Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Language
Journal subject
Affiliation country
Publication year range
1.
Curr Microbiol ; 81(7): 183, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771359

ABSTRACT

The fungus Monascus is a well-known source of secondary metabolites with interesting pharmaceutical and nutraceutical applications. In particular, Monascus pigments possess a wide range of biological activities (e.g. antimicrobial, antioxidant, anti-inflammatory or antitumoral). To broaden the scope of their possible application, this study focused on testing Monascus pigment extracts as potential photosensitizing agents efficient in antimicrobial photodynamic therapy (aPDT) against bacteria. For this purpose, eight different extracts of secondary metabolites from the liquid- and solid-state fermentation of Monascus purpureus DBM 4360 and Monascus sp. DBM 4361 were tested against Gram-positive and Gram-negative model bacteria, Bacillus subtilis and Escherichia coli and further screened for ESKAPE pathogens, Staphylococcus aureus and Pseudomonas aeruginosa. To the bacterial culture, increasing concentration of extracts was added and it was found that all extracts showed varying antimicrobial activity against Gram-positive bacteria in dark, which was further increased after irradiation. Gram-negative bacteria were tolerant to the extracts' exposure in the dark but sensitivity to almost all extracts that occurred after irradiation. The Monascus sp. DBM 4361 extracts seemed to be the best potential candidate for aPDT against Gram-positive bacteria, being efficient at low doses, i.e. the lowest total concentration of Monascus pigments exhibiting aPDT effect was 3.92 ± 1.36 mg/L for E. coli. Our results indicate that Monascus spp., forming monascuspiloin as the major yellow pigment and not-forming mycotoxin citrinin, is a promising source of antimicrobials and photoantimicrobials.


Subject(s)
Anti-Bacterial Agents , Microbial Sensitivity Tests , Monascus , Mycelium , Monascus/chemistry , Monascus/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Mycelium/chemistry , Mycelium/radiation effects , Mycelium/drug effects , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Biological Products/pharmacology , Biological Products/chemistry , Gram-Positive Bacteria/drug effects , Gram-Positive Bacteria/radiation effects , Complex Mixtures/pharmacology , Complex Mixtures/chemistry , Pigments, Biological/pharmacology , Photochemotherapy
2.
Biotechnol Biofuels Bioprod ; 17(1): 87, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38915101

ABSTRACT

BACKGROUND: Inhibitors that are released from lignocellulose biomass during its treatment represent one of the major bottlenecks hindering its massive utilization in the biotechnological production of chemicals. This study demonstrates that negative effect of inhibitors can be mitigated by proper feeding strategy. Both, crude undetoxified lignocellulose hydrolysate and complex medium supplemented with corresponding inhibitors were tested in acetone-butanol-ethanol (ABE) fermentation using Clostridium beijerinckii NRRL B-598 as the producer strain. RESULTS: First, it was found that the sensitivity of C. beijerinckii to inhibitors varied with different growth stages, being the most significant during the early acidogenic phase and less pronounced during late acidogenesis and early solventogenesis. Thus, a fed-batch regime with three feeding schemes was tested for toxic hydrolysate (no growth in batch mode was observed). The best results were obtained when the feeding of an otherwise toxic hydrolysate was initiated close to the metabolic switch, resulting in stable and high ABE production. Complete utilization of glucose, and up to 88% of xylose, were obtained. The most abundant inhibitors present in the alkaline wheat straw hydrolysate were ferulic and coumaric acids; both phenolic acids were efficiently detoxified by the intrinsic metabolic activity of clostridia during the early stages of cultivation as well as during the feeding period, thus preventing their accumulation. Finally, the best feeding strategy was verified using a TYA culture medium supplemented with both inhibitors, resulting in 500% increase in butanol titer over control batch cultivation in which inhibitors were added prior to inoculation. CONCLUSION: Properly timed sequential feeding effectively prevented acid-crash and enabled utilization of otherwise toxic substrate. This study unequivocally demonstrates that an appropriate biotechnological process control strategy can fully eliminate the negative effects of lignocellulose-derived inhibitors.

3.
Front Microbiol ; 15: 1305338, 2024.
Article in English | MEDLINE | ID: mdl-38389535

ABSTRACT

Background: This paper brings new information about the genome and phenotypic characteristics of Pantoea agglomerans strain DBM 3797, isolated from fresh Czech hop (Humulus lupulus) in the Saaz hop-growing region. Although P. agglomerans strains are frequently isolated from different materials, there are not usually thoroughly characterized even if they have versatile metabolism and those isolated from plants may have a considerable potential for application in agriculture as a support culture for plant growth. Methods: P. agglomerans DBM 3797 was cultured under aerobic and anaerobic conditions, its metabolites were analyzed by HPLC and it was tested for plant growth promotion abilities, such as phosphate solubilization, siderophore and indol-3-acetic acid productions. In addition, genomic DNA was extracted, sequenced and de novo assembly was performed. Further, genome annotation, pan-genome analysis and selected genome analyses, such as CRISPR arrays detection, antibiotic resistance and secondary metabolite genes identification were carried out. Results and discussion: The typical appearance characteristics of the strain include the formation of symplasmata in submerged liquid culture and the formation of pale yellow colonies on agar. The genetic information of the strain (in total 4.8 Mb) is divided between a chromosome and two plasmids. The strain lacks any CRISPR-Cas system but is equipped with four restriction-modification systems. The phenotypic analysis focused on growth under both aerobic and anaerobic conditions, as well as traits associated with plant growth promotion. At both levels (genomic and phenotypic), the production of siderophores, indoleacetic acid-derived growth promoters, gluconic acid, and enzyme activities related to the degradation of complex organic compounds were found. Extracellular gluconic acid production under aerobic conditions (up to 8 g/l) is probably the result of glucose oxidation by the membrane-bound pyrroloquinoline quinone-dependent enzyme glucose dehydrogenase. The strain has a number of properties potentially beneficial to the hop plant and its closest relatives include the strains also isolated from the aerial parts of plants, yet its safety profile needs to be addressed in follow-up research.

4.
Braz. arch. biol. technol ; 63: e20190151, 2020. tab, graf
Article in English | LILACS | ID: biblio-1132269

ABSTRACT

Abstract A comprehensive comparison of the main fermentation parameters, productivity, yield and final L-lactic acid concentration, obtained through batch, fed-batch and continuous cultivations using Lactobacillus casei CCDM 198 and a model cultivation medium was carried out. Using this data, a pulse-feed fed-batch process was established for testing chicken feather hydrolysate as a replacement for all complex nitrogen sources (yeast and beef extracts and peptone) in the medium. As comparably high values of productivity (about 4.0 g/L/h) and yield (about 98 %) were reached under all cultivation conditions, the maximum final L-lactic acid concentration (116.5 g/L), as achieved through pulse-feed fed-batch fermentation, was chosen as the most important criterion for process selection. Fed-batch cultivation with chicken feather hydrolysate as both a complex nitrogen source and a neutralizing agent for maintaining constant culture pH yielded half the concentration of L-lactic acid compared to the model medium. We demonstrate here that chicken feather hydrolysate has potential for use in the production of L-lactic acid but its utilization requires further optimization


Subject(s)
Animals , Lactic Acid/metabolism , Fermentation , Lacticaseibacillus casei/growth & development , Biotechnology/methods , Chromatography, High Pressure Liquid , Biomass , Bioreactors , Hydrolysis
SELECTION OF CITATIONS
SEARCH DETAIL