Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 302
Filter
Add more filters

Publication year range
1.
Cell ; 179(5): 1191-1206.e21, 2019 11 14.
Article in English | MEDLINE | ID: mdl-31730857

ABSTRACT

This study identifies mechanisms mediating responses to immune checkpoint inhibitors using mouse models of triple-negative breast cancer. By creating new mammary tumor models, we find that tumor mutation burden and specific immune cells are associated with response. Further, we developed a rich resource of single-cell RNA-seq and bulk mRNA-seq data of immunotherapy-treated and non-treated tumors from sensitive and resistant murine models. Using this, we uncover that immune checkpoint therapy induces T follicular helper cell activation of B cells to facilitate the anti-tumor response in these models. We also show that B cell activation of T cells and the generation of antibody are key to immunotherapy response and propose a new biomarker for immune checkpoint therapy. In total, this work presents resources of new preclinical models of breast cancer with large mRNA-seq and single-cell RNA-seq datasets annotated for sensitivity to therapy and uncovers new components of response to immune checkpoint inhibitors.


Subject(s)
B-Lymphocytes/immunology , Immunotherapy , Mammary Neoplasms, Animal/genetics , Mammary Neoplasms, Animal/immunology , Mutation/genetics , T-Lymphocytes, Helper-Inducer/immunology , Animals , CTLA-4 Antigen/metabolism , Disease Models, Animal , Female , Gene Expression Regulation, Neoplastic , Genetic Engineering , Genome , Humans , Immunoglobulin G/metabolism , Lymphocyte Activation/immunology , Mammary Neoplasms, Animal/therapy , Receptors, Antigen, B-Cell/metabolism , Receptors, Antigen, T-Cell/metabolism , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/therapy
2.
Nature ; 629(8014): 1015-1020, 2024 May.
Article in English | MEDLINE | ID: mdl-38811709

ABSTRACT

Asteroids with diameters less than about 5 km have complex histories because they are small enough for radiative torques (that is, YORP, short for the Yarkovsky-O'Keefe-Radzievskii-Paddack effect)1 to be a notable factor in their evolution2. (152830) Dinkinesh is a small asteroid orbiting the Sun near the inner edge of the main asteroid belt with a heliocentric semimajor axis of 2.19 AU; its S-type spectrum3,4 is typical of bodies in this part of the main belt5. Here we report observations by the Lucy spacecraft6,7 as it passed within 431 km of Dinkinesh. Lucy revealed Dinkinesh, which has an effective diameter of only 720 m, to be unexpectedly complex. Of particular note is the presence of a prominent longitudinal trough overlain by a substantial equatorial ridge and the discovery of the first confirmed contact binary satellite, now named (152830) Dinkinesh I Selam. Selam consists of two near-equal-sized lobes with diameters of 210 m and 230 m. It orbits Dinkinesh at a distance of 3.1 km with an orbital period of about 52.7 h and is tidally locked. The dynamical state, angular momentum and geomorphologic observations of the system lead us to infer that the ridge and trough of Dinkinesh are probably the result of mass failure resulting from spin-up by YORP followed by the partial reaccretion of the shed material. Selam probably accreted from material shed by this event.

3.
Mol Cell ; 81(23): 4924-4941.e10, 2021 12 02.
Article in English | MEDLINE | ID: mdl-34739872

ABSTRACT

Deconvolution of regulatory mechanisms that drive transcriptional programs in cancer cells is key to understanding tumor biology. Herein, we present matched transcriptome (scRNA-seq) and chromatin accessibility (scATAC-seq) profiles at single-cell resolution from human ovarian and endometrial tumors processed immediately following surgical resection. This dataset reveals the complex cellular heterogeneity of these tumors and enabled us to quantitatively link variation in chromatin accessibility to gene expression. We show that malignant cells acquire previously unannotated regulatory elements to drive hallmark cancer pathways. Moreover, malignant cells from within the same patients show substantial variation in chromatin accessibility linked to transcriptional output, highlighting the importance of intratumoral heterogeneity. Finally, we infer the malignant cell type-specific activity of transcription factors. By defining the regulatory logic of cancer cells, this work reveals an important reliance on oncogenic regulatory elements and highlights the ability of matched scRNA-seq/scATAC-seq to uncover clinically relevant mechanisms of tumorigenesis in gynecologic cancers.


Subject(s)
Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , RNA, Small Cytoplasmic/genetics , Aged , Carcinogenesis , Chromatin/metabolism , Enhancer Elements, Genetic , Epithelial-Mesenchymal Transition , Female , Gastrointestinal Stromal Tumors/genetics , Gene Library , Genetic Techniques , Genomics , Humans , Kaplan-Meier Estimate , Middle Aged , Oncogenes , Ovary/metabolism , Proteomics , RNA-Seq , Regulatory Elements, Transcriptional , Transcription Factors/metabolism , Transcriptome
4.
Immunity ; 48(4): 812-830.e14, 2018 04 17.
Article in English | MEDLINE | ID: mdl-29628290

ABSTRACT

We performed an extensive immunogenomic analysis of more than 10,000 tumors comprising 33 diverse cancer types by utilizing data compiled by TCGA. Across cancer types, we identified six immune subtypes-wound healing, IFN-γ dominant, inflammatory, lymphocyte depleted, immunologically quiet, and TGF-ß dominant-characterized by differences in macrophage or lymphocyte signatures, Th1:Th2 cell ratio, extent of intratumoral heterogeneity, aneuploidy, extent of neoantigen load, overall cell proliferation, expression of immunomodulatory genes, and prognosis. Specific driver mutations correlated with lower (CTNNB1, NRAS, or IDH1) or higher (BRAF, TP53, or CASP8) leukocyte levels across all cancers. Multiple control modalities of the intracellular and extracellular networks (transcription, microRNAs, copy number, and epigenetic processes) were involved in tumor-immune cell interactions, both across and within immune subtypes. Our immunogenomics pipeline to characterize these heterogeneous tumors and the resulting data are intended to serve as a resource for future targeted studies to further advance the field.


Subject(s)
Genomics/methods , Neoplasms , Adolescent , Adult , Aged , Aged, 80 and over , Child , Female , Humans , Interferon-gamma/genetics , Interferon-gamma/immunology , Macrophages/immunology , Male , Middle Aged , Neoplasms/classification , Neoplasms/genetics , Neoplasms/immunology , Prognosis , Th1-Th2 Balance/physiology , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/immunology , Wound Healing/genetics , Wound Healing/immunology , Young Adult
5.
Nature ; 586(7831): 697-701, 2020 10.
Article in English | MEDLINE | ID: mdl-33116289

ABSTRACT

On 12 November 2014, the Philae lander descended towards comet 67P/Churyumov-Gerasimenko, bounced twice off the surface, then arrived under an overhanging cliff in the Abydos region. The landing process provided insights into the properties of a cometary nucleus1-3. Here we report an investigation of the previously undiscovered site of the second touchdown, where Philae spent almost two minutes of its cross-comet journey, producing four distinct surface contacts on two adjoining cometary boulders. It exposed primitive water ice-that is, water ice from the time of the comet's formation 4.5 billion years ago-in their interiors while travelling through a crevice between the boulders. Our multi-instrument observations made 19 months later found that this water ice, mixed with ubiquitous dark organic-rich material, has a local dust/ice mass ratio of [Formula: see text], matching values previously observed in freshly exposed water ice from outbursts4 and water ice in shadow5,6. At the end of the crevice, Philae made a 0.25-metre-deep impression in the boulder ice, providing in situ measurements confirming that primitive ice has a very low compressive strength (less than 12 pascals, softer than freshly fallen light snow) and allowing a key estimation to be made of the porosity (75 ± 7 per cent) of the boulders' icy interiors. Our results provide constraints for cometary landers seeking access to a volatile-rich ice sample.

6.
Mol Cell ; 72(2): 341-354.e6, 2018 10 18.
Article in English | MEDLINE | ID: mdl-30270106

ABSTRACT

Androgen receptor splice variant 7 (AR-V7) is crucial for prostate cancer progression and therapeutic resistance. We show that, independent of ligand, AR-V7 binds both androgen-responsive elements (AREs) and non-canonical sites distinct from full-length AR (AR-FL) targets. Consequently, AR-V7 not only recapitulates AR-FL's partial functions but also regulates an additional gene expression program uniquely via binding to gene promoters rather than ARE enhancers. AR-V7 binding and AR-V7-mediated activation at these unique targets do not require FOXA1 but rely on ZFX and BRD4. Knockdown of ZFX or select unique targets of AR-V7/ZFX, or BRD4 inhibition, suppresses growth of castration-resistant prostate cancer cells. We also define an AR-V7 direct target gene signature that correlates with AR-V7 expression in primary tumors, differentiates metastatic prostate cancer from normal, and predicts poor prognosis. Thus, AR-V7 has both ARE/FOXA1 canonical and ZFX-directed non-canonical regulatory functions in the evolution of anti-androgen therapeutic resistance, providing information to guide effective therapeutic strategies.


Subject(s)
Alternative Splicing/genetics , Carcinogenesis/genetics , Kruppel-Like Transcription Factors/genetics , Oncogenes/genetics , Prostatic Neoplasms, Castration-Resistant/genetics , Receptors, Androgen/genetics , Animals , Cell Differentiation/genetics , Cell Line , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic/genetics , HEK293 Cells , Hepatocyte Nuclear Factor 3-alpha/genetics , Humans , Male , Mice , Mice, Inbred NOD , Mice, SCID , Nuclear Proteins/genetics , Promoter Regions, Genetic/genetics
7.
Genome Res ; 31(12): 2327-2339, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34815311

ABSTRACT

Chromatin accessibility states that influence gene expression and other nuclear processes can be altered in disease. The constellation of transcription factors and chromatin regulatory complexes in cells results in characteristic patterns of chromatin accessibility. The study of these patterns in tissues has been limited because existing chromatin accessibility assays are ineffective for archival formalin-fixed, paraffin-embedded (FFPE) tissues. We have developed a method to efficiently extract intact chromatin from archival tissue via enhanced cavitation with a nanodroplet reagent consisting of a lipid shell with a liquid perfluorocarbon core. Inclusion of nanodroplets during the extraction of chromatin from FFPE tissues enhances the recovery of intact accessible and nucleosome-bound chromatin. We show that the addition of nanodroplets to the chromatin accessibility assay formaldehyde-assisted isolation of regulatory elements (FAIRE), does not affect the accessible chromatin signal. Applying the technique to FFPE human tumor xenografts, we identified tumor-relevant regions of accessible chromatin shared with those identified in primary tumors. Further, we deconvoluted non-tumor signal to identify cellular components of the tumor microenvironment. Incorporation of this method of enhanced cavitation into FAIRE offers the potential for extending chromatin accessibility to clinical diagnosis and personalized medicine, while also enabling the exploration of gene regulatory mechanisms in archival samples.

8.
RNA ; 28(4): 523-540, 2022 04.
Article in English | MEDLINE | ID: mdl-35082143

ABSTRACT

Alternative splicing transitions occur during organ development, and, in numerous diseases, splicing programs revert to fetal isoform expression. We previously found that extensive splicing changes occur during postnatal mouse heart development in genes encoding proteins involved in vesicle-mediated trafficking. However, the regulatory mechanisms of this splicing-trafficking network are unknown. Here, we found that membrane trafficking genes are alternatively spliced in a tissue-specific manner, with striated muscles exhibiting the highest levels of alternative exon inclusion. Treatment of differentiated muscle cells with chromatin-modifying drugs altered exon inclusion in muscle cells. Examination of several RNA-binding proteins revealed that the poly-pyrimidine tract binding protein 1 (PTBP1) and quaking regulate splicing of trafficking genes during myogenesis, and that removal of PTBP1 motifs prevented PTBP1 from binding its RNA target. These findings enhance our understanding of developmental splicing regulation of membrane trafficking proteins which might have implications for muscle disease pathogenesis.


Subject(s)
Alternative Splicing , Polypyrimidine Tract-Binding Protein , Animals , Exons , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Mice , Muscle Development/genetics , Polypyrimidine Tract-Binding Protein/genetics , Polypyrimidine Tract-Binding Protein/metabolism
9.
PLoS Comput Biol ; 19(5): e1011095, 2023 05.
Article in English | MEDLINE | ID: mdl-37141389

ABSTRACT

The clinical approvals of KRAS G12C inhibitors have been a revolutionary advance in precision oncology, but response rates are often modest. To improve patient selection, we developed an integrated model to predict KRAS dependency. By integrating molecular profiles of a large panel of cell lines from the DEMETER2 dataset, we built a binary classifier to predict a tumor's KRAS dependency. Monte Carlo cross validation via ElasticNet within the training set was used to compare model performance and to tune parameters α and λ. The final model was then applied to the validation set. We validated the model with genetic depletion assays and an external dataset of lung cancer cells treated with a G12C inhibitor. We then applied the model to several Cancer Genome Atlas (TCGA) datasets. The final "K20" model contains 20 features, including expression of 19 genes and KRAS mutation status. In the validation cohort, K20 had an AUC of 0.94 and accurately predicted KRAS dependency in both mutant and KRAS wild-type cell lines following genetic depletion. It was also highly predictive across an external dataset of lung cancer lines treated with KRAS G12C inhibition. When applied to TCGA datasets, specific subpopulations such as the invasive subtype in colorectal cancer and copy number high pancreatic adenocarcinoma were predicted to have higher KRAS dependency. The K20 model has simple yet robust predictive capabilities that may provide a useful tool to select patients with KRAS mutant tumors that are most likely to respond to direct KRAS inhibitors.


Subject(s)
Adenocarcinoma , Lung Neoplasms , Pancreatic Neoplasms , Humans , Adenocarcinoma/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Precision Medicine , Lung Neoplasms/pathology , Mutation
10.
Vox Sang ; 119(7): 693-701, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38631895

ABSTRACT

BACKGROUND AND OBJECTIVES: Platelet concentrates (PC) are stored at 20-24°C to maintain platelet functionality, which may promote growth of contaminant bacteria. Alternatively, cold storage of PC limits bacterial growth; however, data related to proliferation of psychotrophic species in cold-stored PC (CSP) are scarce, which is addressed in this study. MATERIALS AND METHODS: Eight laboratories participated in this study with a pool/split approach. Two split PC units were spiked with ~25 colony forming units (CFU)/PC of Staphylococcus aureus, Klebsiella pneumoniae, Serratia liquefaciens, Pseudomonas fluorescens and Listeria monocytogenes. One unit was stored under agitation at 20-24°C/7 days while the second was stored at 1-6°C/no agitation for 21 days. PC were sampled periodically to determine bacterial loads. Five laboratories repeated the study with PC inoculated with lyophilized inocula (~30 CFU/mL) of S. aureus and K. pneumoniae. RESULTS: All species proliferated in PC stored at 20-24°C, reaching concentrations of ≤109 CFU/mL by day 7. Psychrotrophic P. fluorescens and S. liquefaciens proliferated in CSP to ~106 CFU/mL and ~105 CFU/mL on days 10 and 17 of storage, respectively, followed by L. monocytogenes, which reached ~102 CFU/mL on day 21. S. aureus and K. pneumoniae did not grow in CSP. CONCLUSION: Psychrotrophic bacteria, which are relatively rare contaminants in PC, proliferated in CSP, with P. fluorescens reaching clinically significant levels (≥105 CFU/mL) before day 14 of storage. Cold storage reduces bacterial risk of PC to levels comparable with RBC units. Safety of CSP could be further improved by implementing bacterial detection systems or pathogen reduction technologies if storage is beyond 10 days.


Subject(s)
Blood Platelets , Blood Preservation , Humans , Blood Platelets/microbiology , Blood Preservation/methods , Cold Temperature , Bacteria/growth & development
11.
Cell ; 136(6): 1122-35, 2009 Mar 20.
Article in English | MEDLINE | ID: mdl-19303854

ABSTRACT

Although in vitro studies of embryonic stem cells have identified polycomb repressor complexes (PRCs) as key regulators of differentiation, it remains unclear as to how PRC-mediated mechanisms control fates of multipotent progenitors in developing tissues. Here, we show that an essential PRC component, Ezh2, is expressed in epidermal progenitors but diminishes concomitant with embryonic differentiation and with postnatal decline in proliferative activity. We show that Ezh2 controls proliferative potential of basal progenitors by repressing the Ink4A-Ink4B locus and tempers the developmental rate of differentiation by preventing premature recruitment of AP1 transcriptional activator to the structural genes that are required for epidermal differentiation. Together, our studies reveal that PRCs control epigenetic modifications temporally and spatially in tissue-restricted stem cells. They maintain their proliferative potential and globally repressing undesirable differentiation programs while selectively establishing a specific terminal differentiation program in a stepwise fashion.


Subject(s)
Cell Differentiation , Epidermal Cells , Epidermis/metabolism , Gene Expression Regulation, Developmental , Histone-Lysine N-Methyltransferase/metabolism , Stem Cells/metabolism , Animals , Cell Nucleus/metabolism , Cyclin-Dependent Kinase Inhibitor p15/metabolism , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Enhancer of Zeste Homolog 2 Protein , Histones/metabolism , Humans , Methylation , Mice , Polycomb Repressive Complex 2 , Polycomb-Group Proteins , Repressor Proteins/metabolism
12.
Article in English | MEDLINE | ID: mdl-37944574

ABSTRACT

Eosinophilic esophagitis (EoE) is an allergic inflammatory condition of the esophagus, often diagnosed late because of its challenging symptoms and costly and invasive diagnostic methods.1,2 To address the need for more accessible biomarkers in EoE,3 we aimed to investigate the potential of whole-blood RNA expression as a noninvasive biomarker for diagnosing and monitoring EoE, hypothesizing that genetic signatures in blood could distinguish EoE cases, correlate with disease activity, and predict treatment responses.

13.
Pharmacogenomics J ; 23(4): 73-81, 2023 07.
Article in English | MEDLINE | ID: mdl-36709390

ABSTRACT

Tumor DNA sequencing is becoming standard-of-care for patient treatment decisions. We evaluated genotype concordance between tumor DNA and genomic DNA from blood and catalogued functional effects of somatic mutations in 21 drug response genes in 752 solid tumor patients. Using a threshold of 10% difference between tumor and blood DNA variant allele fraction (VAF), concordance for heterogenous genotype calls was 78% and increased to 97.5% using a 30% VAF threshold. Somatic mutations were observed in all 21 drug response genes, and 44% of patients had at least one somatic mutation in these genes. In tumor DNA, eight patients had a frameshift mutation in CYP2C8, which metabolizes taxanes. Overall, somatic copy number losses were more frequent than gains, including for CYP2C19 and CYP2D6 which had the most frequent copy number losses. However, copy number gains in TPMT were more than four times as common as losses. Seven % of patients had copy number gains in ABCB1, a multidrug resistance transporter of anti-cancer agents. These results demonstrate tumor-only DNA sequencing might not be reliable to call germline genotypes of drug response variants.


Subject(s)
Neoplasms , Precision Medicine , Humans , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/pathology , DNA , Genotype , Sequence Analysis, DNA , Mutation/genetics , High-Throughput Nucleotide Sequencing , DNA Copy Number Variations/genetics
14.
PLoS Pathog ; 17(2): e1009346, 2021 02.
Article in English | MEDLINE | ID: mdl-33635929

ABSTRACT

Transcriptional silencing of HIV in CD4 T cells generates a reservoir of latently infected cells that can reseed infection after interruption of therapy. As such, these cells represent the principal barrier to curing HIV infection, but little is known about their characteristics. To further our understanding of the molecular mechanisms of latency, we characterized a primary cell model of HIV latency in which infected cells adopt heterogeneous transcriptional fates. In this model, we observed that latency is a stable, heritable state that is transmitted through cell division. Using Assay of Transposon-Accessible Chromatin sequencing (ATACseq) we found that latently infected cells exhibit greatly reduced proviral accessibility, indicating the presence of chromatin-based structural barriers to viral gene expression. By quantifying the activity of host cell transcription factors, we observe elevated activity of Forkhead and Kruppel-like factor transcription factors (TFs), and reduced activity of AP-1, RUNX and GATA TFs in latently infected cells. Interestingly, latency reversing agents with different mechanisms of action caused distinct patterns of chromatin reopening across the provirus. We observe that binding sites for the chromatin insulator CTCF are highly enriched in the differentially open chromatin of infected CD4 T cells. Furthermore, depletion of CTCF inhibited HIV latency, identifying this factor as playing a key role in the initiation or enforcement of latency. These data indicate that HIV latency develops preferentially in cells with a distinct pattern of TF activity that promotes a closed proviral structure and inhibits viral gene expression. Furthermore, these findings identify CTCF as a novel regulator of HIV latency.


Subject(s)
CD4-Positive T-Lymphocytes/metabolism , Chromatin/metabolism , Epigenomics/methods , HIV-1/physiology , Host-Pathogen Interactions , Transcription Factors/metabolism , Virus Latency , Binding Sites , CD4-Positive T-Lymphocytes/virology , Chromatin/genetics , HIV Infections/genetics , HIV Infections/metabolism , HIV Infections/virology , Humans , Jurkat Cells , Transcription Factors/genetics , Virus Activation
16.
Nucleic Acids Res ; 49(9): 4971-4988, 2021 05 21.
Article in English | MEDLINE | ID: mdl-33849067

ABSTRACT

Castration-resistant prostate cancer (CRPC) is a terminal disease and the molecular underpinnings of CRPC development need to be better understood in order to improve its treatment. Here, we report that a transcription factor Yin Yang 1 (YY1) is significantly overexpressed during prostate cancer progression. Functional and cistrome studies of YY1 uncover its roles in promoting prostate oncogenesis in vitro and in vivo, as well as sustaining tumor metabolism including the Warburg effect and mitochondria respiration. Additionally, our integrated genomics and interactome profiling in prostate tumor show that YY1 and bromodomain-containing proteins (BRD2/4) co-occupy a majority of gene-regulatory elements, coactivating downstream targets. Via gene loss-of-function and rescue studies and mutagenesis of YY1-bound cis-elements, we unveil an oncogenic pathway in which YY1 directly binds and activates PFKP, a gene encoding the rate-limiting enzyme for glycolysis, significantly contributing to the YY1-enforced Warburg effect and malignant growth. Altogether, this study supports a master regulator role for YY1 in prostate tumorigenesis and reveals a YY1:BRD2/4-PFKP axis operating in advanced prostate cancer with implications for therapy.


Subject(s)
Gene Expression Regulation, Neoplastic , Phosphofructokinase-1, Type C/genetics , Prostatic Neoplasms, Castration-Resistant/genetics , YY1 Transcription Factor/metabolism , Animals , Carcinogenesis , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Glycolysis , HEK293 Cells , Humans , Male , Mice, SCID , Phosphofructokinase-1, Type C/physiology , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/pathology , Transcription Factors/metabolism , Transcriptional Activation , YY1 Transcription Factor/genetics , YY1 Transcription Factor/physiology
17.
Dis Esophagus ; 36(4)2023 Mar 30.
Article in English | MEDLINE | ID: mdl-36222072

