Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Proc Natl Acad Sci U S A ; 121(19): e2318003121, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38691588

ABSTRACT

Peptides presented by HLA-E, a molecule with very limited polymorphism, represent attractive targets for T cell receptor (TCR)-based immunotherapies to circumvent the limitations imposed by the high polymorphism of classical HLA genes in the human population. Here, we describe a TCR-based bispecific molecule that potently and selectively binds HLA-E in complex with a peptide encoded by the inhA gene of Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis in humans. We reveal the biophysical and structural bases underpinning the potency and specificity of this molecule and demonstrate its ability to redirect polyclonal T cells to target HLA-E-expressing cells transduced with mycobacterial inhA as well as primary cells infected with virulent Mtb. Additionally, we demonstrate elimination of Mtb-infected cells and reduction of intracellular Mtb growth. Our study suggests an approach to enhance host T cell immunity against Mtb and provides proof of principle for an innovative TCR-based therapeutic strategy overcoming HLA polymorphism and therefore applicable to a broader patient population.


Subject(s)
Histocompatibility Antigens Class I , Mycobacterium tuberculosis , Receptors, Antigen, T-Cell , T-Lymphocytes , Mycobacterium tuberculosis/immunology , Humans , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/metabolism , T-Lymphocytes/immunology , HLA-E Antigens , Bacterial Proteins/immunology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Tuberculosis/immunology
2.
Mol Ther ; 32(3): 678-688, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38219014

ABSTRACT

Naturally occurring T cells that recognize microbial peptides via HLA-E, a nonpolymorphic HLA class Ib molecule, could provide the foundation for new universal immunotherapeutics. However, confidence in the biological relevance of putative ligands is crucial, given that the mechanisms by which pathogen-derived peptides can access the HLA-E presentation pathway are poorly understood. We systematically interrogated the HIV proteome using immunopeptidomic and bioinformatic approaches, coupled with biochemical and cellular assays. No HIV HLA-E peptides were identified by tandem mass spectrometry analysis of HIV-infected cells. In addition, all bioinformatically predicted HIV peptide ligands (>80) were characterized by poor complex stability. Furthermore, infected cell elimination assays using an affinity-enhanced T cell receptor bispecific targeted to a previously reported HIV Gag HLA-E epitope demonstrated inconsistent presentation of the peptide, despite normal HLA-E expression on HIV-infected cells. This work highlights the instability of the HIV HLA-E peptidome as a major challenge for drug development.


Subject(s)
HIV Infections , HLA-E Antigens , Humans , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/metabolism , Epitopes , HIV Infections/therapy , Peptides/metabolism
3.
Eur J Immunol ; 52(4): 618-632, 2022 04.
Article in English | MEDLINE | ID: mdl-35108401

ABSTRACT

The nonpolymorphic class Ib molecule, HLA-E, primarily presents peptides from HLA class Ia leader peptides, providing an inhibitory signal to NK cells via CD94/NKG2 interactions. Although peptides of pathogenic origin can also be presented by HLA-E to T cells, the molecular basis underpinning their role in antigen surveillance is largely unknown. Here, we solved a co-complex crystal structure of a TCR with an HLA-E presented peptide (pHLA-E) from bacterial (Mycobacterium tuberculosis) origin, and the first TCR-pHLA-E complex with a noncanonically presented peptide from viral (HIV) origin. The structures provided a molecular foundation to develop a novel method to introduce cysteine traps using non-natural amino acid chemistry that stabilized pHLA-E complexes while maintaining native interface contacts between the TCRs and different pHLA-E complexes. These pHLA-E monomers could be used to isolate pHLA-E-specific T cells, with obvious utility for studying pHLA-E restricted T cells, and for the identification of putative therapeutic TCRs.


Subject(s)
Amino Acids , HLA Antigens , Histocompatibility Antigens Class I , Peptides , Receptors, Antigen, T-Cell , HLA-E Antigens
4.
PLoS Biol ; 17(12): e3000549, 2019 12.
Article in English | MEDLINE | ID: mdl-31815943

ABSTRACT

Dose-response experiments are a mainstay of receptor biology studies and can reveal valuable insights into receptor function. Such studies of receptors that bind cell surface ligands are currently limited by the difficulty in manipulating the surface density of ligands at a cell-cell interface. Here, we describe a generic cell surface ligand system that allows precise manipulation of cell surface ligand densities over several orders of magnitude. These densities are robustly quantifiable, a major advance over previous studies. We validate the system for a range of immunoreceptors, including the T-cell receptor (TCR), and show that this generic ligand stimulates via the TCR at a similar surface density as its native ligand. We also extend our work to the activation of chimeric antigen receptors. This novel system allows the effect of varying the surface density, valency, dimensions, and affinity of the ligand to be investigated. It can be readily broadened to other receptor-cell surface ligand interactions and will facilitate investigation into the activation of, and signal integration between, cell surface receptors.


Subject(s)
Antigens, Surface/physiology , Biological Assay/methods , Cell Communication/immunology , Animals , CHO Cells , Cricetulus , HEK293 Cells , Humans , Jurkat Cells , Ligands , Lymphocyte Activation/immunology , Receptors, Antigen, T-Cell/immunology , Signal Transduction/immunology , THP-1 Cells
5.
Clin Exp Ophthalmol ; 41(5): 476-83, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23078154

ABSTRACT

BACKGROUND: Inherited retinal disease represents a significant cause of blindness and visual morbidity worldwide. With the development of emerging molecular technologies, accessible and well-governed repositories of data characterising inherited retinal disease patients is becoming increasingly important. This manuscript introduces such a repository. DESIGN: Participants were recruited from the Retina Australia membership, through the Royal Australian and New Zealand College of Ophthalmologists, and by recruitment of suitable patients attending the Sir Charles Gairdner Hospital visual electrophysiology clinic. PARTICIPANTS: Four thousand one hundred ninety-three participants were recruited. All participants were members of families in which the proband was diagnosed with an inherited retinal disease (excluding age-related macular degeneration). METHODS: Clinical and family information was collected by interview with the participant and by examination of medical records. In 2001, we began collecting DNA from Western Australian participants. In 2009 this activity was extended Australia-wide. Genetic analysis results were stored in the register as they were obtained. MAIN OUTCOME MEASURES: The main outcome measurement was the number of DNA samples (with associated phenotypic information) collected from Australian inherited retinal disease-affected families. RESULTS: DNA was obtained from 2873 participants. Retinitis pigmentosa, Stargardt disease and Usher syndrome participants comprised 61.0%, 9.9% and 6.4% of the register, respectively. CONCLUSIONS: This resource is a valuable tool for investigating the aetiology of inherited retinal diseases. As new molecular technologies are translated into clinical applications, this well-governed repository of clinical and genetic information will become increasingly relevant for tasks such as identifying candidates for gene-specific clinical trials.


Subject(s)
Databases, Nucleic Acid/organization & administration , Eye Diseases, Hereditary/genetics , Registries , Retinal Diseases/genetics , Australia , Female , Gene Library , Genetic Testing , Humans , Male , Middle Aged
6.
J Vis Exp ; (200)2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37929949

ABSTRACT

Sialic acids are negatively charged monosaccharides typically found at the termini of cell surface glycans. Due to their hydrophilicity and biophysical characteristics, they are involved in numerous biological processes, such as modulation of the immune response, recognition of self and non-self antigens, carbohydrate-protein interactions, etc. The cellular content of sialic acid is regulated by sialidase, which catalyzes the removal of sialic acid residues. Several studies have shown that sialo-glycans are critical in monitoring immune surveillance by engaging with cis and trans inhibitory Siglec receptors on immune cells. Likewise, glyco-immune checkpoints in cancer are becoming crucial targets for developing immunotherapies. Additionally, dendritic cells (DCs) are envisioned as an important component in immunotherapies, especially in cancer research, due to their unique role as professional antigen-presenting cells (APC) and their capacity to trigger adaptive immune responses and generate immunologic memory. Nevertheless, the function of DCs is dependent on their full maturation. Immature DCs have an opposing function to mature DCs and a high sialic acid content, which further dampens their maturation level. This downregulates the ability of immature DCs to activate T-cells, leading to a compromised immune response. Consequently, removing sialic acid from the cell surface of human DCs induces their maturation, thus increasing the expression of MHC molecules and antigen presentation. In addition, it can restore the expression of co-stimulatory molecules and IL-12, resulting in DCs having a higher ability to polarize T-cells toward a Th1 phenotype and specifically activate cytotoxic T-cells to kill tumor cells. Therefore, sialic acid has emerged as a key modulator of DCs and is being used as a novel target to advance their therapeutic use. This study provides a unique approach to treat in vitro monocyte-derived DCs with sialidase, aimed at generating DC populations with different cell surface sialic acid phenotypes and tailored maturation and co-stimulatory profiles.


Subject(s)
Monocytes , N-Acetylneuraminic Acid , Humans , N-Acetylneuraminic Acid/metabolism , Monocytes/metabolism , Dendritic Cells , Neuraminidase , Polysaccharides/metabolism , Cell Differentiation
7.
Mol Vis ; 18: 2043-52, 2012.
Article in English | MEDLINE | ID: mdl-22876132

ABSTRACT

PURPOSE: Retinitis pigmentosa (RP) is the most common form of inherited blindness, caused by progressive degeneration of photoreceptor cells in the retina, and affects approximately 1 in 3,000 people. Over the past decade, significant progress has been made in gene therapy for RP and related diseases, making genetic characterization increasingly important. Recently, high-throughput technologies have provided an option for reasonably fast, cost-effective genetic characterization of autosomal recessive RP (arRP). The current study used a single nucleotide polymorphism (SNP) genotyping method to exclude up to 28 possible disease-causing genes in 31 non-consanguineous Australian families affected by arRP. METHODS: DNA samples were collected from 59 individuals affected with arRP and 74 unaffected family members from 31 Australian families. Five to six SNPs were genotyped for 28 genes known to cause arRP or the related disease Leber congenital amaurosis (LCA). Cosegregation analyses were used to exclude possible causative genes from each of the 31 families. Bidirectional sequencing was used to identify disease-causing mutations in prioritized genes that were not excluded with cosegregation analyses. RESULTS: Two families were excluded from analysis due to identification of false paternity. An average of 28.9% of genes were excluded per family when only one affected individual was available, in contrast to an average of 71.4% or 89.8% of genes when either two, or three or more affected individuals were analyzed, respectively. A statistically significant relationship between the proportion of genes excluded and the number of affected individuals analyzed was identified using a multivariate regression model (p<0.0001). Subsequent DNA sequencing resulted in identification of the likely disease-causing gene as CRB1 in one family (c.2548 G>A) and USH2A in two families (c.2276 G>T). CONCLUSIONS: This study has shown that SNP genotyping cosegregation analysis can be successfully used to refine and expedite the genetic characterization of arRP in a non-consanguineous population; however, this method is effective only when DNA samples are available from more than one affected individual.


Subject(s)
Extracellular Matrix Proteins/genetics , Eye Proteins/genetics , Genetic Loci , Genotyping Techniques/methods , Membrane Proteins/genetics , Nerve Tissue Proteins/genetics , Retinitis Pigmentosa/genetics , Australia , Case-Control Studies , Female , Genes, Recessive , Genetic Linkage , Haplotypes , Humans , Male , Multivariate Analysis , Pedigree , Polymorphism, Single Nucleotide , Retinitis Pigmentosa/diagnosis , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL