Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 294
Filter
1.
Nat Rev Mol Cell Biol ; 22(8): 563-579, 2021 08.
Article in English | MEDLINE | ID: mdl-34089013

ABSTRACT

CRISPR loci and Cas proteins provide adaptive immunity in prokaryotes against invading bacteriophages and plasmids. In response, bacteriophages have evolved a broad spectrum of anti-CRISPR proteins (anti-CRISPRs) to counteract and overcome this immunity pathway. Numerous anti-CRISPRs have been identified to date, which suppress single-subunit Cas effectors (in CRISPR class 2, type II, V and VI systems) and multisubunit Cascade effectors (in CRISPR class 1, type I and III systems). Crystallography and cryo-electron microscopy structural studies of anti-CRISPRs bound to effector complexes, complemented by functional experiments in vitro and in vivo, have identified four major CRISPR-Cas suppression mechanisms: inhibition of CRISPR-Cas complex assembly, blocking of target binding, prevention of target cleavage, and degradation of cyclic oligonucleotide signalling molecules. In this Review, we discuss novel mechanistic insights into anti-CRISPR function that have emerged from X-ray crystallography and cryo-electron microscopy studies, and how these structures in combination with function studies provide valuable tools for the ever-growing CRISPR-Cas biotechnology toolbox, to be used for precise and robust genome editing and other applications.


Subject(s)
Biotechnology , CRISPR-Associated Proteins/antagonists & inhibitors , CRISPR-Cas Systems/immunology , Viral Proteins/chemistry , Viral Proteins/metabolism , Bacteriophages/metabolism , CRISPR-Associated Proteins/chemistry , CRISPR-Associated Proteins/metabolism , Gene Editing , Protein Binding
2.
Annu Rev Biochem ; 86: 609-636, 2017 06 20.
Article in English | MEDLINE | ID: mdl-28375742

ABSTRACT

Lipids are produced site-specifically in cells and then distributed nonrandomly among membranes via vesicular and nonvesicular trafficking mechanisms. The latter involves soluble amphitropic proteins extracting specific lipids from source membranes to function as molecular solubilizers that envelope their insoluble cargo before transporting it to destination sites. Lipid-binding and lipid transfer structural motifs range from multi-ß-strand barrels, to ß-sheet cups and baskets covered by α-helical lids, to multi-α-helical bundles and layers. Here, we focus on how α-helical proteins use amphipathic helical layering and bundling to form modular lipid-binding compartments and discuss the functional consequences. Preformed compartments generally rely on intramolecular disulfide bridging to maintain conformation (e.g., albumins, nonspecific lipid transfer proteins, saposins, nematode polyprotein allergens/antigens). Insights into nonpreformed hydrophobic compartments that expand and adapt to accommodate a lipid occupant are few and provided mostly by the three-layer, α-helical ligand-binding domain of nuclear receptors. The simple but elegant and nearly ubiquitous two-layer, α-helical glycolipid transfer protein (GLTP)-fold now further advances understanding.


Subject(s)
Albumins/chemistry , Allergens/chemistry , Antigens/chemistry , Carrier Proteins/chemistry , Lipids/chemistry , Albumins/genetics , Albumins/metabolism , Allergens/genetics , Allergens/metabolism , Animals , Antigens/genetics , Antigens/metabolism , Binding Sites , Biological Transport , Carrier Proteins/genetics , Carrier Proteins/metabolism , Gene Expression , Humans , Lipid Metabolism , Models, Molecular , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Domains
3.
Cell ; 171(2): 414-426.e12, 2017 Oct 05.
Article in English | MEDLINE | ID: mdl-28985564

ABSTRACT

Prokaryotic cells possess CRISPR-mediated adaptive immune systems that protect them from foreign genetic elements, such as invading viruses. A central element of this immune system is an RNA-guided surveillance complex capable of targeting non-self DNA or RNA for degradation in a sequence- and site-specific manner analogous to RNA interference. Although the complexes display considerable diversity in their composition and architecture, many basic mechanisms underlying target recognition and cleavage are highly conserved. Using cryoelectron microscopy (cryo-EM), we show that the binding of target double-stranded DNA (dsDNA) to a type I-F CRISPR system yersinia (Csy) surveillance complex leads to large quaternary and tertiary structural changes in the complex that are likely necessary in the pathway leading to target dsDNA degradation by a trans-acting helicase-nuclease. Comparison of the structure of the surveillance complex before and after dsDNA binding, or in complex with three virally encoded anti-CRISPR suppressors that inhibit dsDNA binding, reveals mechanistic details underlying target recognition and inhibition.


Subject(s)
Bacterial Proteins/chemistry , CRISPR-Associated Proteins/chemistry , CRISPR-Cas Systems , Cryoelectron Microscopy , Pseudomonas aeruginosa/chemistry , Pseudomonas aeruginosa/immunology , Bacteriophages/genetics , Bacteriophages/immunology , CRISPR-Associated Proteins/immunology , CRISPR-Associated Proteins/ultrastructure , DNA, Viral/chemistry , Models, Chemical , Models, Molecular , Multiprotein Complexes/chemistry , Pseudomonas aeruginosa/metabolism , Pseudomonas aeruginosa/ultrastructure
4.
Cell ; 167(7): 1814-1828.e12, 2016 Dec 15.
Article in English | MEDLINE | ID: mdl-27984729

ABSTRACT

C2c1 is a newly identified guide RNA-mediated type V-B CRISPR-Cas endonuclease that site-specifically targets and cleaves both strands of target DNA. We have determined crystal structures of Alicyclobacillus acidoterrestris C2c1 (AacC2c1) bound to sgRNA as a binary complex and to target DNAs as ternary complexes, thereby capturing catalytically competent conformations of AacC2c1 with both target and non-target DNA strands independently positioned within a single RuvC catalytic pocket. Moreover, C2c1-mediated cleavage results in a staggered seven-nucleotide break of target DNA. crRNA adopts a pre-ordered five-nucleotide A-form seed sequence in the binary complex, with release of an inserted tryptophan, facilitating zippering up of 20-bp guide RNA:target DNA heteroduplex on ternary complex formation. Notably, the PAM-interacting cleft adopts a "locked" conformation on ternary complex formation. Structural comparison of C2c1 ternary complexes with their Cas9 and Cpf1 counterparts highlights the diverse mechanisms adopted by these distinct CRISPR-Cas systems, thereby broadening and enhancing their applicability as genome editing tools.


Subject(s)
Alicyclobacillus/enzymology , CRISPR-Cas Systems , Endodeoxyribonucleases/metabolism , Alicyclobacillus/classification , Alicyclobacillus/genetics , Alicyclobacillus/metabolism , Crystallography, X-Ray , Endodeoxyribonucleases/genetics , Gene Editing , Homeodomain Proteins/genetics , Humans , Models, Molecular , RNA, Untranslated/metabolism , Transcription Factors/genetics
5.
Nature ; 625(7996): 797-804, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38200316

ABSTRACT

Prokaryotic type III CRISPR-Cas systems provide immunity against viruses and plasmids using CRISPR-associated Rossman fold (CARF) protein effectors1-5. Recognition of transcripts of these invaders with sequences that are complementary to CRISPR RNA guides leads to the production of cyclic oligoadenylate second messengers, which bind CARF domains and trigger the activity of an effector domain6,7. Whereas most effectors degrade host and invader nucleic acids, some are predicted to contain transmembrane helices without an enzymatic function. Whether and how these CARF-transmembrane helix fusion proteins facilitate the type III CRISPR-Cas immune response remains unknown. Here we investigate the role of cyclic oligoadenylate-activated membrane protein 1 (Cam1) during type III CRISPR immunity. Structural and biochemical analyses reveal that the CARF domains of a Cam1 dimer bind cyclic tetra-adenylate second messengers. In vivo, Cam1 localizes to the membrane, is predicted to form a tetrameric transmembrane pore, and provides defence against viral infection through the induction of membrane depolarization and growth arrest. These results reveal that CRISPR immunity does not always operate through the degradation of nucleic acids, but is instead mediated via a wider range of cellular responses.


Subject(s)
Bacteriophages , CRISPR-Cas Systems , Membrane Potentials , Staphylococcus aureus , Bacteriophages/immunology , Bacteriophages/metabolism , CRISPR-Associated Proteins/metabolism , CRISPR-Cas Systems/genetics , CRISPR-Cas Systems/immunology , Nucleotides, Cyclic/metabolism , RNA, Guide, CRISPR-Cas Systems , Second Messenger Systems , Staphylococcus aureus/cytology , Staphylococcus aureus/genetics , Staphylococcus aureus/immunology , Staphylococcus aureus/virology
6.
Mol Cell ; 82(24): 4591-4610, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36460008

ABSTRACT

Second-messenger-mediated signaling by cyclic oligonucleotides (cOs) composed of distinct base, ring size, and 3'-5'/2'-5' linkage combinations constitutes the initial trigger resulting in activation of signaling pathways that have an impact on immune-mediated antiviral defense against invading viruses and phages. Bacteria and archaea have evolved CRISPR, CBASS, Pycsar, and Thoeris surveillance complexes that involve cO-mediated activation of effectors resulting in antiviral defense through either targeted nuclease activity, effector oligomerization-mediated depletion of essential cellular metabolites or disruption of host cell membrane functions. Notably, antiviral defense capitalizes on an abortive infection mechanism, whereby infected cells die prior to completion of the phage replication cycle. In turn, phages have evolved small proteins that target and degrade/sequester cOs, thereby suppressing host immunity. This review presents a structure-based mechanistic perspective of recent advances in the field of cO-mediated antiviral defense, in particular highlighting the ancient evolutionary adaptation by metazoans of bacterial cell-autonomous innate immune mechanisms.


Subject(s)
Bacteriophages , Nucleotides, Cyclic , Nucleotides, Cyclic/metabolism , CRISPR-Cas Systems , Antiviral Agents , Archaea/genetics , Clustered Regularly Interspaced Short Palindromic Repeats , Bacteriophages/genetics , Bacteriophages/metabolism , Immunity, Innate
7.
Mol Cell ; 82(6): 1186-1198.e6, 2022 03 17.
Article in English | MEDLINE | ID: mdl-35202575

ABSTRACT

Epigenetic evolution occurs over million-year timescales in Cryptococcus neoformans and is mediated by DNMT5, the first maintenance type cytosine methyltransferase identified in the fungal or protist kingdoms, the first dependent on adenosine triphosphate (ATP), and the most hemimethyl-DNA-specific enzyme known. To understand these novel properties, we solved cryo-EM structures of CnDNMT5 in three states. These studies reveal an elaborate allosteric cascade in which hemimethylated DNA binding first activates the SNF2 ATPase domain by a large rigid body rotation while the target cytosine partially flips out of the DNA duplex. ATP binding then triggers striking structural reconfigurations of the methyltransferase catalytic pocket to enable cofactor binding, completion of base flipping, and catalysis. Bound unmethylated DNA does not open the catalytic pocket and is instead ejected upon ATP binding, driving high fidelity. This unprecedented chaperone-like, enzyme-remodeling role of the SNF2 ATPase domain illuminates how energy is used to enable faithful epigenetic memory.


Subject(s)
Adenosine Triphosphate , Epigenome , Adenosine Triphosphatases/genetics , Adenosine Triphosphate/metabolism , Cytosine/chemistry , DNA/genetics , DNA Methylation , Methyltransferases/genetics
8.
Genes Dev ; 36(3-4): 225-240, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35144965

ABSTRACT

The BEN domain is a recently recognized DNA binding module that is present in diverse metazoans and certain viruses. Several BEN domain factors are known as transcriptional repressors, but, overall, relatively little is known of how BEN factors identify their targets in humans. In particular, X-ray structures of BEN domain:DNA complexes are only known for Drosophila factors bearing a single BEN domain, which lack direct vertebrate orthologs. Here, we characterize several mammalian BEN domain (BD) factors, including from two NACC family BTB-BEN proteins and from BEND3, which has four BDs. In vitro selection data revealed sequence-specific binding activities of isolated BEN domains from all of these factors. We conducted detailed functional, genomic, and structural studies of BEND3. We show that BD4 is a major determinant for in vivo association and repression of endogenous BEND3 targets. We obtained a high-resolution structure of BEND3-BD4 bound to its preferred binding site, which reveals how BEND3 identifies cognate DNA targets and shows differences with one of its non-DNA-binding BEN domains (BD1). Finally, comparison with our previous invertebrate BEN structures, along with additional structural predictions using AlphaFold2 and RoseTTAFold, reveal distinct strategies for target DNA recognition by different types of BEN domain proteins. Together, these studies expand the DNA recognition activities of BEN factors and provide structural insights into sequence-specific DNA binding by mammalian BEN proteins.


Subject(s)
Repressor Proteins , Transcription Factors , Animals , Binding Sites , Drosophila/metabolism , Mammals , Protein Binding , Protein Domains , Repressor Proteins/genetics , Transcription Factors/metabolism
9.
Nat Rev Mol Cell Biol ; 18(3): 141-158, 2017 03.
Article in English | MEDLINE | ID: mdl-28053344

ABSTRACT

The association of histones with specific chaperone complexes is important for their folding, oligomerization, post-translational modification, nuclear import, stability, assembly and genomic localization. In this way, the chaperoning of soluble histones is a key determinant of histone availability and fate, which affects all chromosomal processes, including gene expression, chromosome segregation and genome replication and repair. Here, we review the distinct structural and functional properties of the expanding network of histone chaperones. We emphasize how chaperones cooperate in the histone chaperone network and via co-chaperone complexes to match histone supply with demand, thereby promoting proper nucleosome assembly and maintaining epigenetic information by recycling modified histones evicted from chromatin.


Subject(s)
Chromatin/physiology , Histone Chaperones/chemistry , Histone Chaperones/metabolism , Histones/metabolism , Animals , DNA Replication , Histone Chaperones/genetics , Histones/genetics , Humans , Nucleosomes/chemistry , Nucleosomes/metabolism
10.
Cell ; 159(6): 1365-76, 2014 Dec 04.
Article in English | MEDLINE | ID: mdl-25480299

ABSTRACT

Uridylation occurs pervasively on mRNAs, yet its mechanism and significance remain unknown. By applying TAIL-seq, we identify TUT4 and TUT7 (TUT4/7), also known as ZCCHC11 and ZCCHC6, respectively, as mRNA uridylation enzymes. Uridylation readily occurs on deadenylated mRNAs in cells. Consistently, purified TUT4/7 selectively recognize and uridylate RNAs with short A-tails (less than ∼ 25 nt) in vitro. PABPC1 antagonizes uridylation of polyadenylated mRNAs, contributing to the specificity for short A-tails. In cells depleted of TUT4/7, the vast majority of mRNAs lose the oligo-U-tails, and their half-lives are extended. Suppression of mRNA decay factors leads to the accumulation of oligo-uridylated mRNAs. In line with this, microRNA induces uridylation of its targets, and TUT4/7 are required for enhanced decay of microRNA targets. Our study explains the mechanism underlying selective uridylation of deadenylated mRNAs and demonstrates a fundamental role of oligo-U-tail as a molecular mark for global mRNA decay.


Subject(s)
DNA-Binding Proteins/metabolism , RNA Nucleotidyltransferases/metabolism , RNA Stability , HeLa Cells , Humans , MicroRNAs/metabolism , Poly A/metabolism , Poly(A)-Binding Proteins/metabolism , RNA, Messenger/metabolism , Uridine Monophosphate/metabolism
11.
Cell ; 157(5): 1050-60, 2014 May 22.
Article in English | MEDLINE | ID: mdl-24855943

ABSTRACT

DNA methylation is a conserved epigenetic gene-regulation mechanism. DOMAINS REARRANGED METHYLTRANSFERASE (DRM) is a key de novo methyltransferase in plants, but how DRM acts mechanistically is poorly understood. Here, we report the crystal structure of the methyltransferase domain of tobacco DRM (NtDRM) and reveal a molecular basis for its rearranged structure. NtDRM forms a functional homodimer critical for catalytic activity. We also show that Arabidopsis DRM2 exists in complex with the small interfering RNA (siRNA) effector ARGONAUTE4 (AGO4) and preferentially methylates one DNA strand, likely the strand acting as the template for RNA polymerase V-mediated noncoding RNA transcripts. This strand-biased DNA methylation is also positively correlated with strand-biased siRNA accumulation. These data suggest a model in which DRM2 is guided to target loci by AGO4-siRNA and involves base-pairing of associated siRNAs with nascent RNA transcripts.


Subject(s)
Arabidopsis/enzymology , Methyltransferases/metabolism , Nicotiana/enzymology , Amino Acid Sequence , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Argonaute Proteins/metabolism , Catalytic Domain , Methyltransferases/chemistry , Models, Molecular , Molecular Sequence Data , Nicotiana/metabolism
12.
Mol Cell ; 81(5): 1100-1115.e5, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33472057

ABSTRACT

Bacteria and archaea apply CRISPR-Cas surveillance complexes to defend against foreign invaders. These invading genetic elements are captured and integrated into the CRISPR array as spacer elements, guiding sequence-specific DNA/RNA targeting and cleavage. Recently, in vivo studies have shown that target RNAs with extended complementarity with repeat sequences flanking the target element (tag:anti-tag pairing) can dramatically reduce RNA cleavage by the type VI-A Cas13a system. Here, we report the cryo-EM structure of Leptotrichia shahii LshCas13acrRNA in complex with target RNA harboring tag:anti-tag pairing complementarity, with the observed conformational changes providing a molecular explanation for inactivation of the composite HEPN domain cleavage activity. These structural insights, together with in vitro biochemical and in vivo cell-based assays on key mutants, define the molecular principles underlying Cas13a's capacity to target and discriminate between self and non-self RNA targets. Our studies illuminate approaches to regulate Cas13a's cleavage activity, thereby influencing Cas13a-mediated biotechnological applications.


Subject(s)
Bacterial Proteins/chemistry , CRISPR-Associated Proteins/chemistry , CRISPR-Cas Systems , Endodeoxyribonucleases/chemistry , Leptotrichia/genetics , RNA, Guide, Kinetoplastida/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Base Pairing , Base Sequence , Binding Sites , CRISPR-Associated Proteins/genetics , CRISPR-Associated Proteins/metabolism , Cloning, Molecular , Cryoelectron Microscopy , Endodeoxyribonucleases/genetics , Endodeoxyribonucleases/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Leptotrichia/metabolism , Models, Molecular , Mutation , Nucleic Acid Conformation , Protein Binding , Protein Conformation, alpha-Helical , Protein Interaction Domains and Motifs , RNA Cleavage , RNA, Guide, Kinetoplastida/genetics , RNA, Guide, Kinetoplastida/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Substrate Specificity
13.
Mol Cell ; 81(12): 2533-2548.e9, 2021 06 17.
Article in English | MEDLINE | ID: mdl-33857403

ABSTRACT

From biosynthesis to assembly into nucleosomes, histones are handed through a cascade of histone chaperones, which shield histones from non-specific interactions. Whether mechanisms exist to safeguard the histone fold during histone chaperone handover events or to release trapped intermediates is unclear. Using structure-guided and functional proteomics, we identify and characterize a histone chaperone function of DNAJC9, a heat shock co-chaperone that promotes HSP70-mediated catalysis. We elucidate the structure of DNAJC9, in a histone H3-H4 co-chaperone complex with MCM2, revealing how this dual histone and heat shock co-chaperone binds histone substrates. We show that DNAJC9 recruits HSP70-type enzymes via its J domain to fold histone H3-H4 substrates: upstream in the histone supply chain, during replication- and transcription-coupled nucleosome assembly, and to clean up spurious interactions. With its dual functionality, DNAJC9 integrates ATP-resourced protein folding into the histone supply pathway to resolve aberrant intermediates throughout the dynamic lives of histones.


Subject(s)
HSP40 Heat-Shock Proteins/metabolism , Histone Chaperones/metabolism , Cell Line, Tumor , Chromatin , Chromatin Assembly and Disassembly , DNA Replication , HSP40 Heat-Shock Proteins/physiology , HSP70 Heat-Shock Proteins/metabolism , HeLa Cells , Histone Chaperones/physiology , Histones/metabolism , Humans , Minichromosome Maintenance Complex Component 2/metabolism , Models, Molecular , Molecular Chaperones/metabolism , Nucleosomes , Protein Binding , Proteomics/methods
14.
Annu Rev Biochem ; 82: 81-118, 2013.
Article in English | MEDLINE | ID: mdl-23642229

ABSTRACT

This review focuses on a structure-based analysis of histone posttranslational modification (PTM) readout, where the PTMs serve as docking sites for reader modules as part of larger complexes displaying chromatin modifier and remodeling activities, with the capacity to alter chromatin architecture and templated processes. Individual topics addressed include the diversity of reader-binding pocket architectures and common principles underlying readout of methyl-lysine and methyl-arginine marks, their unmodified counterparts, as well as acetyl-lysine and phosphoserine marks. The review also discusses the impact of multivalent readout of combinations of PTMs localized at specific genomic sites by linked binding modules on processes ranging from gene transcription to repair. Additional topics include cross talk between histone PTMs, histone mimics, epigenetic-based diseases, and drug-based therapeutic intervention. The review ends by highlighting new initiatives and advances, as well as future challenges, toward the promise of enhancing our structural and mechanistic understanding of the readout of histone PTMs at the nucleosomal level.


Subject(s)
Chromatin Assembly and Disassembly/genetics , Chromatin/genetics , Epigenesis, Genetic , Histones/metabolism , Protein Processing, Post-Translational/genetics , Chromatin/metabolism , Drug Discovery , Epigenomics/methods , Histones/chemistry , Histones/genetics , Humans
15.
Genes Dev ; 35(5-6): 392-409, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33574069

ABSTRACT

Nuclear Argonaute proteins, guided by their bound small RNAs to nascent target transcripts, mediate cotranscriptional silencing of transposons and repetitive genomic loci through heterochromatin formation. The molecular mechanisms involved in this process are incompletely understood. Here, we show that the SFiNX complex, a silencing mediator downstream from nuclear Piwi-piRNA complexes in Drosophila, facilitates cotranscriptional silencing as a homodimer. The dynein light chain protein Cut up/LC8 mediates SFiNX dimerization, and its function can be bypassed by a heterologous dimerization domain, arguing for a constitutive SFiNX dimer. Dimeric, but not monomeric SFiNX, is capable of forming molecular condensates in a nucleic acid-stimulated manner. Mutations that prevent SFiNX dimerization result in loss of condensate formation in vitro and the inability of Piwi to initiate heterochromatin formation and silence transposons in vivo. We propose that multivalent SFiNX-nucleic acid interactions are critical for heterochromatin establishment at piRNA target loci in a cotranscriptional manner.


Subject(s)
Argonaute Proteins/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Gene Expression Regulation, Developmental/genetics , Gene Silencing/physiology , Multiprotein Complexes/metabolism , Animals , Dimerization , Drosophila Proteins/chemistry , Drosophila melanogaster/metabolism , Dyneins/metabolism , Multiprotein Complexes/chemistry , Multiprotein Complexes/genetics , Nuclear Proteins/chemistry , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Nucleocytoplasmic Transport Proteins/chemistry , Nucleocytoplasmic Transport Proteins/genetics , Nucleocytoplasmic Transport Proteins/metabolism , Protein Subunits/genetics , Protein Subunits/metabolism , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
16.
Cell ; 152(4): 831-43, 2013 Feb 14.
Article in English | MEDLINE | ID: mdl-23415230

ABSTRACT

p11, through unknown mechanisms, is required for behavioral and cellular responses to selective serotonin reuptake inhibitors (SSRIs). We show that SMARCA3, a chromatin-remodeling factor, is a target for the p11/annexin A2 heterotetrameric complex. Determination of the crystal structure indicates that SMARCA3 peptide binds to a hydrophobic pocket in the heterotetramer. Formation of this complex increases the DNA-binding affinity of SMARCA3 and its localization to the nuclear matrix fraction. In the dentate gyrus, both p11 and SMARCA3 are highly enriched in hilar mossy cells and basket cells. The SSRI fluoxetine induces expression of p11 in both cell types and increases the amount of the ternary complex of p11/annexin A2/SMARCA3. SSRI-induced neurogenesis and behavioral responses are abolished by constitutive knockout of SMARCA3. Our studies indicate a central role for a chromatin-remodeling factor in the SSRI/p11 signaling pathway and suggest an approach to the development of improved antidepressant therapies. PAPERCLIP:


Subject(s)
Annexin A2/metabolism , DNA-Binding Proteins/metabolism , Dentate Gyrus/metabolism , S100 Proteins/metabolism , Selective Serotonin Reuptake Inhibitors/pharmacology , Transcription Factors/metabolism , Amino Acid Sequence , Animals , DNA-Binding Proteins/chemistry , Female , Male , Models, Molecular , Molecular Sequence Data , Mossy Fibers, Hippocampal/metabolism , Sequence Alignment , Signal Transduction , Transcription Factors/chemistry , X-Ray Diffraction
17.
Cell ; 153(5): 1094-107, 2013 May 23.
Article in English | MEDLINE | ID: mdl-23647843

ABSTRACT

Recent studies identified cyclic GMP-AMP (cGAMP) as a metazoan second messenger triggering an interferon response. cGAMP is generated from GTP and ATP by cytoplasmic dsDNA sensor cGAMP synthase (cGAS). We combined structural, chemical, biochemical, and cellular assays to demonstrate that this second messenger contains G(2',5')pA and A(3',5')pG phosphodiester linkages, designated c[G(2',5')pA(3',5')p]. We show that, upon dsDNA binding, cGAS is activated through conformational transitions, resulting in formation of a catalytically competent and accessible nucleotide-binding pocket for generation of c[G(2',5')pA(3',5')p]. We demonstrate that cyclization occurs in a stepwise manner through initial generation of 5'-pppG(2',5')pA prior to cyclization to c[G(2',5')pA(3',5')p], with the latter positioned precisely in the catalytic pocket. Mutants of cGAS dsDNA-binding or catalytic pocket residues exhibit reduced or abrogated activity. Our studies have identified c[G(2',5')pA(3',5')p] as a founding member of a family of metazoan 2',5'-containing cyclic heterodinucleotide second messengers distinct from bacterial 3',5' cyclic dinucleotides.


Subject(s)
Dinucleoside Phosphates/metabolism , Nucleotides, Cyclic/metabolism , Nucleotidyltransferases/chemistry , Second Messenger Systems , 2',5'-Oligoadenylate Synthetase/chemistry , Adenosine Triphosphate/metabolism , Amino Acid Sequence , Animals , Crystallography, X-Ray , DNA/chemistry , DNA/metabolism , Guanosine Triphosphate/metabolism , Humans , Mice , Models, Chemical , Models, Molecular , Molecular Sequence Data , Nucleotidyltransferases/metabolism , Sequence Alignment
18.
Cell ; 154(4): 748-62, 2013 Aug 15.
Article in English | MEDLINE | ID: mdl-23910378

ABSTRACT

Binding of dsDNA by cyclic GMP-AMP (cGAMP) synthase (cGAS) triggers formation of the metazoan second messenger c[G(2',5')pA(3',5')p], which binds the signaling protein STING with subsequent activation of the interferon (IFN) pathway. We show that human hSTING(H232) adopts a "closed" conformation upon binding c[G(2',5')pA(3',5')p] and its linkage isomer c[G(2',5')pA(2',5')p], as does mouse mSting(R231) on binding c[G(2',5')pA(3',5')p], c[G(3',5')pA(3',5')p] and the antiviral agent DMXAA, leading to similar "closed" conformations. Comparing hSTING to mSting, 2',5'-linkage-containing cGAMP isomers were more specific triggers of the IFN pathway compared to the all-3',5'-linkage isomer. Guided by structural information, we identified a unique point mutation (S162A) placed within the cyclic-dinucleotide-binding site of hSTING that rendered it sensitive to the otherwise mouse-specific drug DMXAA, a conclusion validated by binding studies. Our structural and functional analysis highlights the unexpected versatility of STING in the recognition of natural and synthetic ligands within a small-molecule pocket created by the dimerization of STING.


Subject(s)
Antiviral Agents/pharmacology , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Nucleotides, Cyclic/metabolism , Xanthones/pharmacology , Animals , Crystallography, X-Ray , Cyclic GMP/metabolism , Humans , Interferon Regulatory Factor-3/metabolism , Interferon Type I/metabolism , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/genetics , Mice , Models, Molecular , Mutagenesis , Protein Conformation , Signal Transduction , Structure-Activity Relationship
19.
Nat Rev Mol Cell Biol ; 16(9): 519-32, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26296162

ABSTRACT

Methylation of DNA and of histone 3 at Lys 9 (H3K9) are highly correlated with gene silencing in eukaryotes from fungi to humans. Both of these epigenetic marks need to be established at specific regions of the genome and then maintained at these sites through cell division. Protein structural domains that specifically recognize methylated DNA and methylated histones are key for targeting enzymes that catalyse these marks to appropriate genome sites. Genetic, genomic, structural and biochemical data reveal connections between these two epigenetic marks, and these domains mediate much of the crosstalk.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Histones/metabolism , Animals , CCAAT-Enhancer-Binding Proteins/metabolism , DNA (Cytosine-5-)-Methyltransferase 1 , DNA (Cytosine-5-)-Methyltransferases/physiology , Humans , Models, Molecular , Protein Binding , Protein Conformation , Protein Processing, Post-Translational , Ubiquitin-Protein Ligases
20.
Cell ; 151(1): 167-80, 2012 Sep 28.
Article in English | MEDLINE | ID: mdl-23021223

ABSTRACT

DNA methylation and histone modification exert epigenetic control over gene expression. CHG methylation by CHROMOMETHYLASE3 (CMT3) depends on histone H3K9 dimethylation (H3K9me2), but the mechanism underlying this relationship is poorly understood. Here, we report multiple lines of evidence that CMT3 interacts with H3K9me2-containing nucleosomes. CMT3 genome locations nearly perfectly correlated with H3K9me2, and CMT3 stably associated with H3K9me2-containing nucleosomes. Crystal structures of maize CMT3 homolog ZMET2, in complex with H3K9me2 peptides, showed that ZMET2 binds H3K9me2 via both bromo adjacent homology (BAH) and chromo domains. The structures reveal an aromatic cage within both BAH and chromo domains as interaction interfaces that capture H3K9me2. Mutations that abolish either interaction disrupt CMT3 binding to nucleosomes and show a complete loss of CMT3 activity in vivo. Our study establishes dual recognition of H3K9me2 marks by BAH and chromo domains and reveals a distinct mechanism of interplay between DNA methylation and histone modification.


Subject(s)
Arabidopsis/metabolism , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methylation , DNA, Plant/metabolism , Nucleosomes/metabolism , Zea mays/metabolism , Amino Acid Sequence , Arabidopsis/genetics , Crystallography, X-Ray , DNA (Cytosine-5-)-Methyltransferases/chemistry , Heterochromatin/metabolism , Histones/metabolism , Models, Molecular , Molecular Sequence Data , Sequence Alignment , Zea mays/genetics
SELECTION OF CITATIONS
SEARCH DETAIL