Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 278
Filter
Add more filters

Publication year range
1.
Nature ; 602(7898): 623-631, 2022 02.
Article in English | MEDLINE | ID: mdl-35140396

ABSTRACT

The mutational landscape is shaped by many processes. Genic regions are vulnerable to mutation but are preferentially protected by transcription-coupled repair1. In microorganisms, transcription has been demonstrated to be mutagenic2,3; however, the impact of transcription-associated mutagenesis remains to be established in higher eukaryotes4. Here we show that ID4-a cancer insertion-deletion (indel) mutation signature of unknown aetiology5 characterized by short (2 to 5 base pair) deletions -is due to a transcription-associated mutagenesis process. We demonstrate that defective ribonucleotide excision repair in mammals is associated with the ID4 signature, with mutations occurring at a TNT sequence motif, implicating topoisomerase 1 (TOP1) activity at sites of genome-embedded ribonucleotides as a mechanistic basis. Such TOP1-mediated deletions occur somatically in cancer, and the ID-TOP1 signature is also found in physiological settings, contributing to genic de novo indel mutations in the germline. Thus, although topoisomerases protect against genome instability by relieving topological stress6, their activity may also be an important source of mutations in the human genome.


Subject(s)
DNA Topoisomerases, Type I , Germ Cells , Mutagenesis , Neoplasms , Animals , DNA Repair/genetics , DNA Topoisomerases, Type I/metabolism , Germ Cells/metabolism , Humans , Mutagenesis/genetics , Mutation , Neoplasms/genetics , Ribonucleotides/genetics
2.
Genes Dev ; 34(21-22): 1520-1533, 2020 11 01.
Article in English | MEDLINE | ID: mdl-33060134

ABSTRACT

DNA replication is fundamental for cell proliferation in all organisms. Nonetheless, components of the replisome have been implicated in human disease, and here we report PRIM1 encoding the catalytic subunit of DNA primase as a novel disease gene. Using a variant classification agnostic approach, biallelic mutations in PRIM1 were identified in five individuals. PRIM1 protein levels were markedly reduced in patient cells, accompanied by replication fork asymmetry, increased interorigin distances, replication stress, and prolonged S-phase duration. Consequently, cell proliferation was markedly impaired, explaining the patients' extreme growth failure. Notably, phenotypic features distinct from those previously reported with DNA polymerase genes were evident, highlighting differing developmental requirements for this core replisome component that warrant future investigation.


Subject(s)
DNA Primase/genetics , Dwarfism/genetics , Fetal Growth Retardation/genetics , DNA Primase/chemistry , DNA Primase/deficiency , Dwarfism/diagnostic imaging , Dwarfism/pathology , Female , Fetal Growth Retardation/diagnostic imaging , Fetal Growth Retardation/pathology , Genetic Variation , Humans , Infant , Male , Pedigree , Syndrome
3.
J Med Genet ; 61(3): 250-261, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38050128

ABSTRACT

BACKGROUND: Classic aniridia is a highly penetrant autosomal dominant disorder characterised by congenital absence of the iris, foveal hypoplasia, optic disc anomalies and progressive opacification of the cornea. >90% of cases of classic aniridia are caused by heterozygous, loss-of-function variants affecting the PAX6 locus. METHODS: Short-read whole genome sequencing was performed on 51 (39 affected) individuals from 37 different families who had screened negative for mutations in the PAX6 coding region. RESULTS: Likely causative mutations were identified in 22 out of 37 (59%) families. In 19 out of 22 families, the causative genomic changes have an interpretable deleterious impact on the PAX6 locus. Of these 19 families, 1 has a novel heterozygous PAX6 frameshift variant missed on previous screens, 4 have single nucleotide variants (SNVs) (one novel) affecting essential splice sites of PAX6 5' non-coding exons and 2 have deep intronic SNV (one novel) resulting in gain of a donor splice site. In 12 out of 19, the causative variants are large-scale structural variants; 5 have partial or whole gene deletions of PAX6, 3 have deletions encompassing critical PAX6 cis-regulatory elements, 2 have balanced inversions with disruptive breakpoints within the PAX6 locus and 2 have complex rearrangements disrupting PAX6. The remaining 3 of 22 families have deletions encompassing FOXC1 (a known cause of atypical aniridia). Seven of the causative variants occurred de novo and one cosegregated with familial aniridia. We were unable to establish inheritance status in the remaining probands. No plausibly causative SNVs were identified in PAX6 cis-regulatory elements. CONCLUSION: Whole genome sequencing proves to be an effective diagnostic test in most individuals with previously unexplained aniridia.


Subject(s)
Aniridia , Eye Abnormalities , Humans , PAX6 Transcription Factor/genetics , Aniridia/genetics , Mutation/genetics , Eye Abnormalities/genetics , Exons , Homeodomain Proteins/genetics , Eye Proteins/genetics , Pedigree
4.
J Med Genet ; 61(3): 232-238, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-37813462

ABSTRACT

BACKGROUND: The Ehlers-Danlos syndromes (EDS) are heritable disorders of connective tissue (HDCT), reclassified in the 2017 nosology into 13 subtypes. The genetic basis for hypermobile Ehlers-Danlos syndrome (hEDS) remains unknown. METHODS: Whole exome sequencing (WES) was undertaken on 174 EDS patients recruited from a national diagnostic service for complex EDS and a specialist clinic for hEDS. Patients had already undergone expert phenotyping, laboratory investigation and gene sequencing, but were without a genetic diagnosis. Filtered WES data were reviewed for genes underlying Mendelian disorders and loci reported in EDS linkage, transcriptome and genome-wide association studies (GWAS). A genetic burden analysis (Minor Allele Frequency (MAF) <0.05) incorporating 248 Avon Longitudinal Study of Parents and Children (ALSPAC) controls sequenced as part of the UK10K study was undertaken using TASER methodology. RESULTS: Heterozygous pathogenic (P) or likely pathogenic (LP) variants were identified in known EDS and Loeys-Dietz (LDS) genes. Multiple variants of uncertain significance where segregation and functional analysis may enable reclassification were found in genes associated with EDS, LDS, heritable thoracic aortic disease (HTAD), Mendelian disorders with EDS symptomatology and syndromes with EDS-like features. Genetic burden analysis revealed a number of novel loci, although none reached the threshold for genome-wide significance. Variants with biological plausibility were found in genes and pathways not currently associated with EDS or HTAD. CONCLUSIONS: We demonstrate the clinical utility of large panel-based sequencing and WES for patients with complex EDS in distinguishing rare EDS subtypes, LDS and related syndromes. Although many of the P and LP variants reported in this cohort would be identified with current panel testing, they were not at the time of this study, highlighting the use of extended panels and WES as a clinical tool for complex EDS. Our results are consistent with the complex genetic architecture of EDS and suggest a number of novel hEDS and HTAD candidate genes and pathways.


Subject(s)
Connective Tissue Diseases , Ehlers-Danlos Syndrome , Child , Humans , Genome-Wide Association Study , Longitudinal Studies , Ehlers-Danlos Syndrome/diagnosis , Ehlers-Danlos Syndrome/genetics
5.
J Struct Biol ; 215(1): 107938, 2023 03.
Article in English | MEDLINE | ID: mdl-36641113

ABSTRACT

O-Glycosylation of hydroxylysine (Hyl) in collagen occurs at an early stage of biosynthesis before the triple-helix has formed. This simple post-translational modification (PTM) of lysine by either a galactosyl or glucosylgalactosyl moiety is highly conserved in collagens and depends on the species, type of tissue and the collagen amino acid sequence. The structural/functional reason why only specific lysines are modified is poorly understood, and has led to increased efforts to map the sites of PTMs on collagen sequences from different species and to ascertain their potential role in vivo. To investigate this, we purified collagen type I (Col1) from the skins of four animals, then used mass spectrometry and proteomic techniques to identify lysines that were oxidised, galactosylated, glucosylgalactosylated, or glycated in its mature sequence. We found 18 out of the 38 lysines in collagen type Iα1, (Col1A1) and 7 of the 30 lysines in collagen type Iα2 (Col1A2) were glycosylated. Six of these modifications had not been reported before, and included a lysine involved in crosslinking collagen molecules. A Fourier transform analysis of the positions of the glycosylated hydroxylysines showed they display a regular axial distribution with the same d-period observed in collagen fibrils. The significance of this finding in terms of the assembly of collagen molecules into fibrils and of potential restrictions on the growth of the collagen fibrils is discussed.


Subject(s)
Lysine , Proteomics , Animals , Glycosylation , Lysine/metabolism , Collagen Type I/metabolism , Collagen/metabolism
6.
J Muscle Res Cell Motil ; 44(3): 133-141, 2023 09.
Article in English | MEDLINE | ID: mdl-35789471

ABSTRACT

Fifty years have now passed since Parry and Squire proposed a detailed structural model that explained how tropomyosin, mediated by troponin, played a steric-blocking role in the regulation of vertebrate skeletal muscle. In this Special Issue dedicated to the memory of John Squire it is an opportune time to look back on this research and to appreciate John's key contributions. A review is also presented of a selection of the developments and insights into muscle regulation that have occurred in the years since this proposal was formulated.


Subject(s)
Actins , Troponin , Animals , Actins/physiology , Retrospective Studies , Troponin/analysis , Troponin/chemistry , Troponin/physiology , Muscle, Skeletal/chemistry , Tropomyosin , Vertebrates , Calcium
7.
PLoS Biol ; 18(12): e3001030, 2020 12.
Article in English | MEDLINE | ID: mdl-33320856

ABSTRACT

With the ongoing COVID-19 (Coronavirus Disease 2019) pandemic, caused by the novel coronavirus SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2), there is a need for sensitive, specific, and affordable diagnostic tests to identify infected individuals, not all of whom are symptomatic. The most sensitive test involves the detection of viral RNA using RT-qPCR (quantitative reverse transcription PCR), with many commercial kits now available for this purpose. However, these are expensive, and supply of such kits in sufficient numbers cannot always be guaranteed. We therefore developed a multiplex assay using well-established SARS-CoV-2 targets alongside a human cellular control (RPP30) and a viral spike-in control (Phocine Herpes Virus 1 [PhHV-1]), which monitor sample quality and nucleic acid extraction efficiency, respectively. Here, we establish that this test performs as well as widely used commercial assays, but at substantially reduced cost. Furthermore, we demonstrate >1,000-fold variability in material routinely collected by combined nose and throat swabbing and establish a statistically significant correlation between the detected level of human and SARS-CoV-2 nucleic acids. The inclusion of the human control probe in our assay therefore provides a quantitative measure of sample quality that could help reduce false-negative rates. We demonstrate the feasibility of establishing a robust RT-qPCR assay at approximately 10% of the cost of equivalent commercial assays, which could benefit low-resource environments and make high-volume testing affordable.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , RNA, Viral/analysis , SARS-CoV-2/isolation & purification , COVID-19 Testing/economics , Humans , Multiplex Polymerase Chain Reaction/economics , Reverse Transcriptase Polymerase Chain Reaction/economics , SARS-CoV-2/genetics
9.
Retina ; 43(9): 1534-1543, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37229721

ABSTRACT

PURPOSE: Wide-field fluorescein angiography is commonly used to assess retinal vasculitis (RV), which manifests as vascular leakage and occlusion. Currently, there is no standard grading scheme for RV severity. The authors propose a novel RV grading scheme and assess its reliability and reproducibility. METHODS: A grading scheme was developed to assess both leakage and occlusion in RV. Wide-field fluorescein angiography images from 50 patients with RV were graded by four graders, and one grader graded them twice. An intraclass correlation coefficient (ICC) was used to determine intraobserver-interobserver reliability. Generalized linear models were calculated to associate the scoring with visual acuity. RESULTS: Repeated grading by the same grader showed good intraobserver reliability for both leakage (ICC = 0.85, 95% CI 0.78-0.89) and occlusion (ICC = 0.82, 95% CI 0.75-0.88) scores. Interobserver reliability among four independent graders showed good agreement for both leakage (ICC = 0.66, 95% CI 0.49-0.77) and occlusion (ICC = 0.75, 95% CI 0.68-0.81) scores. An increasing leakage score was significantly associated with worse concurrent visual acuity (generalized linear models, ß = 0.090, P < 0.01) and at 1-year follow-up (generalized linear models, ß = 0.063, P < 0.01). CONCLUSION: The proposed grading scheme for RV has good to excellent intraobserver and interobserver reliability across a range of graders. The leakage score related to present and future visual acuity.


Subject(s)
Retinal Vasculitis , Humans , Retinal Vasculitis/diagnosis , Reproducibility of Results , Fluorescein Angiography/methods , Fluoresceins , Observer Variation
10.
J Environ Manage ; 338: 117837, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37023611

ABSTRACT

Dealkalization is a prerequisite to converting bauxite residue into non-hazardous materials that can be used for various upcycling applications. Structural alkali (Na+) lodged inside the densely packed aluminosilicate-cages of sodalite, the dominant desilication product from refining alumina, is a common culprit in the persistence of strong alkalinity of bauxite residue. The present study unravelled chemical and mineralogical processes involved in sodalite dealkalization, driven by organic and inorganic acids. These acids have different H+ dissociation coefficients and their anions have different chelation abilities with surface metal atoms of aluminosilicate minerals. The efficacy of sodium removal by exposure to the acids was found not only dependent on the acid strength (pKa), but also on the chelating property of dissociated conjugate anions. Following an initial H+-Na+ exchange, Na+ removal from sodalite was correlated with partial hydrolysis of aluminosilicate network and resultant chelating reactions with acid anions. The selection of organic and inorganic acids whose conjugate bases possess good chelating capability in the pH buffer zone 7-9 (e.g., oxalate or phosphate), would provide significant aid to the dealkalization process. The findings in this study are crucial in understanding the conversion of bauxite residue into a soil-like growth media (technosol) for sustainable mined land rehabilitation.


Subject(s)
Aluminum Oxide , Sodium , Aluminum Oxide/chemistry , Aluminum Silicates , Anions , Organic Chemicals
11.
Am J Hum Genet ; 104(3): 422-438, 2019 03 07.
Article in English | MEDLINE | ID: mdl-30773277

ABSTRACT

SPONASTRIME dysplasia is an autosomal-recessive spondyloepimetaphyseal dysplasia characterized by spine (spondylar) abnormalities, midface hypoplasia with a depressed nasal bridge, metaphyseal striations, and disproportionate short stature. Scoliosis, coxa vara, childhood cataracts, short dental roots, and hypogammaglobulinemia have also been reported in this disorder. Although an autosomal-recessive inheritance pattern has been hypothesized, pathogenic variants in a specific gene have not been discovered in individuals with SPONASTRIME dysplasia. Here, we identified bi-allelic variants in TONSL, which encodes the Tonsoku-like DNA repair protein, in nine subjects (from eight families) with SPONASTRIME dysplasia, and four subjects (from three families) with short stature of varied severity and spondylometaphyseal dysplasia with or without immunologic and hematologic abnormalities, but no definitive metaphyseal striations at diagnosis. The finding of early embryonic lethality in a Tonsl-/- murine model and the discovery of reduced length, spinal abnormalities, reduced numbers of neutrophils, and early lethality in a tonsl-/- zebrafish model both support the hypomorphic nature of the identified TONSL variants. Moreover, functional studies revealed increased amounts of spontaneous replication fork stalling and chromosomal aberrations, as well as fewer camptothecin (CPT)-induced RAD51 foci in subject-derived cell lines. Importantly, these cellular defects were rescued upon re-expression of wild-type (WT) TONSL; this rescue is consistent with the hypothesis that hypomorphic TONSL variants are pathogenic. Overall, our studies in humans, mice, zebrafish, and subject-derived cell lines confirm that pathogenic variants in TONSL impair DNA replication and homologous recombination-dependent repair processes, and they lead to a spectrum of skeletal dysplasia phenotypes with numerous extra-skeletal manifestations.


Subject(s)
Chromosomal Instability , DNA Damage , Genetic Variation , Musculoskeletal Abnormalities/pathology , NF-kappa B/genetics , Osteochondrodysplasias/pathology , Adolescent , Adult , Alleles , Animals , Cells, Cultured , Child , Child, Preschool , Female , Fibroblasts/metabolism , Fibroblasts/pathology , Genetic Association Studies , Humans , Mice , Mice, Knockout , Musculoskeletal Abnormalities/genetics , Osteochondrodysplasias/genetics , Exome Sequencing , Young Adult , Zebrafish
13.
Mol Vis ; 28: 57-69, 2022.
Article in English | MEDLINE | ID: mdl-35693420

ABSTRACT

Purpose: To investigate the molecular basis of recessively inherited congenital cataract, microcornea, and corneal opacification with or without coloboma and microphthalmia in two consanguineous families. Methods: Conventional autozygosity mapping was performed using single nucleotide polymorphism (SNP) microarrays. Whole-exome sequencing was completed on genomic DNA from one affected member of each family. Exome sequence data were also used for homozygosity mapping and copy number variation analysis. PCR and Sanger sequencing were used to confirm the identification of mutations and to screen further patients. Evolutionary conservation of protein sequences was assessed using CLUSTALW, and protein structures were modeled using PyMol. Results: In family MEP68, a novel homozygous nucleotide substitution in SIX6 was found, c.547G>C, that converts the evolutionarily conserved aspartic acid residue at the 183rd amino acid in the protein to a histidine, p.(Asp183His). This residue mapped to the third helix of the DNA-binding homeobox domain in SIX6, which interacts with the major groove of double-stranded DNA. This interaction is likely to be disrupted by the mutation. In family F1332, a novel homozygous 1034 bp deletion that encompasses the first exon of SIX6 was identified, chr14:g.60975890_60976923del. Both mutations segregated with the disease phenotype as expected for a recessive condition and were absent from publicly available variant databases. Conclusions: Our findings expand the mutation spectrum in this form of inherited eye disease and confirm that homozygous human SIX6 mutations cause a developmental spectrum of ocular phenotypes that includes not only the previously described features of microphthalmia, coloboma, and congenital cataract but also corneal abnormalities.


Subject(s)
Cataract , Coloboma , Corneal Diseases , Eye Abnormalities , Microphthalmos , Cataract/congenital , Cataract/genetics , Coloboma/genetics , Corneal Diseases/genetics , DNA/genetics , DNA Copy Number Variations , DNA Mutational Analysis , Eye Abnormalities/genetics , Homeodomain Proteins/genetics , Humans , Microphthalmos/genetics , Mutation , Pedigree , Phenotype , Trans-Activators/genetics
14.
J Struct Biol ; 213(4): 107793, 2021 12.
Article in English | MEDLINE | ID: mdl-34481988

ABSTRACT

On the basis of sequence homology with mammalian α-keratins, and on the criteria that the coiled-coil segments and central linker in the rod domain of these molecules must have conserved lengths if they are to assemble into viable intermediate filaments, a total of 28 Type I and Type II keratin intermediate filament chains (KIF) have been identified from the genome of the European common wall lizard (Podarcis muralis). Using the same criteria this number may be compared to 33 found here in the green anole lizard (Anole carolinensis) and 25 in the tuatara (Sphenodon punctatus). The Type I and Type II KIF genes in the wall lizard fall in clusters on chromosomes 13 and 2 respectively. Although some differences occur in the terminal domains in the KIF chains of the two lizards and tuatara, the similarities between key indicator residues - cysteine, glycine and proline - are significant. The terminal domains of the KIF chains in the wall lizard also contain sequence repeats commonly based on glycine and large apolar residues and would permit the fine tuning of physical properties when incorporated within the intermediate filaments. The H1 domain in the Type II chain is conserved across the lizards, tuatara and mammals, and has been related to its role in assembly at the 2-4 molecule level. A KIF-like chain (K80) with an extensive tail domain comprised of multiple tandem repeats has been identified as having a potential filament-crosslinking role.


Subject(s)
Cytoskeleton/metabolism , Intermediate Filaments/genetics , Keratins/genetics , Lizards/genetics , Amino Acid Sequence , Animals , Cysteine/chemistry , Cysteine/genetics , Cysteine/metabolism , Epidermis/metabolism , Epithelium/metabolism , Glycine/chemistry , Glycine/genetics , Glycine/metabolism , Intermediate Filaments/chemistry , Intermediate Filaments/metabolism , Keratins/chemistry , Keratins/metabolism , Lizards/classification , Lizards/metabolism , Multigene Family/genetics , Proline/chemistry , Proline/genetics , Proline/metabolism , Sequence Homology, Amino Acid , Species Specificity
15.
J Struct Biol ; 213(1): 107706, 2021 03.
Article in English | MEDLINE | ID: mdl-33577903

ABSTRACT

Determination of the sequences of the keratin intermediate filament chains in tuatara has shown that these are closely akin to the α-keratins in human and other vertebrates, especially in the central, coiled-coil rod region. The domain lengths within the rod are preserved exactly, both Type I and Type II chains have been recognised, and sequence identity/homology exists between their respective chains. Nonetheless, there are characteristic differences in amino acid composition and sequence between their respective head (N-terminal) domains and their tail (C-terminal) domains, though some similarities are retained. Further, there is evidence of tandem repeats of a variety of lengths in the tuatara heads and tails indicative of sequence duplication events. These are not evident in human α-keratins and would therefore have implications for the physical attributes of the tissues in the two species. Multiple families of keratin-associated proteins that are ultra-high cysteine-rich or glycine + tyrosine-rich in human and other species do not have direct equivalents in the tuatara. Although high-sulphur proteins are present in tuatara the cysteine residue contents are significantly lower than in human. Further, no sequence homologies between the HS proteins in the two species have been found, thereby casting considerable doubt as to whether any matrix-forming high-sulphur proteins exist in tuatara. These observations may be correlated with the numerous cysteine-rich ß-keratins (corneous ß-proteins) that are present in tuatara, but which are conspicuously absent in mammals.


Subject(s)
Intermediate Filaments/metabolism , Keratins/metabolism , Reptiles/metabolism , Amino Acid Sequence , Amino Acids/metabolism , Animals , Biological Evolution , Cytoskeletal Proteins/metabolism , Humans , Sequence Homology, Amino Acid
16.
Am J Hum Genet ; 103(4): 553-567, 2018 10 04.
Article in English | MEDLINE | ID: mdl-30290151

ABSTRACT

The conserved oligomeric Golgi (COG) complex is involved in intracellular vesicular transport, and is composed of eight subunits distributed in two lobes, lobe A (COG1-4) and lobe B (COG5-8). We describe fourteen individuals with Saul-Wilson syndrome, a rare form of primordial dwarfism with characteristic facial and radiographic features. All affected subjects harbored heterozygous de novo variants in COG4, giving rise to the same recurrent amino acid substitution (p.Gly516Arg). Affected individuals' fibroblasts, whose COG4 mRNA and protein were not decreased, exhibited delayed anterograde vesicular trafficking from the ER to the Golgi and accelerated retrograde vesicular recycling from the Golgi to the ER. This altered steady-state equilibrium led to a decrease in Golgi volume, as well as morphologic abnormalities with collapse of the Golgi stacks. Despite these abnormalities of the Golgi apparatus, protein glycosylation in sera and fibroblasts from affected subjects was not notably altered, but decorin, a proteoglycan secreted into the extracellular matrix, showed altered Golgi-dependent glycosylation. In summary, we define a specific heterozygous COG4 substitution as the molecular basis of Saul-Wilson syndrome, a rare skeletal dysplasia distinct from biallelic COG4-CDG.


Subject(s)
Fragile X Syndrome/genetics , Protein Transport/genetics , Proteoglycans/genetics , Vesicular Transport Proteins/genetics , Adult , Amino Acid Substitution/genetics , Animals , Animals, Genetically Modified/genetics , Cell Line , Child , Child, Preschool , Endoplasmic Reticulum/genetics , Extracellular Matrix/genetics , Female , Fibroblasts/pathology , Glycosylation , Golgi Apparatus/genetics , Heterozygote , Humans , Infant , Male , Zebrafish
17.
Am J Hum Genet ; 103(6): 1038-1044, 2018 12 06.
Article in English | MEDLINE | ID: mdl-30503519

ABSTRACT

During genome replication, polymerase epsilon (Pol ε) acts as the major leading-strand DNA polymerase. Here we report the identification of biallelic mutations in POLE, encoding the Pol ε catalytic subunit POLE1, in 15 individuals from 12 families. Phenotypically, these individuals had clinical features closely resembling IMAGe syndrome (intrauterine growth restriction [IUGR], metaphyseal dysplasia, adrenal hypoplasia congenita, and genitourinary anomalies in males), a disorder previously associated with gain-of-function mutations in CDKN1C. POLE1-deficient individuals also exhibited distinctive facial features and variable immune dysfunction with evidence of lymphocyte deficiency. All subjects shared the same intronic variant (c.1686+32C>G) as part of a common haplotype, in combination with different loss-of-function variants in trans. The intronic variant alters splicing, and together the biallelic mutations lead to cellular deficiency of Pol ε and delayed S-phase progression. In summary, we establish POLE as a second gene in which mutations cause IMAGe syndrome. These findings add to a growing list of disorders due to mutations in DNA replication genes that manifest growth restriction alongside adrenal dysfunction and/or immunodeficiency, consolidating these as replisome phenotypes and highlighting a need for future studies to understand the tissue-specific development roles of the encoded proteins.


Subject(s)
Adrenal Insufficiency/genetics , DNA Polymerase II/genetics , Fetal Growth Retardation/genetics , Mutation/genetics , Osteochondrodysplasias/genetics , Poly-ADP-Ribose Binding Proteins/genetics , Urogenital Abnormalities/genetics , Adolescent , Adult , Alleles , Child , Child, Preschool , Cyclin-Dependent Kinase Inhibitor p57/genetics , DNA Replication/genetics , Female , Humans , Infant , Male , Middle Aged , Phenotype , Young Adult
18.
Am J Hum Genet ; 103(2): 221-231, 2018 08 02.
Article in English | MEDLINE | ID: mdl-30057030

ABSTRACT

Bloom syndrome, caused by biallelic mutations in BLM, is characterized by prenatal-onset growth deficiency, short stature, an erythematous photosensitive malar rash, and increased cancer predisposition. Diagnostically, a hallmark feature is the presence of increased sister chromatid exchanges (SCEs) on cytogenetic testing. Here, we describe biallelic mutations in TOP3A in ten individuals with prenatal-onset growth restriction and microcephaly. TOP3A encodes topoisomerase III alpha (TopIIIα), which binds to BLM as part of the BTRR complex, and promotes dissolution of double Holliday junctions arising during homologous recombination. We also identify a homozygous truncating variant in RMI1, which encodes another component of the BTRR complex, in two individuals with microcephalic dwarfism. The TOP3A mutations substantially reduce cellular levels of TopIIIα, and consequently subjects' cells demonstrate elevated rates of SCE. Unresolved DNA recombination and/or replication intermediates persist into mitosis, leading to chromosome segregation defects and genome instability that most likely explain the growth restriction seen in these subjects and in Bloom syndrome. Clinical features of mitochondrial dysfunction are evident in several individuals with biallelic TOP3A mutations, consistent with the recently reported additional function of TopIIIα in mitochondrial DNA decatenation. In summary, our findings establish TOP3A mutations as an additional cause of prenatal-onset short stature with increased cytogenetic SCEs and implicate the decatenation activity of the BTRR complex in their pathogenesis.

19.
Genet Med ; 23(2): 408-414, 2021 02.
Article in English | MEDLINE | ID: mdl-33033404

ABSTRACT

PURPOSE: Lamins are the major component of nuclear lamina, maintaining structural integrity of the nucleus. Lamin A/C variants are well established to cause a spectrum of disorders ranging from myopathies to progeria, termed laminopathies. Phenotypes resulting from variants in LMNB1 and LMNB2 have been much less clearly defined. METHODS: We investigated exome and genome sequencing from the Deciphering Developmental Disorders Study and the 100,000 Genomes Project to identify novel microcephaly genes. RESULTS: Starting from a cohort of patients with extreme microcephaly, 13 individuals with heterozygous variants in the two human B-type lamins were identified. Recurrent variants were established to be de novo in nine cases and shown to affect highly conserved residues within the lamin ɑ-helical rod domain, likely disrupting interactions required for higher-order assembly of lamin filaments. CONCLUSION: We identify dominant pathogenic variants in LMNB1 and LMNB2 as a genetic cause of primary microcephaly, implicating a major structural component of the nuclear envelope in its etiology and defining a new form of laminopathy. The distinct nature of this lamin B-associated phenotype highlights the strikingly different developmental requirements for lamin paralogs and suggests a novel mechanism for primary microcephaly warranting future investigation.


Subject(s)
Laminopathies , Microcephaly , Humans , Lamin Type B/genetics , Microcephaly/genetics
20.
J Struct Biol ; 212(1): 107599, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32800921

ABSTRACT

The ß-keratin chain with four 34-residue repeats that is conserved across the lepidosaurs (lizards, snakes and tuatara) contains three linker regions as well as a short, conserved N-terminal domain and a longer, more variable C-terminal domain. Earlier modelling had shown that only six classes of structure involving the four 34-residue repeats were possible. In three of these the 34-residue repeats were confined to a single filament (Classes 1, 2 and 3) whereas in the remaining three classes the repeats lay in two, three or four filaments, with some of the linkers forming interfilament connections (Classes 4, 5 and 6). In this work the members of each class of structure (a total of 20 arrangements) have been described and a comparison has been made of the topologies of each of the linker regions. This provides new constraints on the structure of the chain as a whole. Also, analysis of the sequences of the three linker regions has revealed that the central linker (and only the central linker) contains four short regions displaying a distinctive dipeptide repeat of the form (S-X)2,3 separated by short regions containing proline and cysteine residues. By analogy with silk fibroin proteins this has the capability of forming a ß-sheet-like conformation. Using the topology and sequence data the evidence suggests that the four 34-residue repeat chain adopts a Class 4a structure with a ß-sandwich in filament 1 connected through the central linker to a ß-sandwich in filament 2.


Subject(s)
Conserved Sequence/genetics , Tandem Repeat Sequences/genetics , beta-Keratins/genetics , Amino Acid Sequence , Animals , Cysteine/genetics , Proline/genetics , Protein Domains/genetics
SELECTION OF CITATIONS
SEARCH DETAIL