ABSTRACT

Few predictors of response to topical corticosteroid (tCS) treatment have been identified in eosinophilic esophagitis (EoE). We aimed to determine whether baseline gene expression predicts histologic response to tCS treatment for EoE. We analyzed prospectively collected samples from incident EoE cases who were treated with tCS for 8 weeks in a development cohort (prospective study) or in an independent validation cohort (clinical trial). Whole transcriptome RNA expression was determined from a baseline (pre-treatment) RNA-later preserved esophageal biopsy. Baseline expression was compared between histologic responders (<15 eos/hpf) and non-responders (≥15 eos/hpf), and differential correlation was used to assess baseline gene expression by response status. In 87 EoE cases analyzed in the development set, there were no differentially expressed genes associated with treatment response (at false discovery rate = 0.1). However, differential correlation identified a module of 22 genes with statistically significantly high pairwise correlation in non-responders (mean correlation coefficient = 0.7) compared to low correlation in responders (coefficient = 0.3). When this 22-gene module was applied to the 89 EoE cases in the independent cohort, it was not validated to predict tCS response at the 15 eos/hpf threshold (mean correlation coefficient = 0.32 in responders and 0.25 in nonresponders). Exploration of other thresholds also did not validate any modules. Though we identified a 22 gene differential correlation module measured pre-treatment that was strongly associated with subsequent histologic response to tCS in EoE, this was not validated in an independent population. Alternative methods to predict steroid response should be explored.


Subject(s)
Eosinophilic Esophagitis , Humans , Eosinophilic Esophagitis/drug therapy , Eosinophilic Esophagitis/genetics , Eosinophilic Esophagitis/complications , Prospective Studies , Glucocorticoids/therapeutic use , Steroids/therapeutic use , Gene Expression
18.
Blood ; 135(13): 1008-1018, 2020 03 26.
Article in English | MEDLINE | ID: mdl-31977005

ABSTRACT

Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous disease, commonly described by cell-of-origin (COO) molecular subtypes. We sought to identify novel patient subgroups through an unsupervised analysis of a large public dataset of gene expression profiles from newly diagnosed de novo DLBCL patients, yielding 2 biologically distinct subgroups characterized by differences in the tumor microenvironment. Pathway analysis and immune deconvolution algorithms identified higher B-cell content and a strong proliferative signal in subgroup A and enriched T-cell, macrophage, and immune/inflammatory signals in subgroup B, reflecting similar biology to published DLBCL stratification research. A gene expression classifier, featuring 26 gene expression scores, was derived from the public dataset to discriminate subgroup A (classifier-negative, immune-low) and subgroup B (classifier-positive, immune-high) patients. Subsequent application to an independent series of diagnostic biopsies replicated the subgroups, with immune cell composition confirmed via immunohistochemistry. Avadomide, a CRL4CRBN E3 ubiquitin ligase modulator, demonstrated clinical activity in relapsed/refractory DLBCL patients, independent of COO subtypes. Given the immunomodulatory activity of avadomide and the need for a patient-selection strategy, we applied the gene expression classifier to pretreatment biopsies from relapsed/refractory DLBCL patients receiving avadomide (NCT01421524). Classifier-positive patients exhibited an enrichment in response rate and progression-free survival of 44% and 6.2 months vs 19% and 1.6 months for classifier-negative patients (hazard ratio, 0.49; 95% confidence interval, 0.280-0.86; P = .0096). The classifier was not prognostic for rituximab, cyclophosphamide, doxorubicin, vincristine, prednisone or salvage immunochemotherapy. The classifier described here discriminates DLBCL tumors based on tumor and nontumor composition and has potential utility to enrich for clinical response to immunomodulatory agents, including avadomide.


Subject(s)
Gene Expression Regulation, Neoplastic , Lymphoma, Large B-Cell, Diffuse/genetics , Adult , Aged , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biopsy , Computational Biology/methods , Female , Fluorescent Antibody Technique , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , Gene Regulatory Networks , Humans , Lymphoma, Large B-Cell, Diffuse/diagnosis , Lymphoma, Large B-Cell, Diffuse/drug therapy , Male , Middle Aged , Reproducibility of Results , Transcriptome
19.
Proc Natl Acad Sci U S A ; 116(7): 2603-2611, 2019 02 12.
Article in English | MEDLINE | ID: mdl-30683717

ABSTRACT

The activation of cellular senescence throughout the lifespan promotes tumor suppression, whereas the persistence of senescent cells contributes to aspects of aging. This theory has been limited, however, by an inability to identify and isolate individual senescent cells within an intact organism. Toward that end, we generated a murine reporter strain by "knocking-in" a fluorochrome, tandem-dimer Tomato (tdTom), into exon 1α of the p16INK4a locus. We used this allele (p16tdTom ) for the enumeration, isolation, and characterization of individual p16INK4a -expressing cells (tdTom+). The half-life of the knocked-in transcript was shorter than that of the endogenous p16INK4a mRNA, and therefore reporter expression better correlated with p16INK4a promoter activation than p16INK4a transcript abundance. The frequency of tdTom+ cells increased with serial passage in cultured murine embryo fibroblasts from p16tdTom/+ mice. In adult mice, tdTom+ cells could be readily detected at low frequency in many tissues, and the frequency of these cells increased with aging. Using an in vivo model of peritoneal inflammation, we compared the phenotype of cells with or without activation of p16INK4a and found that tdTom+ macrophages exhibited some features of senescence, including reduced proliferation, senescence-associated ß-galactosidase (SA-ß-gal) activation, and increased mRNA expression of a subset of transcripts encoding factors involved in SA-secretory phenotype (SASP). These results indicate that cells harboring activation of the p16INK4a promoter accumulate with aging and inflammation in vivo, and display characteristics of senescence.


Subject(s)
Cellular Senescence/genetics , Cyclin-Dependent Kinase Inhibitor p16/genetics , Promoter Regions, Genetic , Animals , Cell Proliferation , Enzyme Activation , Fibroblasts/metabolism , Half-Life , Humans , Mice , Phenotype , RNA, Messenger/genetics , beta-Galactosidase/metabolism
20.
BMC Genomics ; 22(1): 489, 2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34193041

ABSTRACT

BACKGROUND: Preterm birth is the leading cause of neonatal morbidity and mortality, but research efforts in neonatology are complicated due to the unavailability of large volume blood samples. Whole blood assays can be used to overcome this problem by performing both functional and gene expression studies using small amounts of blood. Gene expression studies using RT-qPCR estimate mRNA-levels of target genes normalized to reference genes. The goal of this study was to identify and validate stable reference genes applicable to cord blood samples obtained from developing neonates of different gestational age groups as well as to adult peripheral blood samples. Eight reference gene candidates (ACTB, B2M, GAPDH, GUSB, HPRT, PPIB, RPLP0, RPL13) were analyzed using the three published software algorithms Bestkeeper, GeNorm and NormFinder. RESULTS: A normalization factor consisting of ACTB and PPIB allows for comparative expression analyses of neonatal samples from different gestational age groups. Normalization factors consisting of GAPDH and PPIB or ACTB and GAPDH are suitable when samples from preterm and full-term neonates and adults are compared. However, all candidate reference genes except RPLP0 exhibited significant intergroup gene expression variance and a higher gene expression towards an older age which resulted in a small but statistically significant systematic bias. Systematic analysis of RNA-seq data revealed new reference gene candidates with potentially superior stability. CONCLUSIONS: The current study identified suitable normalization factors and proposed the use of the additional single gene RPLP0 to avoid systematic bias. This combination will enable comparative analyses not only between neonates of different gestational ages, but also between neonates and adults, as it facilitates more detailed investigations of developmental gene expression changes. The use of software algorithms did not prevent unintended systematic bias. This generally highlights the need for careful validation of such results to prevent false interpretation of potential age-dependent changes in gene expression. To identify the most stable reference genes in the future, RNA-seq based global approaches are recommended.


Subject(s)
Fetal Blood , Premature Birth , Adult , Aged , Female , Gene Expression , Gene Expression Profiling , Humans , Infant, Newborn , Neoplasm Proteins , Pregnancy , Real-Time Polymerase Chain Reaction , Reference Standards , Ribosomal Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL