Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Hepatology ; 75(3): 550-566, 2022 03.
Article in English | MEDLINE | ID: mdl-34510498

ABSTRACT

BACKGROUND AND AIMS: Hepatic ischemia-reperfusion injury (IRI) is the leading cause of early posttransplantation organ failure as mitochondrial respiration and ATP production are affected. A shortage of donors has extended liver donor criteria, including aged or steatotic livers, which are more susceptible to IRI. Given the lack of an effective treatment and the extensive transplantation waitlist, we aimed at characterizing the effects of an accelerated mitochondrial activity by silencing methylation-controlled J protein (MCJ) in three preclinical models of IRI and liver regeneration, focusing on metabolically compromised animal models. APPROACH AND RESULTS: Wild-type (WT), MCJ knockout (KO), and Mcj silenced WT mice were subjected to 70% partial hepatectomy (Phx), prolonged IRI, and 70% Phx with IRI. Old and young mice with metabolic syndrome were also subjected to these procedures. Expression of MCJ, an endogenous negative regulator of mitochondrial respiration, increases in preclinical models of Phx with or without vascular occlusion and in donor livers. Mice lacking MCJ initiate liver regeneration 12 h faster than WT and show reduced ischemic injury and increased survival. MCJ knockdown enables a mitochondrial adaptation that restores the bioenergetic supply for enhanced regeneration and prevents cell death after IRI. Mechanistically, increased ATP secretion facilitates the early activation of Kupffer cells and production of TNF, IL-6, and heparin-binding EGF, accelerating the priming phase and the progression through G1 /S transition during liver regeneration. Therapeutic silencing of MCJ in 15-month-old mice and in mice fed a high-fat/high-fructose diet for 12 weeks improves mitochondrial respiration, reduces steatosis, and overcomes regenerative limitations. CONCLUSIONS: Boosting mitochondrial activity by silencing MCJ could pave the way for a protective approach after major liver resection or IRI, especially in metabolically compromised, IRI-susceptible organs.


Subject(s)
Fatty Liver/metabolism , Liver Regeneration/physiology , Macrophage Activation/physiology , Mitochondria/metabolism , Mitochondrial Proteins , Molecular Chaperones , Reperfusion Injury/metabolism , Age Factors , Animals , Disease Models, Animal , Energy Metabolism/physiology , Gene Silencing/physiology , Graft Rejection/prevention & control , Liver/metabolism , Liver Transplantation/methods , Mice , Mice, Knockout , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Reperfusion Injury/prevention & control
2.
NMR Biomed ; 35(2): e4637, 2022 02.
Article in English | MEDLINE | ID: mdl-34708437

ABSTRACT

COVID-19 is a systemic infectious disease that may affect many organs, accompanied by a measurable metabolic dysregulation. The disease is also associated with significant mortality, particularly among the elderly, patients with comorbidities, and solid organ transplant recipients. Yet, the largest segment of the patient population is asymptomatic, and most other patients develop mild to moderate symptoms after SARS-CoV-2 infection. Here, we have used NMR metabolomics to characterize plasma samples from a cohort of the abovementioned group of COVID-19 patients (n = 69), between 3 and 10 months after diagnosis, and compared them with a set of reference samples from individuals never infected by the virus (n = 71). Our results indicate that half of the patient population show abnormal metabolism including porphyrin levels and altered lipoprotein profiles six months after the infection, while the other half show little molecular record of the disease. Remarkably, most of these patients are asymptomatic or mild COVID-19 patients, and we hypothesize that this is due to a metabolic reflection of the immune response stress.


Subject(s)
COVID-19/metabolism , Lipidomics , Magnetic Resonance Spectroscopy/methods , Metabolomics , SARS-CoV-2 , COVID-19/immunology , Cholesterol, HDL/blood , Cholesterol, LDL/blood , Humans
3.
J Med Chem ; 67(7): 5603-5616, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38513080

ABSTRACT

Vaccines are one of the greatest achievements of modern medicine. Due to their safer profile, the latest investigations usually focus on subunit vaccines. However, the active component often needs to be coupled with an adjuvant to be effective and properly trigger an immune response. We are developing a new synthetic monosaccharide-based TLR4 agonist, such as glucosamine-derived compounds FP18 and FP20, as a potential vaccine adjuvant. In this study, we present a new FP20 derivative, FP20Hmp, with a hydroxylated ester linked to the glucosamine core. We show that the modification introduced improves the activity of the adjuvant and its solubility. This study presents the synthesis of FP20Hmp, its in vitro characterization, and in vivo activity while coupled with the ovalbumin antigen or in formulation with an enterococcal antigen. We show that FP20Hmp enables increased production of antigen-specific antibodies that bind to the whole bacterium.


Subject(s)
Adjuvants, Vaccine , Enterococcus faecium , Toll-Like Receptor 4 , Adjuvants, Immunologic/pharmacology , Adjuvants, Immunologic/chemistry , Vaccines, Subunit , Glucosamine
4.
J Med Chem ; 66(4): 3010-3029, 2023 02 23.
Article in English | MEDLINE | ID: mdl-36728697

ABSTRACT

We disclose here a panel of small-molecule TLR4 agonists (the FP20 series) whose structure is derived from previously developed TLR4 ligands (FP18 series). The new molecules have increased chemical stability and a shorter, more efficient, and scalable synthesis. The FP20 series showed selective activity as TLR4 agonists with a potency similar to FP18. Interestingly, despite the chemical similarity with the FP18 series, FP20 showed a different mechanism of action and immunofluorescence microscopy showed no NF-κB nor p-IRF-3 nuclear translocation but rather MAPK and NLRP3-dependent inflammasome activation. The computational studies related a 3D shape of FP20 series with agonist binding properties inside the MD-2 pocket. FP20 displayed a CMC value lower than 5 µM in water, and small unilamellar vesicle (SUV) formation was observed in the biological activity concentration range. FP20 showed no toxicity in mouse vaccination experiments with OVA antigen and induced IgG production, thus indicating a promising adjuvant activity.


Subject(s)
Adjuvants, Vaccine , Toll-Like Receptor 4 , Mice , Animals , Toll-Like Receptor 4/metabolism , Adjuvants, Immunologic/pharmacology , NF-kappa B/metabolism , Vaccination , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammasomes/metabolism
5.
Cells ; 9(9)2020 09 16.
Article in English | MEDLINE | ID: mdl-32948003

ABSTRACT

Vaccine design traditionally focuses on inducing adaptive immune responses against a sole target pathogen. Considering that many microbes evade innate immune mechanisms to initiate infection, and in light of the discovery of epigenetically mediated innate immune training, the paradigm of vaccine design has the potential to change. The Bacillus Calmette-Guérin (BCG) vaccine induces some level of protection against Mycobacterium tuberculosis (Mtb) while stimulating trained immunity that correlates with lower mortality and increased protection against unrelated pathogens. This review will explore BCG-induced trained immunity, including the required pathways to establish this phenotype. Additionally, potential methods to improve or expand BCG trained immunity effects through alternative vaccine delivery and formulation methods will be discussed. Finally, advances in new anti-Mtb vaccines, other antimicrobial uses for BCG, and "innate memory-based vaccines" will be examined.


Subject(s)
Adaptive Immunity/drug effects , BCG Vaccine/administration & dosage , COVID-19/prevention & control , Epigenesis, Genetic/drug effects , Myeloid Cells/drug effects , SARS-CoV-2/pathogenicity , Tuberculosis, Pulmonary/prevention & control , Acetylmuramyl-Alanyl-Isoglutamine/immunology , Acetylmuramyl-Alanyl-Isoglutamine/metabolism , COVID-19/immunology , COVID-19/virology , Cross Protection , Epigenesis, Genetic/immunology , Histones/genetics , Histones/immunology , Humans , Mycobacterium tuberculosis , Myeloid Cells/immunology , Myeloid Cells/pathology , Nod2 Signaling Adaptor Protein/genetics , Nod2 Signaling Adaptor Protein/immunology , Pathogen-Associated Molecular Pattern Molecules/immunology , Pathogen-Associated Molecular Pattern Molecules/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/immunology , Signal Transduction , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/immunology , Tuberculosis, Pulmonary/immunology , Tuberculosis, Pulmonary/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL