Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Am J Hum Genet ; 103(6): 918-929, 2018 12 06.
Article in English | MEDLINE | ID: mdl-30526867

ABSTRACT

The Indus Valley has been the backdrop for several historic and prehistoric population movements between South Asia and West Eurasia. However, the genetic structure of present-day populations from Northwest India is poorly characterized. Here we report new genome-wide genotype data for 45 modern individuals from four Northwest Indian populations, including the Ror, whose long-term occupation of the region can be traced back to the early Vedic scriptures. Our results suggest that although the genetic architecture of most Northwest Indian populations fits well on the broader North-South Indian genetic cline, culturally distinct groups such as the Ror stand out by being genetically more akin to populations living west of India; such populations include prehistorical and early historical ancient individuals from the Swat Valley near the Indus Valley. We argue that this affinity is more likely a result of genetic continuity since the Bronze Age migrations from the Steppe Belt than a result of recent admixture. The observed patterns of genetic relationships both with modern and ancient West Eurasians suggest that the Ror can be used as a proxy for a population descended from the Ancestral North Indian (ANI) population. Collectively, our results show that the Indus Valley populations are characterized by considerable genetic heterogeneity that has persisted over thousands of years.


Subject(s)
Ethnicity/genetics , Genetic Variation/genetics , Asia , Emigration and Immigration , Genetics, Population/methods , Genome-Wide Association Study/methods , Genotype , Geography , Humans , India
2.
Mol Biol Evol ; 36(8): 1628-1642, 2019 08 01.
Article in English | MEDLINE | ID: mdl-30952160

ABSTRACT

Genetic variation in contemporary South Asian populations follows a northwest to southeast decreasing cline of shared West Eurasian ancestry. A growing body of ancient DNA evidence is being used to build increasingly more realistic models of demographic changes in the last few thousand years. Through high-quality modern genomes, these models can be tested for gene and genome level deviations. Using local ancestry deconvolution and masking, we reconstructed population-specific surrogates of the two main ancestral components for more than 500 samples from 25 South Asian populations and showed our approach to be robust via coalescent simulations. Our f3 and f4 statistics-based estimates reveal that the reconstructed haplotypes are good proxies for the source populations that admixed in the area and point to complex interpopulation relationships within the West Eurasian component, compatible with multiple waves of arrival, as opposed to a simpler one wave scenario. Our approach also provides reliable local haplotypes for future downstream analyses. As one such example, the local ancestry deconvolution in South Asians reveals opposite selective pressures on two pigmentation genes (SLC45A2 and SLC24A5) that are common or fixed in West Eurasians, suggesting post-admixture purifying and positive selection signals, respectively.


Subject(s)
Genome, Human , Genomics/methods , Adaptation, Biological , Demography , Haplotypes , Humans , India , Pakistan , Phylogeography , Polymorphism, Single Nucleotide , Principal Component Analysis , Selection, Genetic
3.
Eur J Hum Genet ; 30(3): 307-319, 2022 03.
Article in English | MEDLINE | ID: mdl-33753911

ABSTRACT

Recent studies have showed the diverse genetic architecture of the highly consanguineous populations inhabiting the Arabian Peninsula. Consanguinity coupled with heterogeneity is complex and makes it difficult to understand the bases of population-specific genetic diseases in the region. Therefore, comprehensive genetic characterization of the populations at the finest scale is warranted. Here, we revisit the genetic structure of the Kuwait population by analyzing genome-wide single nucleotide polymorphisms data from 583 Kuwaiti individuals sorted into three subgroups. We envisage a diverse demographic genetic history among the three subgroups based on drift and allelic sharing with modern and ancient individuals. Furthermore, our comprehensive haplotype-based analyses disclose a high genetic heterogeneity among the Kuwaiti populations. We infer the major sources of ancestry within the newly defined groups; one with an obvious predominance of sub-Saharan/Western Africa mostly comprising Kuwait-B individuals, and other with West Eurasia including Kuwait-P and Kuwait-S individuals. Overall, our results recapitulate the historical population movements and reaffirm the genetic imprints of the legacy of continental trading in the region. Such deciphering of fine-scale population structure and their regional genetic heterogeneity would provide clues to the uncharted areas of disease-gene discovery and related associations in populations inhabiting the Arabian Peninsula.


Subject(s)
Genetic Heterogeneity , Polymorphism, Single Nucleotide , Consanguinity , Genetic Variation , Genetics, Population , Haplotypes , Humans , Kuwait
4.
J Biosci ; 44(3)2019 Jul.
Article in English | MEDLINE | ID: mdl-31389361

ABSTRACT

The South Asian populations have a mosaic of ancestries likely due to the interactions of long-term populations of the landmass and those of East andWest Eurasia. Apart from prehistoric dispersals, there are some known population movements to India. In this study,we focussed on the migration of Jewish and Parsi populations on temporal and spatial scales. The existence of Jewish and Parsi communities in India are recorded since ancient times. However, due to the lack of high-resolution genetic data, their origin and affiliation with other Indian and non-Indian populations remains shrouded in legends. Earlier genetic studies on populations of Indian Jews have found evidence for a minor shared ancestry of Indian Jews with Middle Eastern (Jews) populations, whereas for Parsis, the Iranian link was proposed. Recently, in our high-resolution study, we were able to quantify the admixture dynamics of these groups, which has suggested a male-biased admixture. Here, we added the newly available ancient samples and revisited the interplay of genes and cultures. Thus, in this study we reconstructed a broad genetic profile of Indian Jews and Parsis to paint a fine-grained picture of these ethnic groups.


Subject(s)
Asian People/history , DNA, Ancient/analysis , Genetics, Population , Human Migration/trends , Jews/history , White People/history , Acculturation , Anthropology/methods , Ethnicity , Female , Genetic Variation , History, Ancient , Humans , India/ethnology , Iran/ethnology , Jews/genetics , Male
5.
Sci Rep ; 9(1): 3818, 2019 03 07.
Article in English | MEDLINE | ID: mdl-30846778

ABSTRACT

Surrounded by speakers of Indo-European, Dravidian and Tibeto-Burman languages, around 11 million Munda (a branch of Austroasiatic language family) speakers live in the densely populated and genetically diverse South Asia. Their genetic makeup holds components characteristic of South Asians as well as Southeast Asians. The admixture time between these components has been previously estimated on the basis of archaeology, linguistics and uniparental markers. Using genome-wide genotype data of 102 Munda speakers and contextual data from South and Southeast Asia, we retrieved admixture dates between 2000-3800 years ago for different populations of Munda. The best modern proxies for the source populations for the admixture with proportions 0.29/0.71 are Lao people from Laos and Dravidian speakers from Kerala in India. The South Asian population(s), with whom the incoming Southeast Asians intermixed, had a smaller proportion of West Eurasian genetic component than contemporary proxies. Somewhat surprisingly Malaysian Peninsular tribes rather than the geographically closer Austroasiatic languages speakers like Vietnamese and Cambodians show highest sharing of IBD segments with the Munda. In addition, we affirmed that the grouping of the Munda speakers into North and South Munda based on linguistics is in concordance with genome-wide data.


Subject(s)
Genetic Variation , Genetics, Population , Haplotypes , Language , Asia, Southeastern , DNA, Mitochondrial/genetics , Databases, Genetic , Ethnicity , Gene Frequency , Humans , India , Phylogeny
6.
Sci Rep ; 9(1): 6104, 2019 Apr 10.
Article in English | MEDLINE | ID: mdl-30967570

ABSTRACT

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

7.
Curr Biol ; 29(14): 2430-2441.e10, 2019 07 22.
Article in English | MEDLINE | ID: mdl-31303491

ABSTRACT

The Early Iron Age nomadic Scythians have been described as a confederation of tribes of different origins, based on ancient DNA evidence [1-3]. It is still unclear how much of the Scythian dominance in the Eurasian Steppe was due to movements of people and how much reflected cultural diffusion and elite dominance. We present new whole-genome sequences of 31 ancient Western and Eastern Steppe individuals, including Scythians as well as samples pre- and postdating them, allowing us to set the Scythians in a temporal context (in the Western, i.e., Ponto-Caspian Steppe). We detect an increase of eastern (Altaian) affinity along with a decrease in eastern hunter-gatherer (EHG) ancestry in the Early Iron Age Ponto-Caspian gene pool at the start of the Scythian dominance. On the other hand, samples of the Chernyakhiv culture postdating the Scythians in Ukraine have a significantly higher proportion of Near Eastern ancestry than other samples of this study. Our results agree with the Gothic source of the Chernyakhiv culture and support the hypothesis that the Scythian dominance did involve a demic component.


Subject(s)
DNA, Ancient/analysis , DNA, Mitochondrial/analysis , Genetic Drift , Human Migration , Archaeology , Ethnicity/genetics , Genome, Human , History, Ancient , Humans , Male , Ukraine
SELECTION OF CITATIONS
SEARCH DETAIL