Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
Add more filters

Publication year range
1.
Am J Hum Genet ; 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39096911

ABSTRACT

Co-observation of a gene variant with a pathogenic variant in another gene that explains the disease presentation has been designated as evidence against pathogenicity for commonly used variant classification guidelines. Multiple variant curation expert panels have specified, from consensus opinion, that this evidence type is not applicable for the classification of breast cancer predisposition gene variants. Statistical analysis of sequence data for 55,815 individuals diagnosed with breast cancer from the BRIDGES sequencing project was undertaken to formally assess the utility of co-observation data for germline variant classification. Our analysis included expected loss-of-function variants in 11 breast cancer predisposition genes and pathogenic missense variants in BRCA1, BRCA2, and TP53. We assessed whether co-observation of pathogenic variants in two different genes occurred more or less often than expected under the assumption of independence. Co-observation of pathogenic variants in each of BRCA1, BRCA2, and PALB2 with the remaining genes was less frequent than expected. This evidence for depletion remained after adjustment for age at diagnosis, study design (familial versus population-based), and country. Co-observation of a variant of uncertain significance in BRCA1, BRCA2, or PALB2 with a pathogenic variant in another breast cancer gene equated to supporting evidence against pathogenicity following criterion strength assignment based on the likelihood ratio and showed utility in reclassification of missense BRCA1 and BRCA2 variants identified in BRIDGES. Our approach has applicability for assessing the value of co-observation as a predictor of variant pathogenicity in other clinical contexts, including for gene-specific guidelines developed by ClinGen Variant Curation Expert Panels.

2.
Am J Hum Genet ; 110(7): 1046-1067, 2023 07 06.
Article in English | MEDLINE | ID: mdl-37352859

ABSTRACT

The American College of Medical Genetics and Genomics (ACMG)/Association for Molecular Pathology (AMP) framework for classifying variants uses six evidence categories related to the splicing potential of variants: PVS1, PS3, PP3, BS3, BP4, and BP7. However, the lack of guidance on how to apply such codes has contributed to variation in the specifications developed by different Clinical Genome Resource (ClinGen) Variant Curation Expert Panels. The ClinGen Sequence Variant Interpretation Splicing Subgroup was established to refine recommendations for applying ACMG/AMP codes relating to splicing data and computational predictions. We utilized empirically derived splicing evidence to (1) determine the evidence weighting of splicing-related data and appropriate criteria code selection for general use, (2) outline a process for integrating splicing-related considerations when developing a gene-specific PVS1 decision tree, and (3) exemplify methodology to calibrate splice prediction tools. We propose repurposing the PVS1_Strength code to capture splicing assay data that provide experimental evidence for variants resulting in RNA transcript(s) with loss of function. Conversely, BP7 may be used to capture RNA results demonstrating no splicing impact for intronic and synonymous variants. We propose that the PS3/BS3 codes are applied only for well-established assays that measure functional impact not directly captured by RNA-splicing assays. We recommend the application of PS1 based on similarity of predicted RNA-splicing effects for a variant under assessment in comparison with a known pathogenic variant. The recommendations and approaches for consideration and evaluation of RNA-assay evidence described aim to help standardize variant pathogenicity classification processes when interpreting splicing-based evidence.


Subject(s)
Genetic Variation , Genome, Human , Humans , United States , Genomics/methods , Alleles , RNA Splicing/genetics , Genetic Testing/methods
3.
J Med Genet ; 61(5): 483-489, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38160042

ABSTRACT

BACKGROUND: BRCA1/2 testing is crucial to guide clinical decisions in patients with hereditary breast/ovarian cancer, but detection of variants of uncertain significance (VUSs) prevents proper management of carriers. The ENIGMA (Evidence-based Network for the Interpretation of Germline Mutant Alleles) BRCA1/2 Variant Curation Expert Panel (VCEP) has recently developed BRCA1/2 variant classification guidelines consistent with ClinGen processes, specified against the ACMG/AMP (American College of Medical Genetics and Genomics/Association for Molecular-Pathology) classification framework. METHODS: The ClinGen-approved BRCA1/2-specified ACMG/AMP classification guidelines were applied to BRCA1/2 VUSs identified from 2011 to 2022 in a series of patients, retrieving information from the VCEP documentation, public databases, literature and ENIGMA unpublished data. Then, we critically re-evaluated carrier families based on new results and checked consistency of updated classification with main sources for clinical interpretation of BRCA1/2 variants. RESULTS: Among 166 VUSs detected in 231 index cases, 135 (81.3%) found in 197 index cases were classified by applying BRCA1/2-specified ACMG/AMP criteria: 128 (94.8%) as Benign/Likely Benign and 7 (5.2%) as Pathogenic/Likely Pathogenic. The average time from the first report as 'VUS' to classification using this approach was 49.4 months. Considering that 15 of these variants found in 64 families had already been internally reclassified prior to this work, this study provided 121 new reclassifications among the 151 (80.1%) remaining VUSs, relevant to 133/167 (79.6%) families. CONCLUSIONS: These results demonstrated the effectiveness of new BRCA1/2 ACMG/AMP classification guidelines for VUS classification within a clinical cohort, and their important clinical impact. Furthermore, they suggested a cadence of no more than 3 years for regular review of VUSs, which however requires time, expertise and resources.


Subject(s)
BRCA1 Protein , BRCA2 Protein , Breast Neoplasms , Genetic Variation , Humans , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Genetic Predisposition to Disease , Genetic Testing/methods
4.
Breast Cancer Res ; 26(1): 6, 2024 01 09.
Article in English | MEDLINE | ID: mdl-38195559

ABSTRACT

BACKGROUND: Reports of dual carriers of pathogenic BRCA1 variants in trans are extremely rare, and so far, most individuals have been associated with a Fanconi Anemia-like phenotype. METHODS: We identified two families with a BRCA1 in-frame exon 20 duplication (Ex20dup). In one male individual, the variant was in trans with the BRCA1 frameshift variant c.2475delC p.(Asp825Glufs*21). We performed splicing analysis and used a transcription activation domain (TAD) assay to assess the functional impact of Ex20dup. We collected pedigrees and mapped the breakpoints of the duplication by long- and short-read genome sequencing. In addition, we performed a mitomycin C (MMC) assay from the dual carrier using cultured lymphoblastoid cells. RESULTS: Genome sequencing and RNA analysis revealed the BRCA1 exon 20 duplication to be in tandem. The duplication was expressed without skipping any one of the two exon 20 copies, resulting in a lack of wild-type transcripts from this allele. TAD assay indicated that the Ex20dup variant has a functional level similar to the well-known moderate penetrant pathogenic BRCA1 variant c.5096G > A p.(Arg1699Gln). MMC assay of the dual carrier indicated a slightly impaired chromosomal repair ability. CONCLUSIONS: This is the first reported case where two BRCA1 variants with demonstrated functional impact are identified in trans in a male patient with an apparently normal clinical phenotype and no BRCA1-associated cancer. The results pinpoint a minimum necessary BRCA1 protein activity to avoid a Fanconi Anemia-like phenotype in compound heterozygous status and yet still predispose carriers to hormone-related cancers. These findings urge caution when counseling families regarding potential Fanconi Anemia risk. Furthermore, prudence should be taken when classifying individual variants as benign based on co-occurrence in trans with well-established pathogenic variants.


Subject(s)
Breast Neoplasms , Fanconi Anemia , Humans , Male , BRCA1 Protein/genetics , Exons/genetics , Fanconi Anemia/genetics , Mitomycin , Phenotype
5.
N Engl J Med ; 384(5): 428-439, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33471991

ABSTRACT

BACKGROUND: Genetic testing for breast cancer susceptibility is widely used, but for many genes, evidence of an association with breast cancer is weak, underlying risk estimates are imprecise, and reliable subtype-specific risk estimates are lacking. METHODS: We used a panel of 34 putative susceptibility genes to perform sequencing on samples from 60,466 women with breast cancer and 53,461 controls. In separate analyses for protein-truncating variants and rare missense variants in these genes, we estimated odds ratios for breast cancer overall and tumor subtypes. We evaluated missense-variant associations according to domain and classification of pathogenicity. RESULTS: Protein-truncating variants in 5 genes (ATM, BRCA1, BRCA2, CHEK2, and PALB2) were associated with a risk of breast cancer overall with a P value of less than 0.0001. Protein-truncating variants in 4 other genes (BARD1, RAD51C, RAD51D, and TP53) were associated with a risk of breast cancer overall with a P value of less than 0.05 and a Bayesian false-discovery probability of less than 0.05. For protein-truncating variants in 19 of the remaining 25 genes, the upper limit of the 95% confidence interval of the odds ratio for breast cancer overall was less than 2.0. For protein-truncating variants in ATM and CHEK2, odds ratios were higher for estrogen receptor (ER)-positive disease than for ER-negative disease; for protein-truncating variants in BARD1, BRCA1, BRCA2, PALB2, RAD51C, and RAD51D, odds ratios were higher for ER-negative disease than for ER-positive disease. Rare missense variants (in aggregate) in ATM, CHEK2, and TP53 were associated with a risk of breast cancer overall with a P value of less than 0.001. For BRCA1, BRCA2, and TP53, missense variants (in aggregate) that would be classified as pathogenic according to standard criteria were associated with a risk of breast cancer overall, with the risk being similar to that of protein-truncating variants. CONCLUSIONS: The results of this study define the genes that are most clinically useful for inclusion on panels for the prediction of breast cancer risk, as well as provide estimates of the risks associated with protein-truncating variants, to guide genetic counseling. (Funded by European Union Horizon 2020 programs and others.).


Subject(s)
Breast Neoplasms/genetics , Genetic Predisposition to Disease/genetics , Genetic Variation , Mutation, Missense , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , Female , Humans , Logistic Models , Middle Aged , Odds Ratio , Risk , Sequence Analysis, DNA , Young Adult
6.
Bioinformatics ; 39(4)2023 04 03.
Article in English | MEDLINE | ID: mdl-37021934

ABSTRACT

SUMMARY: SpliceAI is a widely used splicing prediction tool and its most common application relies on the maximum delta score to assign variant impact on splicing. We developed the SpliceAI-10k calculator (SAI-10k-calc) to extend use of this tool to predict: the splicing aberration type including pseudoexonization, intron retention, partial exon deletion, and (multi)exon skipping using a 10 kb analysis window; the size of inserted or deleted sequence; the effect on reading frame; and the altered amino acid sequence. SAI-10k-calc has 95% sensitivity and 96% specificity for predicting variants that impact splicing, computed from a control dataset of 1212 single-nucleotide variants (SNVs) with curated splicing assay results. Notably, it has high performance (≥84% accuracy) for predicting pseudoexon and partial intron retention. The automated amino acid sequence prediction allows for efficient identification of variants that are expected to result in mRNA nonsense-mediated decay or translation of truncated proteins. AVAILABILITY AND IMPLEMENTATION: SAI-10k-calc is implemented in R (https://github.com/adavi4/SAI-10k-calc) and also available as a Microsoft Excel spreadsheet. Users can adjust the default thresholds to suit their target performance values.


Subject(s)
RNA Splicing , Introns , Exons , RNA, Messenger/metabolism , Amino Acid Sequence
7.
Hum Mutat ; 20232023.
Article in English | MEDLINE | ID: mdl-38725546

ABSTRACT

A large number of variants identified through clinical genetic testing in disease susceptibility genes, are of uncertain significance (VUS). Following the recommendations of the American College of Medical Genetics and Genomics (ACMG) and Association for Molecular Pathology (AMP), the frequency in case-control datasets (PS4 criterion), can inform their interpretation. We present a novel case-control likelihood ratio-based method that incorporates gene-specific age-related penetrance. We demonstrate the utility of this method in the analysis of simulated and real datasets. In the analyses of simulated data, the likelihood ratio method was more powerful compared to other methods. Likelihood ratios were calculated for a case-control dataset of BRCA1 and BRCA2 variants from the Breast Cancer Association Consortium (BCAC), and compared with logistic regression results. A larger number of variants reached evidence in favor of pathogenicity, and a substantial number of variants had evidence against pathogenicity - findings that would not have been reached using other case-control analysis methods. Our novel method provides greater power to classify rare variants compared to classical case-control methods. As an initiative from the ENIGMA Analytical Working Group, we provide user-friendly scripts and pre-formatted excel calculators for implementation of the method for rare variants in BRCA1, BRCA2 and other high-risk genes with known penetrance.


Subject(s)
BRCA1 Protein , BRCA2 Protein , Breast Neoplasms , Genetic Predisposition to Disease , Humans , Case-Control Studies , BRCA2 Protein/genetics , Female , BRCA1 Protein/genetics , Breast Neoplasms/genetics , Likelihood Functions , Genetic Variation , Penetrance , Genetic Testing/methods
8.
Hum Mutat ; 43(12): 2308-2323, 2022 12.
Article in English | MEDLINE | ID: mdl-36273432

ABSTRACT

Modeling splicing is essential for tackling the challenge of variant interpretation as each nucleotide variation can be pathogenic by affecting pre-mRNA splicing via disruption/creation of splicing motifs such as 5'/3' splice sites, branch sites, or splicing regulatory elements. Unfortunately, most in silico tools focus on a specific type of splicing motif, which is why we developed the Splicing Prediction Pipeline (SPiP) to perform, in one single bioinformatic analysis based on a machine learning approach, a comprehensive assessment of the variant effect on different splicing motifs. We gathered a curated set of 4616 variants scattered all along the sequence of 227 genes, with their corresponding splicing studies. The Bayesian analysis provided us with the number of control variants, that is, variants without impact on splicing, to mimic the deluge of variants from high-throughput sequencing data. Results show that SPiP can deal with the diversity of splicing alterations, with 83.13% sensitivity and 99% specificity to detect spliceogenic variants. Overall performance as measured by area under the receiving operator curve was 0.986, better than SpliceAI and SQUIRLS (0.965 and 0.766) for the same data set. SPiP lends itself to a unique suite for comprehensive prediction of spliceogenicity in the genomic medicine era. SPiP is available at: https://sourceforge.net/projects/splicing-prediction-pipeline/.


Subject(s)
RNA Splice Sites , RNA Splicing , Humans , Bayes Theorem , RNA Splicing/genetics , Exons/genetics , RNA Splice Sites/genetics , Machine Learning , Introns/genetics
9.
Hum Mutat ; 43(12): 1921-1944, 2022 12.
Article in English | MEDLINE | ID: mdl-35979650

ABSTRACT

Skipping of BRCA2 exon 3 (∆E3) is a naturally occurring splicing event, complicating clinical classification of variants that may alter ∆E3 expression. This study used multiple evidence types to assess pathogenicity of 85 variants in/near BRCA2 exon 3. Bioinformatically predicted spliceogenic variants underwent mRNA splicing analysis using minigenes and/or patient samples. ∆E3 was measured using quantitative analysis. A mouse embryonic stem cell (mESC) based assay was used to determine the impact of 18 variants on mRNA splicing and protein function. For each variant, population frequency, bioinformatic predictions, clinical data, and existing mRNA splicing and functional results were collated. Variant class was assigned using a gene-specific adaptation of ACMG/AMP guidelines, following a recently proposed points-based system. mRNA and mESC analysis combined identified six variants with transcript and/or functional profiles interpreted as loss of function. Cryptic splice site use for acceptor site variants generated a transcript encoding a shorter protein that retains activity. Overall, 69/85 (81%) variants were classified using the points-based approach. Our analysis shows the value of applying gene-specific ACMG/AMP guidelines using a points-based approach and highlights the consideration of cryptic splice site usage to appropriately assign PVS1 code strength.


Subject(s)
Genes, BRCA2 , RNA Splice Sites , Animals , Humans , Mice , Alternative Splicing , BRCA2 Protein/genetics , BRCA2 Protein/metabolism , RNA Splicing , RNA, Messenger/genetics , RNA, Messenger/metabolism
10.
Genet Med ; 24(2): 398-409, 2022 02.
Article in English | MEDLINE | ID: mdl-34906448

ABSTRACT

PURPOSE: Branchpoint elements are required for intron removal, and variants at these elements can result in aberrant splicing. We aimed to assess the value of branchpoint annotations generated from recent large-scale studies to select branchpoint-abrogating variants, using hereditary cancer genes as model. METHODS: We identified branchpoint elements in 119 genes associated with hereditary cancer from 3 genome-wide experimentally-inferred and 2 predicted branchpoint data sets. We then identified variants that occur within branchpoint elements from public databases. We compared conservation, unique variant observations, and population frequencies at different nucleotides within branchpoint motifs. Finally, selected minigene assays were performed to assess the splicing effect of variants at branchpoint elements within mismatch repair genes. RESULTS: There was poor overlap between predicted and experimentally-inferred branchpoints. Our analysis of cancer genes suggested that variants at -2 nucleotide, -1 nucleotide, and branchpoint positions in experimentally-inferred canonical motifs are more likely to be clinically relevant. Minigene assay data showed the -2 nucleotide to be more important to branchpoint motif integrity but also showed fluidity in branchpoint usage. CONCLUSION: Data from cancer gene analysis suggest that there are few high-risk alleles that severely impact function via branchpoint abrogation. Results of this study inform a general scheme to prioritize branchpoint motif variants for further study.


Subject(s)
Neoplasms , RNA Splicing , Genes, Neoplasm , Humans , Introns/genetics , Neoplasms/genetics , RNA Splicing/genetics
11.
Genet Med ; 24(1): 119-129, 2022 01.
Article in English | MEDLINE | ID: mdl-34906479

ABSTRACT

PURPOSE: Germline genetic testing for BRCA1 and BRCA2 variants has been a part of clinical practice for >2 decades. However, no studies have compared the cancer risks associated with missense pathogenic variants (PVs) with those associated with protein truncating (PTC) variants. METHODS: We collected 582 informative pedigrees segregating 1 of 28 missense PVs in BRCA1 and 153 pedigrees segregating 1 of 12 missense PVs in BRCA2. We analyzed 324 pedigrees with PTC variants in BRCA1 and 214 pedigrees with PTC variants in BRCA2. Cancer risks were estimated using modified segregation analysis. RESULTS: Estimated breast cancer risks were markedly lower for women aged >50 years carrying BRCA1 missense PVs than for the women carrying BRCA1 PTC variants (hazard ratio [HR] = 3.9 [2.4-6.2] for PVs vs 12.8 [5.7-28.7] for PTC variants; P = .01), particularly for missense PVs in the BRCA1 C-terminal domain (HR = 2.8 [1.4-5.6]; P = .005). In case of BRCA2, for women aged >50 years, the HR was 3.9 (2.0-7.2) for those heterozygous for missense PVs compared with 7.0 (3.3-14.7) for those harboring PTC variants. BRCA1 p.[Cys64Arg] and BRCA2 p.[Trp2626Cys] were associated with particularly low risks of breast cancer compared with other PVs. CONCLUSION: These results have important implications for the counseling of at-risk women who harbor missense PVs in the BRCA1/2 genes.


Subject(s)
Breast Neoplasms , Ovarian Neoplasms , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Female , Genes, BRCA1 , Genes, BRCA2 , Genetic Predisposition to Disease , Genetic Testing/methods , Germ-Line Mutation/genetics , Humans , Middle Aged , Ovarian Neoplasms/genetics
12.
Hum Mutat ; 42(5): 530-536, 2021 05.
Article in English | MEDLINE | ID: mdl-33600021

ABSTRACT

Aggregate population genomics data from large cohorts are vital for assessing germline variant pathogenicity. However, there are no specifications on how sequencing quality metrics should be considered, and whether exome-derived and genome-derived allele frequencies should be considered in isolation. Germline genome sequence data were simulated for nine read-depths to identify a minimum acceptable read-depth for detecting variants. gnomAD exome-derived and genome-derived datasets were assessed for read-depth, for six key cancer genes selected for variant curation by ClinGen expert panels. Non-Finnish European allele frequency (AF) or filter AF of coding variants in these genes, assigned into frequency bins using modified ACMG-AMP criteria, was compared between exome-derived and genome-derived datasets. A 30X read-depth achieved acceptable precision and recall for detection of substitutions, but poor recall for small insertions/deletions. Exome-derived and genome-derived datasets exhibited low read-depth for different gene exons. Individual variants were mostly assigned to non-divergent AF bins (>95%) or filter AF bins (>97%). Two major bin divergences were resolved by applying the minimal acceptable read-depth threshold. These findings show the importance of assessing read-depth separately for population datasets sourced from different short-read sequencing technologies before assigning a frequency-based ACMG-AMP classification code for variant interpretation.


Subject(s)
Genome, Human , Neoplasms , Gene Frequency , Genetic Testing , Genetic Variation , Genomics , Germ Cells , Humans , Neoplasms/genetics
13.
Breast Cancer Res Treat ; 185(3): 583-590, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33113089

ABSTRACT

BACKGROUND: Diagnostic screening for pathogenic variants in breast cancer susceptibility genes, including BRCA1, BRCA2, PALB2, PTEN and TP53, may be offered to New Zealanders from suspected high-risk breast (and ovarian) cancer families. However, it is unknown how many high-risk pathogenic variant carriers in New Zealand are not offered genetic screening using existing triage tools and guidelines for breast (and ovarian) cancer patients. METHODS: Panel-gene sequencing of the coding and non-coding regions of the BRCA1 and BRCA2 genes, and the coding regions and splice sites of CDH1, PALB2, PTEN and TP53, was undertaken for an unselected cohort of 367 female breast cancer patients. A total of 1685 variants were evaluated using the ENIGMA and the ACMG/AMP variant classification guidelines. RESULTS: Our study identified that 13 (3.5%) breast cancer patients carried a pathogenic or likely pathogenic variant in BRCA1, BRCA2, PALB2, or PTEN. A significantly higher number of pathogenic variant carriers had grade 3 tumours (10/13) when compared to non-carriers; however, no other clinicopathological characteristics were found to be significantly different between (likely) pathogenic variant carriers and non-carriers, nor between variant of unknown significance carriers and non-carriers. Notably, 46% of the identified (likely) pathogenic variant carriers had not been referred for a genetic assessment and consideration of genetic testing. CONCLUSION: Our study shows a potential under-ascertainment of women carrying a (likely) pathogenic variant in a high-risk breast cancer susceptibility gene. These results suggest that further research into testing pathways for New Zealand breast cancer patients may be required to reduce the impact of hereditary cancer syndromes for these individuals and their families.


Subject(s)
Breast Neoplasms , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Breast Neoplasms/epidemiology , Breast Neoplasms/genetics , Female , Genes, BRCA2 , Genetic Predisposition to Disease , Genetic Testing , Germ-Line Mutation , Heterozygote , Humans , New Zealand/epidemiology
14.
PLoS Genet ; 14(12): e1007752, 2018 12.
Article in English | MEDLINE | ID: mdl-30586411

ABSTRACT

The BRCA Challenge is a long-term data-sharing project initiated within the Global Alliance for Genomics and Health (GA4GH) to aggregate BRCA1 and BRCA2 data to support highly collaborative research activities. Its goal is to generate an informed and current understanding of the impact of genetic variation on cancer risk across the iconic cancer predisposition genes, BRCA1 and BRCA2. Initially, reported variants in BRCA1 and BRCA2 available from public databases were integrated into a single, newly created site, www.brcaexchange.org. The purpose of the BRCA Exchange is to provide the community with a reliable and easily accessible record of variants interpreted for a high-penetrance phenotype. More than 20,000 variants have been aggregated, three times the number found in the next-largest public database at the project's outset, of which approximately 7,250 have expert classifications. The data set is based on shared information from existing clinical databases-Breast Cancer Information Core (BIC), ClinVar, and the Leiden Open Variation Database (LOVD)-as well as population databases, all linked to a single point of access. The BRCA Challenge has brought together the existing international Evidence-based Network for the Interpretation of Germline Mutant Alleles (ENIGMA) consortium expert panel, along with expert clinicians, diagnosticians, researchers, and database providers, all with a common goal of advancing our understanding of BRCA1 and BRCA2 variation. Ongoing work includes direct contact with national centers with access to BRCA1 and BRCA2 diagnostic data to encourage data sharing, development of methods suitable for extraction of genetic variation at the level of individual laboratory reports, and engagement with participant communities to enable a more comprehensive understanding of the clinical significance of genetic variation in BRCA1 and BRCA2.


Subject(s)
Databases, Genetic , Genes, BRCA1 , Genes, BRCA2 , Genetic Variation , Alleles , Breast Neoplasms/genetics , Databases, Genetic/ethics , Female , Gene Frequency , Genetic Predisposition to Disease , Humans , Information Dissemination/ethics , Information Dissemination/legislation & jurisprudence , Male , Mutation , Ovarian Neoplasms/genetics , Penetrance , Phenotype , Risk Factors
15.
Bioinformatics ; 35(13): 2315-2317, 2019 07 01.
Article in English | MEDLINE | ID: mdl-30475984

ABSTRACT

SUMMARY: Assessing the pathogenicity of genetic variants can be a complex and challenging task. Spliceogenic variants, which alter mRNA splicing, may yield mature transcripts that encode non-functional protein products, an important predictor of Mendelian disease risk. However, most variant annotation tools do not adequately assess spliceogenicity outside the native splice site and thus the disease-causing potential of variants in other intronic and exonic regions is often overlooked. Here, we present a plugin for the Ensembl Variant Effect Predictor that packages MaxEntScan and extends its functionality to provide splice site predictions using a maximum entropy model. The plugin incorporates a sliding window algorithm to predict splice site loss or gain for any variant that overlaps a transcript feature. We also demonstrate the utility of the plugin by comparing our predictions to two mRNA splicing datasets containing several cancer-susceptibility genes. AVAILABILITY AND IMPLEMENTATION: Source code is freely available under the Apache License, Version 2.0: https://github.com/Ensembl/VEP_plugins. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
RNA Splicing , Software , Algorithms , Exons , Introns
16.
Genet Med ; 22(12): 2052-2059, 2020 12.
Article in English | MEDLINE | ID: mdl-32773770

ABSTRACT

PURPOSE: The American College of Medical Genetics and Genomics (ACMG) and the Association for Molecular Pathology (AMP) have developed guidelines for classifying germline variants as pathogenic or benign to interpret genetic testing results. Cosegregation analysis is an important component of the guidelines. There are two main approaches for cosegregation analysis: meiosis counting and Bayes factor-based quantitative methods. Of these, the ACMG/AMP guidelines employ only meiosis counting. The accuracy of either approach has not been sufficiently addressed in previous works. METHODS: We analyzed hypothetical, simulated, and real-life data to evaluate the accuracy of each approach for cancer-associated genes. RESULTS: We demonstrate that meiosis counting can provide incorrect classifications when the underlying genetic basis of the disease departs from simple Mendelian situations. Some Bayes factor approaches are currently implemented with inappropriate penetrance. We propose an improved penetrance model and describe several critical considerations, including the accuracy of cosegregation for moderate-risk genes and the impact of pleiotropy, population, and birth year. We highlight a webserver, COOL (Co-segregation Online, http://BJFengLab.org/ ), that implements an accurate Bayes factor cosegregation analysis. CONCLUSION: An appropriate penetrance model improves the accuracy of Bayes factor cosegregation analysis for high-penetrant variants, and is a better choice than meiosis counting whenever feasible.


Subject(s)
Genetic Testing , Genetic Variation , Bayes Theorem , Germ Cells , Humans , Mutation , Sequence Analysis, DNA , Virulence
17.
J Med Genet ; 56(6): 347-357, 2019 06.
Article in English | MEDLINE | ID: mdl-30962250

ABSTRACT

The vocabulary currently used to describe genetic variants and their consequences reflects many years of studying and discovering monogenic disease with high penetrance. With the recent rapid expansion of genetic testing brought about by wide availability of high-throughput massively parallel sequencing platforms, accurate variant interpretation has become a major issue. The vocabulary used to describe single genetic variants in silico, in vitro, in vivo and as a contributor to human disease uses terms in common, but the meaning is not necessarily shared across all these contexts. In the setting of cancer genetic tests, the added dimension of using data from genetic sequencing of tumour DNA to direct treatment is an additional source of confusion to those who are not experienced in cancer genetics. The language used to describe variants identified in cancer susceptibility genetic testing typically still reflects an outdated paradigm of Mendelian inheritance with dichotomous outcomes. Cancer is a common disease with complex genetic architecture; an improved lexicon is required to better communicate among scientists, clinicians and patients, the risks and implications of genetic variants detected. This review arises from a recognition of, and discussion about, inconsistencies in vocabulary usage by members of the ENIGMA international multidisciplinary consortium focused on variant classification in breast-ovarian cancer susceptibility genes. It sets out the vocabulary commonly used in genetic variant interpretation and reporting, and suggests a framework for a common vocabulary that may facilitate understanding and clarity in clinical reporting of germline genetic tests for cancer susceptibility.


Subject(s)
Genetic Predisposition to Disease , Genetic Variation , International Classification of Diseases , Neoplasms, Germ Cell and Embryonal/diagnosis , Neoplasms, Germ Cell and Embryonal/genetics , Biomarkers, Tumor , Computational Biology/methods , Gene Expression Profiling , Genes, BRCA1 , Genes, BRCA2 , Germ-Line Mutation , High-Throughput Nucleotide Sequencing , Humans , International Classification of Diseases/standards , Terminology as Topic , Vocabulary, Controlled
18.
Nucleic Acids Res ; 46(15): 7913-7923, 2018 09 06.
Article in English | MEDLINE | ID: mdl-29750258

ABSTRACT

Variant interpretation is the key issue in molecular diagnosis. Spliceogenic variants exemplify this issue as each nucleotide variant can be deleterious via disruption or creation of splice site consensus sequences. Consequently, reliable in silico prediction of variant spliceogenicity would be a major improvement. Thanks to an international effort, a set of 395 variants studied at the mRNA level and occurring in 5' and 3' consensus regions (defined as the 11 and 14 bases surrounding the exon/intron junction, respectively) was collected for 11 different genes, including BRCA1, BRCA2, CFTR and RHD, and used to train and validate a new prediction protocol named Splicing Prediction in Consensus Elements (SPiCE). SPiCE combines in silico predictions from SpliceSiteFinder-like and MaxEntScan and uses logistic regression to define optimal decision thresholds. It revealed an unprecedented sensitivity and specificity of 99.5 and 95.2%, respectively, and the impact on splicing was correctly predicted for 98.8% of variants. We therefore propose SPiCE as the new tool for predicting variant spliceogenicity. It could be easily implemented in any diagnostic laboratory as a routine decision making tool to help geneticists to face the deluge of variants in the next-generation sequencing era. SPiCE is accessible at (https://sourceforge.net/projects/spicev2-1/).


Subject(s)
Computational Biology/methods , Computer Simulation , Genetic Variation , RNA Splice Sites/genetics , RNA Splicing , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Female , Humans , International Cooperation , Internet , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/genetics , Reproducibility of Results , Sensitivity and Specificity
19.
Hum Mutat ; 40(9): 1546-1556, 2019 09.
Article in English | MEDLINE | ID: mdl-31294896

ABSTRACT

Testing for variation in BRCA1 and BRCA2 (commonly referred to as BRCA1/2), has emerged as a standard clinical practice and is helping countless women better understand and manage their heritable risk of breast and ovarian cancer. Yet the increased rate of BRCA1/2 testing has led to an increasing number of Variants of Uncertain Significance (VUS), and the rate of VUS discovery currently outpaces the rate of clinical variant interpretation. Computational prediction is a key component of the variant interpretation pipeline. In the CAGI5 ENIGMA Challenge, six prediction teams submitted predictions on 326 newly-interpreted variants from the ENIGMA Consortium. By evaluating these predictions against the new interpretations, we have gained a number of insights on the state of the art of variant prediction and specific steps to further advance this state of the art.


Subject(s)
BRCA1 Protein/genetics , BRCA2 Protein/genetics , Breast Neoplasms/diagnosis , Computational Biology/methods , Ovarian Neoplasms/diagnosis , Breast Neoplasms/genetics , Early Detection of Cancer , Female , Genetic Predisposition to Disease , Genetic Testing , Genetic Variation , Humans , Models, Genetic , Ovarian Neoplasms/genetics
20.
Hum Mutat ; 40(11): e1-e23, 2019 11.
Article in English | MEDLINE | ID: mdl-31209999

ABSTRACT

BRCA1 BRCA2 mutational spectrum in the Middle East, North Africa, and Southern Europe is not well characterized. The unique history and cultural practices characterizing these regions, often involving consanguinity and inbreeding, plausibly led to the accumulation of population-specific founder pathogenic sequence variants (PSVs). To determine recurring BRCA PSVs in these locales, a search in PUBMED, EMBASE, BIC, and CIMBA was carried out combined with outreach to researchers from the relevant countries for unpublished data. We identified 232 PSVs in BRCA1 and 239 in BRCA2 in 25 of 33 countries surveyed. Common PSVs that were detected in four or more countries were c.5266dup (p.Gln1756Profs), c.181T>G (p.Cys61Gly), c.68_69del (p.Glu23Valfs), c.5030_5033del (p.Thr1677Ilefs), c.4327C>T (p.Arg1443Ter), c.5251C>T (p.Arg1751Ter), c.1016dup (p.Val340Glyfs), c.3700_3704del (p.Val1234Glnfs), c.4065_4068del (p.Asn1355Lysfs), c.1504_1508del (p.Leu502Alafs), c.843_846del (p.Ser282Tyrfs), c.798_799del (p.Ser267Lysfs), and c.3607C>T (p.Arg1203Ter) in BRCA1 and c.2808_2811del (p.Ala938Profs), c.5722_5723del (p.Leu1908Argfs), c.9097dup (p.Thr3033Asnfs), c.1310_1313del (p. p.Lys437Ilefs), and c.5946del (p.Ser1982Argfs) for BRCA2. Notably, some mutations (e.g., p.Asn257Lysfs (c.771_775del)) were observed in unrelated populations. Thus, seemingly genotyping recurring BRCA PSVs in specific populations may provide first pass BRCA genotyping platform.


Subject(s)
BRCA1 Protein/genetics , BRCA2 Protein/genetics , Genetic Predisposition to Disease , Genetic Variation , Population Groups/genetics , Africa, Northern , Alleles , Black People , Data Mining , Databases, Genetic , Europe , Genotype , Humans , Middle East , Research Design , White People
SELECTION OF CITATIONS
SEARCH DETAIL