Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 148
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Mol Biol Rep ; 51(1): 600, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38689046

ABSTRACT

Single-cell sequencing was developed as a high-throughput tool to elucidate unusual and transient cell states that are barely visible in the bulk. This technology reveals the evolutionary status of cells and differences between populations, helps to identify unique cell subtypes and states, reveals regulatory relationships between genes, targets and molecular mechanisms in disease processes, tumor heterogeneity, the state of the immune environment, etc. However, the high cost and technical limitations of single-cell sequencing initially prevented its widespread application, but with advances in research, numerous new single-cell sequencing techniques have been discovered, lowering the cost barrier. Many single-cell sequencing platforms and bioinformatics methods have recently become commercially available, allowing researchers to make fascinating observations. They are now increasingly being used in various industries. Several protocols have been discovered in this context and each technique has unique characteristics, capabilities and challenges. This review presents the latest advancements in single-cell transcriptomics technologies. This includes single-cell transcriptomics approaches, workflows and statistical approaches to data processing, as well as the potential advances, applications, opportunities and challenges of single-cell transcriptomics technology. You will also get an overview of the entry points for spatial transcriptomics and multi-omics.


Subject(s)
Computational Biology , Gene Expression Profiling , Single-Cell Analysis , Transcriptome , Single-Cell Analysis/methods , Humans , Gene Expression Profiling/methods , Computational Biology/methods , Transcriptome/genetics , High-Throughput Nucleotide Sequencing/methods , Animals
2.
Molecules ; 26(16)2021 Aug 08.
Article in English | MEDLINE | ID: mdl-34443388

ABSTRACT

The purpose of this study was to examine the free radical scavenging and antioxidant activities of ellagic acid (EA) and ellagic acid peracetate (EAPA) by measuring their reactions with the radicals, 2,2-diphenyl-1-picrylhydrazyl and galvinoxyl using EPR spectroscopy. We have also evaluated the influence of EA and EAPA on the ROS production in L-6 myoblasts and rat liver microsomal lipid peroxidation catalyzed by NADPH. The results obtained clearly indicated that EA has tremendous ability to scavenge free radicals, even at concentration of 1 µM. Interestingly even in the absence of esterase, EAPA, the acetylated product of EA, was also found to be a good scavenger but at a relatively slower rate. Kinetic studies revealed that both EA and EAPA have ability to scavenge free radicals at the concentrations of 1 µM over extended periods of time. In cellular systems, EA and EAPA were found to have similar potentials for the inhibition of ROS production in L-6 myoblasts and NADPH-dependent catalyzed microsomal lipid peroxidation.


Subject(s)
Electron Spin Resonance Spectroscopy , Ellagic Acid/analogs & derivatives , Ellagic Acid/pharmacology , Free Radical Scavengers/pharmacology , Peracetic Acid/analogs & derivatives , Animals , Kinetics , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Peracetic Acid/pharmacology , Rats
3.
Org Biomol Chem ; 18(40): 7987-8033, 2020 10 21.
Article in English | MEDLINE | ID: mdl-33000845

ABSTRACT

From the viewpoint of meeting the current green chemistry challenges in chemical synthesis, there is a need to disseminate how the cocktail of acylation and activation can play a pivotal role in affording bioactive acylated products comprising substituted ketone motifs in fewer reaction steps, with higher atom-economy and improved selectivity. In recent years, a significant number of articles employing the title compounds "aldehydes" as magnificent acylation surrogates which are less toxic and widely applicable have been published. This review sheds light on the compounds use for selective acylation of arene, heteroarene and alkyl (sp3, sp2 and sp) C-H bonds by proficient utilization of the C-H activation strategy. Critical insights into selective acylation of diverse moieties for the synthesis of bioactive compounds are presented in this review that will enable academic and industrial researchers to understand the mechanistic aspects involved and fruitfully employ these strategies in designing novel molecules.

4.
Molecules ; 24(21)2019 Oct 30.
Article in English | MEDLINE | ID: mdl-31671703

ABSTRACT

The synthesis of novel pyrazolylnucleosides 3a-e, 4a-e, 5a-e, and 6a-e are described. The structures of the regioisomers were elucidated by using extensive NMR studies. The pyrazolylnucleosides 5a-e and 6a-e were screened for anticancer activities on sixty human tumor cell lines. The compound 6e showed good activity against 39 cancer cell lines. In particular, it showed significant inhibition against the lung cancer cell line Hop-92 (GI50 9.3 µM) and breast cancer cell line HS 578T (GI50 3.0 µM).


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Nucleosides/chemical synthesis , Nucleosides/pharmacology , Pyrazines/chemical synthesis , Pyrazines/pharmacology , Antineoplastic Agents/chemistry , Carbon-13 Magnetic Resonance Spectroscopy , Nucleosides/chemistry , Proton Magnetic Resonance Spectroscopy , Pyrazines/chemistry , Stereoisomerism , Toxicity Tests
5.
Appl Environ Microbiol ; 84(24)2018 12 15.
Article in English | MEDLINE | ID: mdl-30389764

ABSTRACT

Botulinum neurotoxins (BoNTs), the most poisonous proteins known to humankind, are a family of seven (serotype A to G) immunologically distinct proteins synthesized primarily by different strains of the anaerobic bacterium Clostridium botulinum Being the causative agents of botulism, the toxins block neurotransmitter release by specifically cleaving one of the three soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) proteins, thereby inducing flaccid paralysis. The development of countermeasures and therapeutics against BoNTs is a high-priority research area for public health because of their extreme toxicity and potential for use as biowarfare agents. Extensive research has focused on designing antagonists that block the catalytic activity of BoNTs. In this study, we screened 300 small natural compounds and their analogues extracted from Indian plants for their activity against BoNT serotype A (BoNT/A) as well as its light chain (LCA) using biochemical and cellular assays. One natural compound, a nitrophenyl psoralen (NPP), was identified to be a specific inhibitor of LCA with an in vitro 50% inhibitory concentration (IC50) value of 4.74 ± 0.03 µM. NPP was able to rescue endogenous synaptosome-associated protein 25 (SNAP-25) from cleavage by BoNT/A in human neuroblastoma cells with an IC50 of 12.2 ± 1.7 µM, as well as to prolong the time to the blocking of neutrally elicited twitch tensions in isolated mouse phrenic nerve-hemidiaphragm preparations.IMPORTANCE The long-lasting endopeptidase activity of BoNT is a critical biological activity inside the nerve cell, as it prompts proteolysis of the SNARE proteins, involved in the exocytosis of the neurotransmitter acetylcholine. Thus, the BoNT endopeptidase activity is an appropriate clinical target for designing new small-molecule antidotes against BoNT with the potential to reverse the paralysis syndrome of botulism. In principle, small-molecule inhibitors (SMIs) can gain entry into BoNT-intoxicated cells if they have a suitable octanol-water partition coefficient (log P) value and other favorable characteristics (P. Leeson, Nature 481:455-456, 2012, https://doi.org/10.1038/481455a). Several efforts have been made in the past to develop SMIs, but inhibitors effective under in vitro conditions have not in general been effective in vivo or in cellular models (L. M. Eubanks, M. S. Hixon, W. Jin, S. Hong, et al., Proc Natl Acad Sci U S A 104:2602-2607, 2007, https://doi.org/10.1073/pnas.0611213104). The difference between the in vitro and cellular efficacy presumably results from difficulties experienced by the compounds in crossing the cell membrane, in conjunction with poor bioavailability and high cytotoxicity. The screened nitrophenyl psoralen (NPP) effectively antagonized BoNT/A in both in vitro and ex vivo assays. Importantly, NPP inhibited the BoNT/A light chain but not other general zinc endopeptidases, such as thermolysin, suggesting high selectivity for its target. Small-molecule (nonpeptidic) inhibitors have better oral bioavailability, better stability, and better tissue and cell permeation than antitoxins or peptide inhibitors.


Subject(s)
Antidotes/pharmacology , Antidotes/therapeutic use , Antitoxins/pharmacology , Antitoxins/therapeutic use , Bacterial Toxins/antagonists & inhibitors , Animals , Botulinum Toxins, Type A/antagonists & inhibitors , Cell Line, Tumor/drug effects , Clostridium botulinum , Disease Models, Animal , Endopeptidases , High-Throughput Screening Assays , Humans , India , Inhibitory Concentration 50 , Male , Mice , Neuroblastoma/drug therapy , Plant Extracts/pharmacology , SNARE Proteins/metabolism , Synaptosomal-Associated Protein 25/metabolism , Thermolysin
6.
J Sci Food Agric ; 98(10): 3784-3794, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29344958

ABSTRACT

BACKGROUND: Coumarin derivatives possess a wide range of biological activities. By functionalization of the parent coumarin skeleton that has neither antioxidant nor biological activity, a series of new bio-antioxidants has been designed. RESULTS: New antioxidant compositions (equimolar binary and ternary mixtures) of eight 4-methylcoumarins and three related compounds have been tested and different effects between individual components have been observed: synergism (positive effect), additivism (summary effect) and antagonism (negative effect). Higher oxidative stability of the lipid substrate was obtained in the presence of the new antioxidant compositions of the studied compounds with dl-α-tocopherol and l-ascorbic acid. The role of each component in the antioxidant compositions of ternary mixtures has been identified by using new equations composed by the authors. CONCLUSION: All ternary mixtures demonstrate synergism as a result of continuous regeneration of dl-α-tocopherol from the studied antioxidants and l-ascorbic acid. Theoretical calculations have been probed as indicators of the expected effects between the individual components in a binary mixture. © 2018 Society of Chemical Industry.


Subject(s)
Antioxidants/chemistry , Ascorbic Acid/chemistry , Coumarins/chemistry , Protective Agents/chemistry , alpha-Tocopherol/chemistry , Kinetics , Molecular Structure
7.
Article in English | MEDLINE | ID: mdl-28607028

ABSTRACT

Despite recent advances in diagnostic and therapeutic methods in antifungal research, aspergillosis still remains a leading cause of morbidity and mortality. One strategy to address this problem is to enhance the activity spectrum of known antifungals, and we now report the first successful application of Candida antarctica lipase (CAL) for the preparation of optically enriched fluconazole analogues. Anti-Aspergillus activity was observed for an optically enriched derivative, (-)-S-2-(2',4'-difluorophenyl)-1-hexyl-amino-3-(1‴,2‴,4‴)triazol-1‴-yl-propan-2-ol, which exhibits MIC values of 15.6 µg/ml and 7.8 µg/disc in broth microdilution and disc diffusion assays, respectively. This compound is tolerated by mammalian erythrocytes and cell lines (A549 and U87) at concentrations of up to 1,000 µg/ml. When incorporated into dextran nanoparticles, the novel, optically enriched fluconazole analogue exhibited improved antifungal activity against Aspergillus fumigatus (MIC, 1.63 µg/ml). These results not only demonstrate the ability of biocatalytic approaches to yield novel, optically enriched fluconazole derivatives but also suggest that enantiomerically pure fluconazole derivatives, and their nanotized counterparts, exhibiting anti-Aspergillus activity may have reduced toxicity.


Subject(s)
Antifungal Agents/pharmacology , Aspergillosis/drug therapy , Aspergillus fumigatus/drug effects , Fluconazole/analogs & derivatives , Fluconazole/pharmacology , A549 Cells , Cell Line , Disk Diffusion Antimicrobial Tests , Fluconazole/adverse effects , Fungal Proteins/metabolism , Humans , Lipase/metabolism , Nanoparticles/chemistry
8.
Chem Soc Rev ; 45(24): 6855-6887, 2016 Dec 21.
Article in English | MEDLINE | ID: mdl-27785498

ABSTRACT

Enzymes, being remarkable catalysts, are capable of accepting a wide range of complex molecules as substrates and catalyze a variety of reactions with a high degree of chemo-, stereo- and regioselectivity in most of the reactions. Biocatalysis can be used in both simple and complex chemical transformations without the need for tedious protection and deprotection chemistry that is very common in traditional organic synthesis. This current review highlights the applicability of one class of biocatalysts viz."lipases" in synthetic transformations, the resolution of pharmaceutically important small molecules including polyphenols, amides, nucleosides and their precursors, the development of macromolecular systems (and their applications as drug/gene carriers), flame retardants, polymeric antioxidants and nanocrystalline solar cells, etc.


Subject(s)
Biocatalysis , Lipase/chemistry , Macromolecular Substances/chemical synthesis , Amides/chemical synthesis , Antioxidants/chemical synthesis , Drug Carriers/chemical synthesis , Flame Retardants/chemical synthesis , Humans , Nanostructures/chemistry , Nucleosides/chemical synthesis , Polyphenols/chemical synthesis , Solar Energy
9.
Chem Rec ; 16(1): 73-83, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26554536

ABSTRACT

Over the years, gold catalysis has materialized as an incredible synthetic approach among the scientific community. Due to the trivial reaction conditions and great functional compatibility, these progressions are synthetically expedient, because practitioners can implement them to build intricate architectures from readily amassed building blocks with high bond forming indices. The incendiary growth of gold catalysts in organic synthesis has been demonstrated as one of the most prevailing soft Lewis acids for electrophilic activation of carbon-carbon multiple bonds towards a great assortment of nucleophiles. Nowadays, organic chemists consistently employ gold catalysts to carry out a diverse array of organic transformations to build unprecedented molecular architectures. Despite all these achievements and a plethora of reports, many vital challenges remain. In this account, we describe the reactivity of various gold catalysts towards cyclization processes developed over the years. These protocols give access to a wide scope of polyheterocyclic structures, containing different medium-sized ring skeletons. This is interesting, as the quest for highly selective reactions to assemble diversely functionalized products has attracted much attention. We envisage that these newly developed chemo-, regio-, and diastereoselective protocols could provide an expedient route to architecturally cumbersome heterocycles of importance for the pharmaceutical industry.

10.
J Enzyme Inhib Med Chem ; 31(6): 1520-6, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27146339

ABSTRACT

New isatin-triazole based hybrids have been synthesized and evaluated for their inhibitory activity of TNF-α induced expression of Intercellular Adhesion Molecule-1 (ICAM-1) on the surface of human endothelial cells. Structure-activity relationship (SAR) studies revealed that the presence of the electron-attracting bromo substituent at position-5 of the isatin moiety played an important role in enhancing the anti-inflammatory potential of the synthesized compounds. Z-1-[3-(1H-1,2,4-Triazol-1-yl)propyl]-5-bromo-3-[2-(4-methoxyphenyl)hydrazono]indolin-2-one (19) with an IC50 = 20 µM and 89% ICAM-1 inhibition with MTD at 200 µM was found to be the most potent of all the synthesized derivatives. Introduction of 1,2,4-triazole ring and electron-donating methoxy group on the phenylhydrazone moiety resulted in four-fold increase of the anti-inflammatory activity.


Subject(s)
Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/pharmacology , Isatin/pharmacology , Triazoles/chemistry , Anti-Inflammatory Agents/chemistry , Carbon-13 Magnetic Resonance Spectroscopy , Cells, Cultured , Endothelium, Vascular/cytology , Endothelium, Vascular/drug effects , Enzyme-Linked Immunosorbent Assay , Humans , Proton Magnetic Resonance Spectroscopy , Spectrophotometry, Infrared , Structure-Activity Relationship
11.
Molecules ; 21(11)2016 Nov 09.
Article in English | MEDLINE | ID: mdl-27834873

ABSTRACT

Highly regioselective acylation has been observed in 7,8-dihydroxy-4-methylcoumarin (DHMC) by the lipase from Rhizopus oryzae suspended in tetrahydrofuran (THF) at 45 °C using six different acid anhydrides as acylating agents. The acylation occurred regioselectively at one of the two hydroxy groups of the coumarin moiety resulting in the formation of 8-acyloxy-7-hydroxy-4-methylcoumarins, which are important bioactive molecules for studying biotansformations in animals, and are otherwise very difficult to obtain by only chemical steps. Six monoacylated, monohydroxy 4-methylcoumarins have been biocatalytically synthesised and identified on the basis of their spectral data and X-ray crystal analysis.


Subject(s)
Coumarins/chemistry , Coumarins/chemical synthesis , Fungal Proteins/chemistry , Lipase/chemistry , Rhizopus/enzymology , Crystallography, X-Ray , Esters/chemical synthesis , Esters/chemistry , Molecular Structure
12.
Pharm Biol ; 54(1): 105-10, 2016.
Article in English | MEDLINE | ID: mdl-26017566

ABSTRACT

CONTEXT: Cancer is a leading cause of death worldwide and novel chemotherapeutic agents with better efficacy and safety profiles are much needed. Coumarins are natural polyphenolic compounds with important pharmacological activities, which are present in many dietary plants and herbal remedies. OBJECTIVES: The objective of this study is to investigate natural and synthetic coumarin derivatives with considerable anticancer capacity against three human cancer cell lines. MATERIALS AND METHODS: We synthesized 27 coumarin derivatives (mostly having 4-methyl moiety) and examined their cytotoxic effect on three human cancer cell lines, K562 (chronic myelogenous leukemia), LS180 (colon adenocarcinoma), and MCF-7 (breast adenocarcinoma) by MTT reduction assay. Screened compounds included 7-hydroxy-4-methylcoumarins (7-HMCs), 7-acetoxy-4-methylcoumarins (7-AMCs), and different dihydroxy-4-methylcoumarin (DHMC) and diacetoxy-4-methylcoumarin (DAMC) derivatives. Some compounds with methoxy, amine, and bromine substitutions were also examined. RESULTS: 7,8-DHMCs bearing alkyl groups at C3 position were the most effective subgroup, and of which, the most potent is compound 11, with an n-decyl chain at C3, which had IC50 values of 42.4, 25.2, and 25.1 µM against K562, LS180, and MCF-7 cells, respectively. The second most active subgroup was 7,8-DAMCs containing ethoxycarbonylmethyl and ethoxycarbonylethyl moieties at C3 position. Compound 27 (6-bromo-4-bromomethyl-7-hydroxycoumarin), the only derivative containing bromine also showed reasonable cytotoxic activities (IC50 range: 32.7-45.8 µM). DISCUSSION AND CONCLUSION: This structure-activity relationship (SAR) study of 4-methylcoumarins shows that further investigation of these derivatives may lead to the discovery of novel anticancer agents.


Subject(s)
Antineoplastic Agents/pharmacology , Coumarins/pharmacology , Neoplasms/drug therapy , Antineoplastic Agents/chemical synthesis , Cell Survival/drug effects , Coumarins/chemical synthesis , Dose-Response Relationship, Drug , Humans , Inhibitory Concentration 50 , K562 Cells , MCF-7 Cells , Methylation , Molecular Structure , Neoplasms/pathology , Structure-Activity Relationship
13.
Drug Metab Rev ; 47(3): 281-90, 2015 08.
Article in English | MEDLINE | ID: mdl-25996670

ABSTRACT

Global statistical data shed light on an alarming trend that every year thousands of people die due to adverse drug reactions as each individual responds in a different way to the same drug. Pharmacogenomics has come up as a promising field in drug development and clinical medication in the past few decades. It has emerged as a ray of hope in preventing patients from developing potentially fatal complications due to adverse drug reactions. Pharmacogenomics also minimizes the exposure to drugs that are less/non-effective and sometimes even found toxic for patients. It is well reported that drugs elicit different responses in different individuals due to variations in the nucleotide sequences of genes encoding for biologically important molecules (drug-metabolizing enzymes, drug targets and drug transporters). Single nucleotide polymorphisms (SNPs), the most common type of polymorphism found in the human genome is believed to be the main reason behind 90% of all types of genetic variations among the individuals. Therefore, pharmacogenomics may be helpful in answering the question as to how inherited differences in a single gene have a profound effect on the mobilization and biological action of a drug. In the present review, we have discussed clinically relevant examples of SNP in associated diseases that can be utilized as markers for "better management of complex diseases" and attempted to correlate the drug response with genetic variations. Attention is also given towards the therapeutic consequences of inherited differences at the chromosomal level and how associated drug disposition and/or drug targets differ in various diseases as well as among the individuals.


Subject(s)
Pharmacogenetics , Pharmacogenomic Variants , Polymorphism, Single Nucleotide , Genetic Markers , Genetic Predisposition to Disease , Humans , Phenotype , Risk Factors , Treatment Outcome
14.
ScientificWorldJournal ; 2014: 578956, 2014.
Article in English | MEDLINE | ID: mdl-24688408

ABSTRACT

Our laboratory is credited for the discovery of enzymatic acetylation of protein, a phenomenon unknown till we identified an enzyme termed acetoxy drug: protein transacetylase (TAase), catalyzing the transfer of acetyl group from polyphenolic acetates to receptor proteins (RP). Later, TAase was identified as calreticulin (CR), an endoplasmic reticulum luminal protein. CR was termed calreticulin transacetylase (CRTAase). Our persistent study revealed that CR like other families of histone acetyltransferases (HATs) such as p300, Rtt109, PCAF, and ESA1, undergoes autoacetylation. The autoacetylated CR was characterized as a stable intermediate in CRTAase catalyzed protein acetylation, and similar was the case with ESA1. The autoacetylation of CR like that of HATs was found to enhance protein-protein interaction. CR like HAT-1, CBP, and p300 mediated the acylation of RP utilizing acetyl CoA and propionyl CoA as the substrates. The similarities between CRTAase and HATs in mediating protein acylation are highlighted in this review.


Subject(s)
Acetyltransferases/metabolism , Calreticulin/metabolism , Histone Acetyltransferases/metabolism , Animals , Endoplasmic Reticulum/enzymology , Humans
15.
Top Curr Chem (Cham) ; 382(1): 4, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38296918

ABSTRACT

Pyrimidine is a pharmacologically important moiety that exhibits diverse biological activities. This review reflects the growing significance of transition metal-catalyzed reactions for the synthesis of pyrimidines (with no discussion being made on the transition metal-catalyzed functionalization of pyrimidines). The effect of different catalysts on the selectivity/yields of pyrimidines and catalyst recyclability (wherever applicable) are described, together with attempts to illustrate the role of the catalyst through mechanisms. Although several methods have been researched for synthesizing this privileged scaffold, there has been a considerable push to expand transition metal-catalyzed, sustainable, efficient and selective synthetic strategies leading to pyrimidines. The aim of the authors with this update (2017-2023) is to drive the designing of new transition metal-mediated protocols for pyrimidine synthesis.


Subject(s)
Transition Elements , Pyrimidines , Catalysis
16.
RSC Adv ; 14(24): 17102-17139, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38808245

ABSTRACT

Chromones are well known as fundamental structural elements found in numerous natural compounds and medicinal substances. The Schiff bases of chromones have a much wider range of pharmacological applications such as antitumor, antioxidant, anti-HIV, antifungal, anti-inflammatory, and antimicrobial properties. A lot of research has been carried out on chromone-based copper(ii) Schiff-base complexes owing to their role in the organometallic domain and promise as potential bioactive cores. This review article is centered on copper(ii) Schiff-base complexes derived from chromones, highlighting their diverse range of pharmacological applications documented in the past decade, as well as the future research opportunities they offer.

17.
Beilstein J Org Chem ; 9: 2097-102, 2013.
Article in English | MEDLINE | ID: mdl-24204421

ABSTRACT

An Ugi four-component reaction of propargylamine with 3-formylindole and various acids and isonitriles produces adducts which are subjected to a cationic gold-catalyzed diastereoselective domino cyclization to furnish diversely substituted spiroindolines. All the reactions run via an exo-dig attack in the hydroarylation step followed by an intramolecular diastereoselective trapping of the imminium ion. The whole sequence is atom economic and the application of a multicomponent reaction assures diversity.

18.
RSC Adv ; 13(29): 19898-19954, 2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37404320

ABSTRACT

Herein, we have summarized the vast array of synthetic processes that have been developed for the synthesis of C-glycopyranosyl aldehydes and diverse C-glycoconjugates derived from them by covering the literature reported from 1979 to 2023. Notwithstanding its challenging chemistry, C-glycosides are considered stable pharmacophores and are used as important bioactive molecules. The discussed synthetic methodologies to access C-glycopyranosyl aldehydes take advantage of seven key intermediates, viz. allene, thiazole, dithiane, cyanide, alkene, and nitromethane. Furthermore, the integration of complex C-glycoconjugates derived from varied C-glycopyranosyl aldehydes involves nucleophilic addition/substitution, reduction, condensation, oxidation, cyclo condensation, coupling, and Wittig reactions. In this review, we have categorized the synthesis of C-glycopyranosyl aldehydes and C-glycoconjugates on the basis of the methodology used for their synthesis and on types of C-glycoconjugates, respectively.

19.
Fitoterapia ; 168: 105554, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37270161

ABSTRACT

Infectious diseases have remained a burgeoning cause of death and disability since long. Staphylococcus aureus (S. aureus) is a severe bacterial pathogen causing nosocomial and community infections. It exhibits widespread resistance to antibiotics posing a significant threat to their efficacy. For combating this challenge, different strategies may include modifying existing antibiotics, developing new antibacterial agents, and combining treatments with resistance mechanism inhibitors. Resistance in S. aureus occurs through horizontal gene transfer or chromosomal mutations. Acquisition mechanisms involve enzymatic modification, efflux, target bypass, and drug displacement. Mutations can impact drug targets, activate efflux pumps, or alter cell wall composition to impede drug access. Overcoming S. aureus resistance requires innovative approaches to preserve antibiotic effectiveness. The present study involves the virtual screening of phytochemicals of diverse chemical classes from Zinc database against the antibiotic resistant targets of S. aureus like ß-Lactamase, Penicillin Binding Protein 2a (PBP2a), Dihydrofolate reductase (DHFR), DNA gyrase, Multidrug ABC transporter SAV1866, Undecaprenyl diphosphate synthase (UPPS), etc. Thymol, eugenol, gallic acid, l-ascorbic acid, curcumin, berberine and quercetin were identified as potential molecules based on their docking score, binding interactions. These molecules were further analyzed for the ADMET and drug likeness properties using pkCSM, SwissADME and Qikprop tools. Further in vitro evaluation of these molecules against antibiotic-resistant strains of S. aureus, both alone and in combination with antibiotics revealed significant findings. Curcumin demonstrated the lowest MIC values (31.25-62.5 µg/ml) when tested individually. Thymol, berberine, and quercetin displayed MIC values within the range of 125-250 µg/ml, while eugenol and gallic acid exhibited MIC values ranging from 500 to 1000 µg/ml. Notably, thymol exhibited potent synergy with all four antibiotics against clinical isolates of S. aureus, with Fractional inhibitory concentration index (FICI) values consistently below 0.5, highlighting its exceptional antibacterial activity, especially in combination with amoxicillin.


Subject(s)
Berberine , Curcumin , Methicillin-Resistant Staphylococcus aureus , Staphylococcus aureus , Thymol , Eugenol/metabolism , Curcumin/metabolism , Quercetin/pharmacology , Quercetin/metabolism , Berberine/metabolism , Molecular Structure , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Drug Resistance, Bacterial , Microbial Sensitivity Tests
20.
RSC Adv ; 13(51): 35825-35830, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38090080

ABSTRACT

The classical Paal-Knorr reaction is a prominent tool that can be adopted under biocompatible conditions covering various γ-dicarbonyls for either chemical biology or drug discovery. Meanwhile, the relatively mild conditions for larger molecules within biological systems have not been employed to obtain N-substituted pyrrole derivatives from simpler chiral amino acids/alcohols. The Clauson-Kaas methodology of a standard two-phase acidic mixture buffered with acetate salts was generally required for the time-consuming catalytic condensation of 2,5-dimethoxytetrahydrofuran and fast removal of pyrrolyl products after formation to inhibit their racemization. To achieve a large amount of tethered pyrrole pendants based on l-phenylalanine to construct bioactive ureas as ASK1 and PI3K inhibitors, one quick and highly efficient protocol was realized in an almost neutral and benign aqueous condition. This protocol proceeds within only 15 minutes at 90 °C, achieving nearly quantitative conversion to the final pyrrolyl product via convenient and facile column-free purification. The detailed mechanistic studies by DFT method proposed a new series involving the pathway by the initiation of a zwitterionic species/intermediate for a subsequently much more efficient self-driven pyrrole-formation. This was inconsistent with the traditional kinetic modelling of ring opening to furnish a carbocation, or the utilization of succinaldehyde/dihydroxytetrahydrofuran as a dialdehyde synthetic equivalent. In addition to the relationally neighbouring intramolecular catalytic effect from the amino acid, the crucial "H-bridge" interplay of water, along with the suggestion of a biomimetic route features similar to the N-glycosylation of carbohydrates, probably indicates the totally different reaction courses. The auto-catalysis ability of l-phenylalanine was also extensively investigated by comparisons on the details relating to l-phenylalaninol.

SELECTION OF CITATIONS
SEARCH DETAIL