Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
J Phys Condens Matter ; 25(35): 355004, 2013 Sep 04.
Article in English | MEDLINE | ID: mdl-23883590

ABSTRACT

X-ray and ultraviolet photoelectron spectroscopy (XPS, UPS) are used to investigate the chemical and electronic structure of boron carbide films deposited from ortho-carborane precursors using plasma-enhanced chemical vapor deposition (PECVD), and the reactivity of PECVD films toward sputter-deposited Cu overlayers. The XPS data provide clear evidence of enhanced ortho-carborane reactivity with the substrate, and of extra-icosahedral boron and carbon species; these results differ from results for films formed by condensation and electron beam induced cross-linking of ortho-carborane (EBIC films). The UPS data show that the valence band maximum for PECVD films is ∼1.5 eV closer to the Fermi level than for EBIC films. The XPS data also indicate that PECVD films are resistant to thermally-stimulated diffusion of Cu at temperatures up to 1000 K in UHV, in direct contrast to recently reported results, but important for applications in neutron detection and in microelectronics.


Subject(s)
Carbon Compounds, Inorganic/chemistry , Copper/chemistry , Membranes, Artificial , Plasma Gases/chemistry , Adsorption , Diffusion , Materials Testing
2.
J Phys Condens Matter ; 25(10): 105801, 2013 Mar 13.
Article in English | MEDLINE | ID: mdl-23388821

ABSTRACT

Polymer films have been formed by electron-induced cross-linking of condensed ortho-carborane and benzene (B(10)C(2)H(X):BNZ) or pyridine (B(10)C(2)H(X):py) at 110 K, followed by warming up to room temperature. High resolution core-level photoemission and molecular orbital calculations demonstrate that the reaction of the icosahedra with the aromatic group is site-specific: bonding occurs between a C atom on the aromatic group and a B site bound to other boron atoms on the icosahedron. This site specificity determines a systematic variation in the valence band maximum relative to the Fermi level from -4.3 eV for cross-linked ortho-carborane to -2.6 eV for B(10)C(2)H(X):BNZ and -2.2 eV for B(10)C(2)H(X):py. The results indicate the ability to form a new class of materials that are a cross between a molecular solid and a network polymer. Further, the electronic properties of these materials can be systematically tuned for a broad variety of applications in neutron detection, nano-electronics and spintronics.

3.
J Phys Condens Matter ; 25(47): 472203, 2013 Nov 27.
Article in English | MEDLINE | ID: mdl-24154506

ABSTRACT

Graphene grown directly on Co3O4(111)/Co(0001) by molecular beam epitaxy exhibits extrinsic p-type doping, as demonstrated by photoemission and conductivity measurements. Trilayer heterostructures of graphene/Co3O4(111)/Co(0001) reveal an unconventional magneto-optical Kerr hysteresis with vanishing remanence for temperatures up to 400 K. Magnetic force microscopy measurements demonstrate that the vanishing remanence is due to a complex domain state, indicating substrate-induced graphene spin polarization. The domain formation of the Co magnetization is in strong contrast to the magnetic behavior of Co in Co/Co3O4 bilayers. This suggests that the Co3O4 interlayer mediates the variable Co magnetization and induced graphene spin polarization, with possible retroaction of graphene on the Co film.

4.
J Phys Condens Matter ; 24(7): 072201, 2012 Feb 22.
Article in English | MEDLINE | ID: mdl-22223630

ABSTRACT

Direct growth of graphene on Co(3)O(4)(111) at 1000 K was achieved by molecular beam epitaxy from a graphite source. Auger spectroscopy shows a characteristic sp(2) carbon lineshape, at average carbon coverages from 0.4 to 3 ML. Low energy electron diffraction (LEED) indicates (111) ordering of the sp(2) carbon film with a lattice constant of 2.5(±0.1) Å characteristic of graphene. Sixfold symmetry of the graphene diffraction spots is observed at 0.4, 1 and 3 ML. The LEED data also indicate an average domain size of ~1800 Å, and show an incommensurate interface with the Co(3)O(4)(111) substrate, where the latter exhibits a lattice constant of 2.8(±0.1) Å. Core level photoemission shows a characteristically asymmetric C(1s) feature, with the expected π to π* satellite feature, but with a binding energy for the 3 ML film of 284.9(±0.1) eV, indicative of substantial graphene-to-oxide charge transfer. Spectroscopic ellipsometry data demonstrate broad similarity with graphene samples physically transferred to SiO(2) or grown on SiC substrates, but with the π to π* absorption blue-shifted, consistent with charge transfer to the substrate. The ability to grow graphene directly on magnetically and electrically polarizable substrates opens new opportunities for industrial scale development of charge- and spin-based devices.


Subject(s)
Cobalt/chemistry , Graphite/chemistry , Oxides/chemistry , Spectrum Analysis , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL