.ensembl.org) has produced high-quality genomic resources for vertebrates and model organisms for more than twenty years. During that time, our resources, services and tools have continually evolved in line with both the publicly available genome data and the downstream research and applications that utilise the Ensembl platform. In recent years we have witnessed a dramatic shift in the genomic landscape. There has been a large increase in the number of high-quality reference genomes through global biodiversity initiatives. In parallel, there have been major advances towards pangenome representations of higher species, where many alternative genome assemblies representing different breeds, cultivars, strains and haplotypes are now available. In order to support these efforts and accelerate downstream research, it is our goal at Ensembl to create high-quality annotations, tools and services for species across the tree of life. Here, we report our resources for popular reference genomes, the dramatic growth of our annotations (including haplotypes from the first human pangenome graphs), updates to the Ensembl Variant Effect Predictor (VEP), interactive protein structure predictions from AlphaFold DB, and the beta release of our new website.


Subject(s)
Databases, Genetic , Software , Animals , Humans , Molecular Sequence Annotation , Genomics , Genome
2.
Nucleic Acids Res ; 50(D1): D765-D770, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34634797

ABSTRACT

The COVID-19 pandemic has seen unprecedented use of SARS-CoV-2 genome sequencing for epidemiological tracking and identification of emerging variants. Understanding the potential impact of these variants on the infectivity of the virus and the efficacy of emerging therapeutics and vaccines has become a cornerstone of the fight against the disease. To support the maximal use of genomic information for SARS-CoV-2 research, we launched the Ensembl COVID-19 browser; the first virus to be encompassed within the Ensembl platform. This resource incorporates a new Ensembl gene set, multiple variant sets, and annotation from several relevant resources aligned to the reference SARS-CoV-2 assembly. Since the first release in May 2020, the content has been regularly updated using our new rapid release workflow, and tools such as the Ensembl Variant Effect Predictor have been integrated. The Ensembl COVID-19 browser is freely available at https://covid-19.ensembl.org.


Subject(s)
COVID-19/virology , Databases, Genetic , SARS-CoV-2/genetics , Web Browser , Coronaviridae/genetics , Genetic Variation , Genome, Viral , Humans , Molecular Sequence Annotation
3.
Nucleic Acids Res ; 50(D1): D988-D995, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34791404

ABSTRACT

Ensembl (https://www.ensembl.org) is unique in its flexible infrastructure for access to genomic data and annotation. It has been designed to efficiently deliver annotation at scale for all eukaryotic life, and it also provides deep comprehensive annotation for key species. Genomes representing a greater diversity of species are increasingly being sequenced. In response, we have focussed our recent efforts on expediting the annotation of new assemblies. Here, we report the release of the greatest annual number of newly annotated genomes in the history of Ensembl via our dedicated Ensembl Rapid Release platform (http://rapid.ensembl.org). We have also developed a new method to generate comparative analyses at scale for these assemblies and, for the first time, we have annotated non-vertebrate eukaryotes. Meanwhile, we continually improve, extend and update the annotation for our high-value reference vertebrate genomes and report the details here. We have a range of specific software tools for specific tasks, such as the Ensembl Variant Effect Predictor (VEP) and the newly developed interface for the Variant Recoder. All Ensembl data, software and tools are freely available for download and are accessible programmatically.


Subject(s)
Databases, Genetic , Genome/genetics , Molecular Sequence Annotation , Software , Animals , Computational Biology/classification , Humans
4.
Nucleic Acids Res ; 50(D1): D996-D1003, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34791415

ABSTRACT

Ensembl Genomes (https://www.ensemblgenomes.org) provides access to non-vertebrate genomes and analysis complementing vertebrate resources developed by the Ensembl project (https://www.ensembl.org). The two resources collectively present genome annotation through a consistent set of interfaces spanning the tree of life presenting genome sequence, annotation, variation, transcriptomic data and comparative analysis. Here, we present our largest increase in plant, metazoan and fungal genomes since the project's inception creating one of the world's most comprehensive genomic resources and describe our efforts to reduce genome redundancy in our Bacteria portal. We detail our new efforts in gene annotation, our emerging support for pangenome analysis, our efforts to accelerate data dissemination through the Ensembl Rapid Release resource and our new AlphaFold visualization. Finally, we present details of our future plans including updates on our integration with Ensembl, and how we plan to improve our support for the microbial research community. Software and data are made available without restriction via our website, online tools platform and programmatic interfaces (available under an Apache 2.0 license). Data updates are synchronised with Ensembl's release cycle.


Subject(s)
Databases, Genetic , Genomics , Internet , Software , Animals , Computational Biology , Genome, Bacterial/genetics , Genome, Fungal/genetics , Genome, Plant/genetics , Plants/classification , Plants/genetics , Vertebrates/classification , Vertebrates/genetics
5.
BMC Womens Health ; 23(1): 557, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37891606

ABSTRACT

BACKGROUND: Unexplained infertility accounts for 25% of infertility causes in the UK. Active intervention methods, such as intrauterine insemination (IUI) or in vitro fertilisation (IVF), are often sought. Despite the National Institute for Health and Care Excellence (NICE) recommending IVF for unexplained infertility, this recommendation has generated an ongoing debate, with few fertility clinics discontinuing the use of IUI as the first-line management of choice. In contrast to NICE, recent guidance released from the European Society for Human Reproduction and Embryology (ESHRE) in August 2023 supports the use of IUI as first-line. High-quality evidence behind such interventions is lacking, with current literature providing conflicting results. AIMS: This review aims to provide a literature overview exploring whether IUI or IVF should be used as first-line treatment for couples with unexplained infertility, in the context of current guidelines. METHODS: The primary outcome used to assess efficacy of both treatment methods is live birth (LB) rates. Secondary outcomes used are clinical pregnancy (CP) and ongoing pregnancy (OP) rates. A comprehensive literature search of 4 databases: Ovid MEDLINE, EMBASE, Maternity & Infant Care and the Cochrane Library were searched in January 2022. Upon removal of duplications, abstract screening, and full-text screening, a total of 34 papers were selected. DISCUSSION/CONCLUSION: This review highlights a large discrepancy in the literature when examining pregnancy outcomes of IUI and IVF treatments. Evidence shows IUI increases LB and CP rates 3-fold compared to expectant management. Literature comparing IUI to IVF is less certain. The review finds the literature implies IVF should be used for first-line management but the paucity of high-quality randomised controlled trials (RCTs), coupled with heterogeneity of the identified studies and a lack of research amongst women > 40 years warrants the need for further large RCTs. The decision to offer IUI with ovarian stimulation (IUI-OS) or IVF should be based upon patient prognostic factors. We suggest that IUI-OS could be offered as first-line treatment for unexplained infertility for women < 38 years, with good prognosis, and IVF could be offered first to those > 38 years. Patients should be appropriately counselled to enable informed decision making.


Subject(s)
Infertility , Insemination, Artificial , Pregnancy , Female , Humans , Insemination, Artificial/methods , Fertilization in Vitro/methods , Infertility/therapy , Pregnancy Outcome , Pregnancy Rate , Ovulation Induction/methods
6.
Nucleic Acids Res ; 49(D1): D884-D891, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33137190

ABSTRACT

The Ensembl project (https://www.ensembl.org) annotates genomes and disseminates genomic data for vertebrate species. We create detailed and comprehensive annotation of gene structures, regulatory elements and variants, and enable comparative genomics by inferring the evolutionary history of genes and genomes. Our integrated genomic data are made available in a variety of ways, including genome browsers, search interfaces, specialist tools such as the Ensembl Variant Effect Predictor, download files and programmatic interfaces. Here, we present recent Ensembl developments including two new website portals. Ensembl Rapid Release (http://rapid.ensembl.org) is designed to provide core tools and services for genomes as soon as possible and has been deployed to support large biodiversity sequencing projects. Our SARS-CoV-2 genome browser (https://covid-19.ensembl.org) integrates our own annotation with publicly available genomic data from numerous sources to facilitate the use of genomics in the international scientific response to the COVID-19 pandemic. We also report on other updates to our annotation resources, tools and services. All Ensembl data and software are freely available without restriction.


Subject(s)
Computational Biology/methods , Databases, Nucleic Acid , Genomics/methods , SARS-CoV-2/genetics , Vertebrates/genetics , Animals , COVID-19/epidemiology , COVID-19/virology , Humans , Internet , Molecular Sequence Annotation/methods , Pandemics , Vertebrates/classification
7.
Nucleic Acids Res ; 49(D1): D916-D923, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33270111

ABSTRACT

The GENCODE project annotates human and mouse genes and transcripts supported by experimental data with high accuracy, providing a foundational resource that supports genome biology and clinical genomics. GENCODE annotation processes make use of primary data and bioinformatic tools and analysis generated both within the consortium and externally to support the creation of transcript structures and the determination of their function. Here, we present improvements to our annotation infrastructure, bioinformatics tools, and analysis, and the advances they support in the annotation of the human and mouse genomes including: the completion of first pass manual annotation for the mouse reference genome; targeted improvements to the annotation of genes associated with SARS-CoV-2 infection; collaborative projects to achieve convergence across reference annotation databases for the annotation of human and mouse protein-coding genes; and the first GENCODE manually supervised automated annotation of lncRNAs. Our annotation is accessible via Ensembl, the UCSC Genome Browser and https://www.gencodegenes.org.


Subject(s)
COVID-19/prevention & control , Computational Biology/methods , Databases, Genetic , Genomics/methods , Molecular Sequence Annotation/methods , SARS-CoV-2/genetics , Animals , COVID-19/epidemiology , COVID-19/virology , Epidemics , Humans , Internet , Mice , Pseudogenes/genetics , RNA, Long Noncoding/genetics , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Transcription, Genetic/genetics
8.
Nucleic Acids Res ; 48(D1): D682-D688, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31691826

ABSTRACT

The Ensembl (https://www.ensembl.org) is a system for generating and distributing genome annotation such as genes, variation, regulation and comparative genomics across the vertebrate subphylum and key model organisms. The Ensembl annotation pipeline is capable of integrating experimental and reference data from multiple providers into a single integrated resource. Here, we present 94 newly annotated and re-annotated genomes, bringing the total number of genomes offered by Ensembl to 227. This represents the single largest expansion of the resource since its inception. We also detail our continued efforts to improve human annotation, developments in our epigenome analysis and display, a new tool for imputing causal genes from genome-wide association studies and visualisation of variation within a 3D protein model. Finally, we present information on our new website. Both software and data are made available without restriction via our website, online tools platform and programmatic interfaces (available under an Apache 2.0 license) and data updates made available four times a year.


Subject(s)
Computational Biology/methods , Databases, Genetic , Epigenome , Molecular Sequence Annotation , Algorithms , Animals , Computer Graphics , Databases, Protein , Genetic Variation , Genome-Wide Association Study , Genomics , Histones/metabolism , Humans , Imaging, Three-Dimensional , Internet , Ligands , Search Engine , Software , Species Specificity , Transcriptome , User-Computer Interface , Web Browser
9.
Nucleic Acids Res ; 47(D1): D766-D773, 2019 01 08.
Article in English | MEDLINE | ID: mdl-30357393

ABSTRACT

The accurate identification and description of the genes in the human and mouse genomes is a fundamental requirement for high quality analysis of data informing both genome biology and clinical genomics. Over the last 15 years, the GENCODE consortium has been producing reference quality gene annotations to provide this foundational resource. The GENCODE consortium includes both experimental and computational biology groups who work together to improve and extend the GENCODE gene annotation. Specifically, we generate primary data, create bioinformatics tools and provide analysis to support the work of expert manual gene annotators and automated gene annotation pipelines. In addition, manual and computational annotation workflows use any and all publicly available data and analysis, along with the research literature to identify and characterise gene loci to the highest standard. GENCODE gene annotations are accessible via the Ensembl and UCSC Genome Browsers, the Ensembl FTP site, Ensembl Biomart, Ensembl Perl and REST APIs as well as https://www.gencodegenes.org.


Subject(s)
Databases, Genetic , Genome, Human/genetics , Genomics , Pseudogenes/genetics , Animals , Computational Biology , Humans , Internet , Mice , Molecular Sequence Annotation , Software
10.
Nucleic Acids Res ; 47(D1): D745-D751, 2019 01 08.
Article in English | MEDLINE | ID: mdl-30407521

ABSTRACT

The Ensembl project (https://www.ensembl.org) makes key genomic data sets available to the entire scientific community without restrictions. Ensembl seeks to be a fundamental resource driving scientific progress by creating, maintaining and updating reference genome annotation and comparative genomics resources. This year we describe our new and expanded gene, variant and comparative annotation capabilities, which led to a 50% increase in the number of vertebrate genomes we support. We have also doubled the number of available human variants and added regulatory regions for many mouse cell types and developmental stages. Our data sets and tools are available via the Ensembl website as well as a through a RESTful webservice, Perl application programming interface and as data files for download.


Subject(s)
Databases, Genetic , Genome/genetics , Genomics , Vertebrates/genetics , Animals , Computational Biology/trends , Humans , Mice , Molecular Sequence Annotation , Software
11.
Nucleic Acids Res ; 46(D1): D754-D761, 2018 01 04.
Article in English | MEDLINE | ID: mdl-29155950

ABSTRACT

The Ensembl project has been aggregating, processing, integrating and redistributing genomic datasets since the initial releases of the draft human genome, with the aim of accelerating genomics research through rapid open distribution of public data. Large amounts of raw data are thus transformed into knowledge, which is made available via a multitude of channels, in particular our browser (http://www.ensembl.org). Over time, we have expanded in multiple directions. First, our resources describe multiple fields of genomics, in particular gene annotation, comparative genomics, genetics and epigenomics. Second, we cover a growing number of genome assemblies; Ensembl Release 90 contains exactly 100. Third, our databases feed simultaneously into an array of services designed around different use cases, ranging from quick browsing to genome-wide bioinformatic analysis. We present here the latest developments of the Ensembl project, with a focus on managing an increasing number of assemblies, supporting efforts in genome interpretation and improving our browser.


Subject(s)
Databases, Genetic , Datasets as Topic , Genome , Information Dissemination , Animals , Epigenomics , Genome, Human , Genome-Wide Association Study , Genomics , High-Throughput Nucleotide Sequencing , Humans , Molecular Sequence Annotation , Vertebrates/genetics , Web Browser
12.
Br J Haematol ; 184(4): 547-557, 2019 02.
Article in English | MEDLINE | ID: mdl-30467838

ABSTRACT

Allogeneic haematopoietic stem cell transplant (allo-HSCT) offers potentially curative therapy for patients with relapsed/refractory lymphoid malignancies. Reduced-intensity conditioning (RIC) with Alemtuzumab reduces transplant-related mortality and graft-versus-host disease (GvHD), but may be associated with increased risk of relapse. With the aim of studying the effect of GVHD and donor lymphocyte infusions (DLI) on relapse, we performed a retrospective study of 288 patients (57% non-Hodgkin lymphoma, 24% Hodgkin lymphoma and 19% chronic lymphocytic leukaemia; 58% were relapsed/refractory) who underwent RIC-Alemtuzumab-HSCT between 2000 and 2012. Median follow-up time for survivors was 64 months. Five-year overall survival, relapse incidence, GvHD/relapse-free survival and non-relapse mortality were 47%, 33%, 37% and 28% respectively. Cumulative incidence of grade II-IV acute and extensive chronic GvHD was 22% and 21% at 100 days and 5 years respectively. On multivariate analysis, presence of GvHD (P = 0·03) and unrelated donor type (P = 0·03) were protective of relapse. 62/288 patients received DLI for either mixed donor chimerism (prophylactic DLI, n = 37) or clinical relapse (therapeutic DLI, n = 25). Prophylactic and therapeutic DLI successfully converted the patient to full or stable mixed donor chimerism in 78% and 56% of patients respectively. These data demonstrate good long-term outcomes and support the concept of the graft-vs-lymphoma effect as a key protective factor against relapse following RIC-Alemtuzumab allo-HSCT for patients with mature lymphoid malignancies.


Subject(s)
Alemtuzumab/administration & dosage , Graft vs Tumor Effect , Hematologic Neoplasms/therapy , Hematopoietic Stem Cell Transplantation , Leukemia, Lymphocytic, Chronic, B-Cell/therapy , Lymphoma/therapy , Transplantation Conditioning , Adolescent , Adult , Aged , Allografts , Disease-Free Survival , Female , Hematologic Neoplasms/mortality , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/mortality , Lymphoma/mortality , Male , Middle Aged , Recurrence , Survival Rate
13.
Nucleic Acids Res ; 45(D1): D635-D642, 2017 01 04.
Article in English | MEDLINE | ID: mdl-27899575

ABSTRACT

Ensembl (www.ensembl.org) is a database and genome browser for enabling research on vertebrate genomes. We import, analyse, curate and integrate a diverse collection of large-scale reference data to create a more comprehensive view of genome biology than would be possible from any individual dataset. Our extensive data resources include evidence-based gene and regulatory region annotation, genome variation and gene trees. An accompanying suite of tools, infrastructure and programmatic access methods ensure uniform data analysis and distribution for all supported species. Together, these provide a comprehensive solution for large-scale and targeted genomics applications alike. Among many other developments over the past year, we have improved our resources for gene regulation and comparative genomics, and added CRISPR/Cas9 target sites. We released new browser functionality and tools, including improved filtering and prioritization of genome variation, Manhattan plot visualization for linkage disequilibrium and eQTL data, and an ontology search for phenotypes, traits and disease. We have also enhanced data discovery and access with a track hub registry and a selection of new REST end points. All Ensembl data are freely released to the scientific community and our source code is available via the open source Apache 2.0 license.


Subject(s)
Computational Biology/methods , Databases, Genetic , Genomics/methods , Search Engine , Software , Web Browser , Animals , Data Mining , Evolution, Molecular , Gene Expression Regulation , Genetic Variation , Genome, Human , Humans , Molecular Sequence Annotation , Species Specificity , Vertebrates
14.
Nucleic Acids Res ; 44(D1): D710-6, 2016 Jan 04.
Article in English | MEDLINE | ID: mdl-26687719

ABSTRACT

The Ensembl project (http://www.ensembl.org) is a system for genome annotation, analysis, storage and dissemination designed to facilitate the access of genomic annotation from chordates and key model organisms. It provides access to data from 87 species across our main and early access Pre! websites. This year we introduced three newly annotated species and released numerous updates across our supported species with a concentration on data for the latest genome assemblies of human, mouse, zebrafish and rat. We also provided two data updates for the previous human assembly, GRCh37, through a dedicated website (http://grch37.ensembl.org). Our tools, in particular the VEP, have been improved significantly through integration of additional third party data. REST is now capable of larger-scale analysis and our regulatory data BioMart can deliver faster results. The website is now capable of displaying long-range interactions such as those found in cis-regulated datasets. Finally we have launched a website optimized for mobile devices providing views of genes, variants and phenotypes. Our data is made available without restriction and all code is available from our GitHub organization site (http://github.com/Ensembl) under an Apache 2.0 license.


Subject(s)
Databases, Genetic , Genomics , Molecular Sequence Annotation , Animals , Genes , Genetic Variation , Humans , Internet , Mice , Proteins/genetics , Rats , Regulatory Sequences, Nucleic Acid , Software
15.
Nucleic Acids Res ; 43(Database issue): D662-9, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25352552

ABSTRACT

Ensembl (http://www.ensembl.org) is a genomic interpretation system providing the most up-to-date annotations, querying tools and access methods for chordates and key model organisms. This year we released updated annotation (gene models, comparative genomics, regulatory regions and variation) on the new human assembly, GRCh38, although we continue to support researchers using the GRCh37.p13 assembly through a dedicated site (http://grch37.ensembl.org). Our Regulatory Build has been revamped to identify regulatory regions of interest and to efficiently highlight their activity across disparate epigenetic data sets. A number of new interfaces allow users to perform large-scale comparisons of their data against our annotations. The REST server (http://rest.ensembl.org), which allows programs written in any language to query our databases, has moved to a full service alongside our upgraded website tools. Our online Variant Effect Predictor tool has been updated to process more variants and calculate summary statistics. Lastly, the WiggleTools package enables users to summarize large collections of data sets and view them as single tracks in Ensembl. The Ensembl code base itself is more accessible: it is now hosted on our GitHub organization page (https://github.com/Ensembl) under an Apache 2.0 open source license.


Subject(s)
Databases, Nucleic Acid , Genomics , Animals , Epigenesis, Genetic , Genetic Variation , Genome, Human , Humans , Internet , Mice , Molecular Sequence Annotation , Regulatory Sequences, Nucleic Acid , Software
16.
Nucleic Acids Res ; 42(Database issue): D749-55, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24316576

ABSTRACT

Ensembl (http://www.ensembl.org) creates tools and data resources to facilitate genomic analysis in chordate species with an emphasis on human, major vertebrate model organisms and farm animals. Over the past year we have increased the number of species that we support to 77 and expanded our genome browser with a new scrollable overview and improved variation and phenotype views. We also report updates to our core datasets and improvements to our gene homology relationships from the addition of new species. Our REST service has been extended with additional support for comparative genomics and ontology information. Finally, we provide updated information about our methods for data access and resources for user training.


Subject(s)
Databases, Genetic , Genomics , Animals , Chordata/genetics , Genetic Variation , Humans , Internet , Mice , Molecular Sequence Annotation , Phenotype , Rats
17.
Blood Adv ; 8(2): 343-352, 2024 01 23.
Article in English | MEDLINE | ID: mdl-38039513

ABSTRACT

ABSTRACT: Molecular failure in NPM1-mutated acute myeloid leukemia (AML) inevitably progresses to frank relapse if untreated. Recently published small case series show that venetoclax combined with low-dose cytarabine or azacitidine can reduce or eliminate measurable residual disease (MRD). Here, we report on an international multicenter cohort of 79 patients treated for molecular failure with venetoclax combinations and report an overall molecular response (≥1-log reduction in MRD) in 66 patients (84%) and MRD negativity in 56 (71%). Eighteen of 79 patients (23%) required hospitalization, and no deaths were reported during treatment. Forty-one patients were bridged to allogeneic transplant with no further therapy, and 25 of 41 were MRD negative assessed by reverse transcription quantitative polymerase chain reaction before transplant. Overall survival (OS) for the whole cohort at 2 years was 67%, event-free survival (EFS) was 45%, and in responding patients, there was no difference in survival in those who received a transplant using time-dependent analysis. Presence of FLT3-ITD mutation was associated with a lower response rate (64 vs 91%; P < .01), worse OS (hazard ratio [HR], 2.50; 95% confidence interval [CI], 1.06-5.86; P = .036), and EFS (HR, 1.87; 95% CI, 1.06-3.28; P = .03). Eighteen of 35 patients who did not undergo transplant became MRD negative and stopped treatment after a median of 10 months, with 2-year molecular relapse free survival of 62% from the end of treatment. Venetoclax-based low intensive chemotherapy is a potentially effective treatment for molecular relapse in NPM1-mutated AML, either as a bridge to transplant or as definitive therapy.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic , Leukemia, Myeloid, Acute , Nuclear Proteins , Sulfonamides , Humans , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Mutation , Nuclear Proteins/genetics , Nucleophosmin/genetics , Recurrence , Sulfonamides/pharmacology , Sulfonamides/therapeutic use
18.
Nucleic Acids Res ; 39(Database issue): D800-6, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21045057

ABSTRACT

The Ensembl project (http://www.ensembl.org) seeks to enable genomic science by providing high quality, integrated annotation on chordate and selected eukaryotic genomes within a consistent and accessible infrastructure. All supported species include comprehensive, evidence-based gene annotations and a selected set of genomes includes additional data focused on variation, comparative, evolutionary, functional and regulatory annotation. The most advanced resources are provided for key species including human, mouse, rat and zebrafish reflecting the popularity and importance of these species in biomedical research. As of Ensembl release 59 (August 2010), 56 species are supported of which 5 have been added in the past year. Since our previous report, we have substantially improved the presentation and integration of both data of disease relevance and the regulatory state of different cell types.


Subject(s)
Databases, Genetic , Genomics , Animals , Genetic Variation , Humans , Mice , Molecular Sequence Annotation , Rats , Regulatory Sequences, Nucleic Acid , Software , Zebrafish/genetics
19.
Blood ; 116(16): 3080-8, 2010 Oct 21.
Article in English | MEDLINE | ID: mdl-20587785

ABSTRACT

In vivo alemtuzumab reduces the risk of graft-versus-host disease (GVHD) and nonrelapse mortality after reduced intensity allogeneic transplantation. However, it also delays immune reconstitution, leading to frequent infections and potential loss of graft-versus-tumor responses. Here, we tested the feasibility of alemtuzumab dose deescalation in the context of fludarabine-melphalan conditioning and human leukocyte antigen (HLA)-identical sibling transplantation. Alemtuzumab was given 1-2 days before graft infusion, and dose reduced from 60 mg to 20 mg in 4 sequential cohorts (total n = 106). Pharmacokinetic studies were fitted to a linear, 2-compartment model in which dose reduction led to incomplete saturation of CD52 binding sites and greater antibody clearance. Increased elimination was particularly evident in the 20-mg group in patients who had CD52-expressing tumors at time of transplantation. The 20-mg dose was also associated with greater risk of severe GVHD (acute grade III-IV or chronic extensive) compared with > 20 mg (hazard ratio, 6.7; 95% CI, 2.5-18.3). In contrast, dose reduction to 30 mg on day -1 was associated with equivalent clinical outcomes to higher doses but better lymphocyte recovery at 12 months. In conclusion, alemtuzumab dose reduction to 30 mg is safe in the context of reduced intensity conditioning and HLA-identical sibling transplantation. This trial was registered at http://www.ncrn.org.uk as UKCRN study 1415.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Antibodies, Neoplasm/therapeutic use , Antineoplastic Agents/therapeutic use , Graft vs Host Disease/prevention & control , HLA Antigens/immunology , Stem Cell Transplantation , Transplantation Conditioning , Adult , Alemtuzumab , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacokinetics , Antibodies, Monoclonal, Humanized , Antibodies, Neoplasm/administration & dosage , Antibodies, Neoplasm/immunology , Antigens, CD/immunology , Antigens, Neoplasm/immunology , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/immunology , Antineoplastic Agents/pharmacokinetics , CD52 Antigen , Female , Glycoproteins/immunology , Graft vs Host Disease/immunology , Graft vs Host Disease/pathology , Humans , Male , Melphalan/administration & dosage , Melphalan/therapeutic use , Middle Aged , Siblings , Stem Cell Transplantation/methods , Vidarabine/administration & dosage , Vidarabine/analogs & derivatives , Vidarabine/therapeutic use
20.
Blood ; 115(2): 326-30, 2010 Jan 14.
Article in English | MEDLINE | ID: mdl-19884644

ABSTRACT

Therapy-related acute promyelocytic leukemia (t-APL) with t(15;17)(q22;q21) involving the PML and RARA genes is associated with exposure to agents targeting topoisomerase II (topoII), particularly mitoxantrone and epirubicin. We previously have shown that mitoxantrone preferentially induces topoII-mediated DNA damage in a "hotspot region" within PML intron 6. To investigate mechanisms underlying epirubicin-associated t-APL, t(15;17) genomic breakpoints were characterized in 6 cases with prior breast cancer. Significant breakpoint clustering was observed in PML and RARA loci (P = .009 and P = .017, respectively), with PML breakpoints lying outside the mitoxantrone-associated hotspot region. Recurrent breakpoints identified in the PML and RARA loci in epirubicin-related t-APL were shown to be preferential sites of topoII-induced DNA damage, enhanced by epirubicin. Although site preferences for DNA damage differed between mitoxantrone and epirubicin, the observation that particular regions of the PML and RARA loci are susceptible to these agents may underlie their respective propensities to induce t-APL.


Subject(s)
Antibiotics, Antineoplastic/adverse effects , Breast Neoplasms/drug therapy , Chromosomes, Human, Pair 15/genetics , Chromosomes, Human, Pair 17/genetics , Epirubicin/adverse effects , Leukemia, Promyelocytic, Acute/genetics , Neoplasms, Second Primary/genetics , Translocation, Genetic/drug effects , Adult , Antibiotics, Antineoplastic/administration & dosage , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Chromosomes, Human, Pair 15/metabolism , Chromosomes, Human, Pair 17/metabolism , DNA Damage/drug effects , DNA Damage/genetics , DNA Topoisomerases, Type II/genetics , DNA Topoisomerases, Type II/metabolism , Epirubicin/administration & dosage , Female , Humans , Introns/genetics , Leukemia, Promyelocytic, Acute/chemically induced , Leukemia, Promyelocytic, Acute/metabolism , Middle Aged , Mitoxantrone/pharmacology , Neoplasms, Second Primary/chemically induced , Neoplasms, Second Primary/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Promyelocytic Leukemia Protein , Quantitative Trait Loci , Receptors, Retinoic Acid/genetics , Receptors, Retinoic Acid/metabolism , Retinoic Acid Receptor alpha , Topoisomerase II Inhibitors , Transcription Factors/genetics , Transcription Factors/metabolism , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL