Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Control Release ; 344: 50-61, 2022 04.
Article in English | MEDLINE | ID: mdl-34953981

ABSTRACT

Current nucleoside-modified RNA lipid nanoparticle (modmRNA-LNP) technology has successfully paved the way for the highest clinical efficacy data from next-generation vaccinations against SARS-CoV-2 during the COVID-19 pandemic. However, such modmRNA-LNP technology has not been characterized in common pre-existing inflammatory or immune-challenged conditions, raising the risk of adverse clinical effects when administering modmRNA-LNPs in such cases. Herein, we induce an acute-inflammation model in mice with lipopolysaccharide (LPS) intratracheally (IT), 1 mg kg-1, or intravenously (IV), 2 mg kg-1, and then IV administer modmRNA-LNP, 0.32 mg kg-1, after 4 h, and screen for inflammatory markers, such as pro-inflammatory cytokines. ModmRNA-LNP at this dose caused no significant elevation of cytokine levels in naive mice. In contrast, shortly after LPS immune stimulation, modmRNA-LNP enhanced inflammatory cytokine responses, Interleukin-6 (IL-6) in serum and Macrophage Inflammatory Protein 2 (MIP-2) in liver significantly. Our report identifies this phenomenon as inflammation exacerbation (IE), which was proven to be specific to the LNP, acting independent of mRNA cargo, and was demonstrated to be time- and dose-dependent. Macrophage depletion as well as TLR3 -/- and TLR4-/- knockout mouse studies revealed macrophages were the immune cells involved or responsible for IE. Finally, we show that pretreatment with anti-inflammatory drugs, such as corticosteroids, can partially alleviate IE response in mice. Our findings characterize the importance of LNP-mediated IE phenomena in gram negative bacterial inflammation, however, the generalizability of modmRNA-LNP in other forms of chronic or acute inflammatory and immune contexts needs to be addressed.


Subject(s)
COVID-19 , Nanoparticles , Animals , Humans , Inflammation , Lipopolysaccharides , Liposomes , Mice , Pandemics , RNA, Messenger/genetics , SARS-CoV-2
2.
Nat Nanotechnol ; 17(1): 86-97, 2022 01.
Article in English | MEDLINE | ID: mdl-34795440

ABSTRACT

This study shows that the supramolecular arrangement of proteins in nanoparticle structures predicts nanoparticle accumulation in neutrophils in acute lung inflammation (ALI). We observed homing to inflamed lungs for a variety of nanoparticles with agglutinated protein (NAPs), defined by arrangement of protein in or on the nanoparticles via hydrophobic interactions, crosslinking and electrostatic interactions. Nanoparticles with symmetric protein arrangement (for example, viral capsids) had no selectivity for inflamed lungs. Flow cytometry and immunohistochemistry showed NAPs have tropism for pulmonary neutrophils. Protein-conjugated liposomes were engineered to recapitulate NAP tropism for pulmonary neutrophils. NAP uptake in neutrophils was shown to depend on complement opsonization. We demonstrate diagnostic imaging of ALI with NAPs; show NAP tropism for inflamed human donor lungs; and show that NAPs can remediate pulmonary oedema in ALI. This work demonstrates that structure-dependent tropism for neutrophils drives NAPs to inflamed lungs and shows NAPs can detect and treat ALI.


Subject(s)
Inflammation/pathology , Lung/pathology , Nanoparticles/chemistry , Neutrophils/pathology , Proteins/chemistry , Acute Disease , Agglutination/drug effects , Animals , Antibodies/pharmacology , Cross-Linking Reagents/chemistry , Dextrans/chemistry , Humans , Lipopolysaccharides , Liposomes , Lung/diagnostic imaging , Male , Mice, Inbred C57BL , Muramidase/metabolism , Neutrophils/drug effects , Opsonin Proteins/metabolism , Static Electricity , Tissue Distribution/drug effects , Tomography, Emission-Computed, Single-Photon , Tomography, X-Ray Computed
3.
PLoS One ; 14(4): e0202456, 2019.
Article in English | MEDLINE | ID: mdl-30943189

ABSTRACT

Many lung diseases, such as the acute respiratory distress syndrome (ARDS), display significant regional heterogeneity with patches of severely injured tissue adjacent to apparently healthy tissue. Current mouse models that aim to mimic ARDS generally produce diffuse injuries that cannot reproducibly generate ARDS's regional heterogeneity. This deficiency prevents the evaluation of how well therapeutic agents reach the most injured regions and precludes many regenerative medicine studies since it is not possible to know which apparently healing regions suffered severe injury initially. Finally, these diffuse injury models must be relatively mild to allow for survival, as their diffuse nature does not allow for residual healthy lung to keep an animal alive long enough for many drug and regenerative medicine studies. To solve all of these deficiencies in current animal models, we have created a simple and reproducible technique to selectively induce lung injury in specific areas of the lung. Our technique, catheter-in-catheter selective lung injury (CICSLI), involves guiding an inner catheter to a particular area of the lung and delivering an injurious agent mixed with nanoparticles (fluorescently and/or radioactively labeled) that can be used days later to track the location and extent of where the initial injury occurred. Furthermore, we demonstrate that CICSLI can produce a more severe injury than diffuse models, yet has much higher survival since CICSLI intentionally leaves lung regions undamaged. Collectively, these attributes of CICSLI will allow investigators to better study how drugs act within heterogeneous lung pathologies and how regeneration occurs in severely damaged lung tissue, thereby aiding the development of new therapies for ARDS and other heterogenous lung diseases.


Subject(s)
Disease Models, Animal , Lung Injury , Lung , Respiratory Distress Syndrome , Animals , Catheters/adverse effects , Lung/metabolism , Lung/pathology , Lung/physiopathology , Lung Injury/metabolism , Lung Injury/pathology , Lung Injury/physiopathology , Mice , Respiratory Distress Syndrome/metabolism , Respiratory Distress Syndrome/pathology , Respiratory Distress Syndrome/physiopathology
4.
Adv Drug Deliv Rev ; 130: 90-112, 2018 05.
Article in English | MEDLINE | ID: mdl-30149885

ABSTRACT

Humoral and cellular host defense mechanisms including diverse phagocytes, leukocytes, and immune cells have evolved over millions of years to protect the body from microbes and other external and internal threats. These policing forces recognize engineered sub-micron drug delivery systems (DDS) as such a threat, and react accordingly. This leads to impediment of the therapeutic action, extensively studied and discussed in the literature. Here, we focus on side effects of DDS interactions with host defenses. We argue that for nanomedicine to reach its clinical potential, the field must redouble its efforts in understanding the interaction between drug delivery systems and the host defenses, so that we can engineer safer interventions with the greatest potential for clinical success.


Subject(s)
Drug Carriers/adverse effects , Drug Carriers/chemistry , Animals , Humans , Nanomedicine , Nanoparticles/adverse effects , Nanoparticles/chemistry , Particle Size , Surface Properties
5.
Sci Rep ; 8(1): 1615, 2018 01 25.
Article in English | MEDLINE | ID: mdl-29371620

ABSTRACT

Attachment of nanoparticles (NPs) to the surface of carrier red blood cells (RBCs) profoundly alters their interactions with the host organism, decelerating NP clearance from the bloodstream while enabling NP transfer from the RBC surface to the vascular cells. These changes in pharmacokinetics of NPs imposed by carrier RBCs are favorable for many drug delivery purposes. On the other hand, understanding effects of NPs on the carrier RBCs is vital for successful translation of this novel drug delivery paradigm. Here, using two types of distinct nanoparticles (polystyrene (PSNP) and lysozyme-dextran nanogels (LDNG)) we assessed potential adverse and sensitizing effects of surface adsorption of NPs on mouse and human RBCs. At similar NP loadings (approx. 50 particles per RBC), adsorption of PSNPs, but not LDNGs, induces RBCs agglutination and sensitizes RBCs to damage by osmotic, mechanical and oxidative stress. PSNPs, but not LDNGs, increase RBC stiffening and surface exposure of phosphatidylserine, both known to accelerate RBC clearance in vivo. Therefore, NP properties and loading amounts have a profound impact on RBCs. Furthermore, LDNGs appear conducive to nanoparticle drug delivery using carrier RBCs.


Subject(s)
Adsorption , Drug Delivery Systems , Erythrocytes/drug effects , Erythrocytes/metabolism , Nanoparticles/metabolism , Animals , Biological Phenomena , Chemical Phenomena , Dextrans/metabolism , Erythrocytes/physiology , Humans , Mice , Polystyrenes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL