Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Cell ; 184(5): 1299-1313.e19, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33606976

ABSTRACT

It is unclear how binding of antidepressant drugs to their targets gives rise to the clinical antidepressant effect. We discovered that the transmembrane domain of tyrosine kinase receptor 2 (TRKB), the brain-derived neurotrophic factor (BDNF) receptor that promotes neuronal plasticity and antidepressant responses, has a cholesterol-sensing function that mediates synaptic effects of cholesterol. We then found that both typical and fast-acting antidepressants directly bind to TRKB, thereby facilitating synaptic localization of TRKB and its activation by BDNF. Extensive computational approaches including atomistic molecular dynamics simulations revealed a binding site at the transmembrane region of TRKB dimers. Mutation of the TRKB antidepressant-binding motif impaired cellular, behavioral, and plasticity-promoting responses to antidepressants in vitro and in vivo. We suggest that binding to TRKB and allosteric facilitation of BDNF signaling is the common mechanism for antidepressant action, which may explain why typical antidepressants act slowly and how molecular effects of antidepressants are translated into clinical mood recovery.


Subject(s)
Antidepressive Agents/pharmacology , Receptor, trkB/metabolism , Animals , Antidepressive Agents/chemistry , Antidepressive Agents/metabolism , Binding Sites , Brain-Derived Neurotrophic Factor/metabolism , Cell Line , Cholesterol/metabolism , Embryo, Mammalian , Fluoxetine/chemistry , Fluoxetine/metabolism , Fluoxetine/pharmacology , Hippocampus/metabolism , Humans , Mice , Models, Animal , Molecular Dynamics Simulation , Protein Domains , Rats , Receptor, trkB/chemistry , Visual Cortex/metabolism
2.
J Neurosci ; 40(7): 1405-1426, 2020 02 12.
Article in English | MEDLINE | ID: mdl-31915257

ABSTRACT

BDNF signaling via its transmembrane receptor TrkB has an important role in neuronal survival, differentiation, and synaptic plasticity. Remarkably, BDNF is capable of modulating its own expression levels in neurons, forming a transcriptional positive feedback loop. In the current study, we have investigated this phenomenon in primary cultures of rat cortical neurons using overexpression of dominant-negative forms of several transcription factors, including CREB, ATF2, C/EBP, USF, and NFAT. We show that CREB family transcription factors, together with the coactivator CBP/p300, but not the CRTC family, are the main regulators of rat BDNF gene expression after TrkB signaling. CREB family transcription factors are required for the early induction of all the major BDNF transcripts, whereas CREB itself directly binds only to BDNF promoter IV, is phosphorylated in response to BDNF-TrkB signaling, and activates transcription from BDNF promoter IV by recruiting CBP. Our complementary reporter assays with BDNF promoter constructs indicate that the regulation of BDNF by CREB family after BDNF-TrkB signaling is generally conserved between rat and human. However, we demonstrate that a nonconserved functional cAMP-responsive element in BDNF promoter IXa in humans renders the human promoter responsive to BDNF-TrkB-CREB signaling, whereas the rat ortholog is unresponsive. Finally, we show that extensive BDNF transcriptional autoregulation, encompassing all major BDNF transcripts, occurs also in vivo in the adult rat hippocampus during BDNF-induced LTP. Collectively, these results improve the understanding of the intricate mechanism of BDNF transcriptional autoregulation.SIGNIFICANCE STATEMENT Deeper understanding of stimulus-specific regulation of BDNF gene expression is essential to precisely adjust BDNF levels that are dysregulated in various neurological disorders. Here, we have elucidated the molecular mechanisms behind TrkB signaling-dependent BDNF mRNA induction and show that CREB family transcription factors are the main regulators of BDNF gene expression after TrkB signaling. Our results suggest that BDNF-TrkB signaling may induce BDNF gene expression in a distinct manner compared with neuronal activity. Moreover, our data suggest the existence of a stimulus-specific distal enhancer modulating BDNF gene expression.


Subject(s)
Basic-Leucine Zipper Transcription Factors/physiology , Brain-Derived Neurotrophic Factor/genetics , Cerebral Cortex/cytology , Gene Expression Regulation/genetics , Hippocampus/cytology , Nerve Tissue Proteins/physiology , Neurons/metabolism , Signal Transduction/physiology , Transcription, Genetic/genetics , Animals , Brain-Derived Neurotrophic Factor/biosynthesis , Brain-Derived Neurotrophic Factor/pharmacology , Cells, Cultured , Cerebral Cortex/metabolism , Cyclic AMP Response Element-Binding Protein/physiology , Cytoskeletal Proteins/biosynthesis , Cytoskeletal Proteins/genetics , Feedback, Physiological , Female , Genes, Dominant , Genes, Reporter , Genes, Synthetic , Hippocampus/metabolism , MAP Kinase Signaling System/physiology , Male , Nerve Tissue Proteins/biosynthesis , Nerve Tissue Proteins/genetics , Promoter Regions, Genetic , Protein Kinase Inhibitors/pharmacology , Rats , Rats, Sprague-Dawley , Receptor, trkB/physiology , Recombinant Proteins/pharmacology , Response Elements , Species Specificity , Transduction, Genetic
3.
Mol Pharmacol ; 100(2): 155-169, 2021 08.
Article in English | MEDLINE | ID: mdl-34031189

ABSTRACT

The 14-3-3 proteins constitute a family of adaptor proteins with many binding partners and biological functions, and they are considered promising drug targets in cancer and neuropsychiatry. By screening 1280 small-molecule drugs using differential scanning fluorimetry (DSF), we found 15 compounds that decreased the thermal stability of 14-3-3ζ Among these compounds, ebselen was identified as a covalent, destabilizing ligand of 14-3-3 isoforms ζ, ε, γ, and η Ebselen bonding decreased 14-3-3ζ binding to its partner Ser19-phosphorylated tyrosine hydroxylase. Characterization of site-directed mutants at cysteine residues in 14-3-3ζ (C25, C94, and C189) by DSF and mass spectroscopy revealed covalent modification by ebselen of all cysteines through a selenylsulfide bond. C25 appeared to be the preferential site of ebselen interaction in vitro, whereas modification of C94 was the main determinant for protein destabilization. At therapeutically relevant concentrations, ebselen and ebselen oxide caused decreased 14-3-3 levels in SH-SY5Y cells, accompanied with an increased degradation, most probably by the ubiquitin-dependent proteasome pathway. Moreover, ebselen-treated zebrafish displayed decreased brain 14-3-3 content, a freezing phenotype, and reduced mobility, resembling the effects of lithium, consistent with its proposed action as a safer lithium-mimetic drug. Ebselen has recently emerged as a promising drug candidate in several medical areas, such as cancer, neuropsychiatric disorders, and infectious diseases, including coronavirus disease 2019. Its pleiotropic actions are attributed to antioxidant effects and formation of selenosulfides with critical cysteine residues in proteins. Our work indicates that a destabilization of 14-3-3 may affect the protein interaction networks of this protein family, contributing to the therapeutic potential of ebselen. SIGNIFICANCE STATEMENT: There is currently great interest in the repurposing of established drugs for new indications and therapeutic targets. This study shows that ebselen, which is a promising drug candidate against cancer, bipolar disorder, and the viral infection coronavirus disease 2019, covalently bonds to cysteine residues in 14-3-3 adaptor proteins, triggering destabilization and increased degradation in cells and intact brain tissue when used in therapeutic concentrations, potentially explaining the behavioral, anti-inflammatory, and antineoplastic effects of this drug.


Subject(s)
14-3-3 Proteins/chemistry , 14-3-3 Proteins/metabolism , Cysteine/genetics , Isoindoles/pharmacology , Organoselenium Compounds/pharmacology , 14-3-3 Proteins/genetics , Animals , Binding Sites/drug effects , Brain/metabolism , Cell Line , Circular Dichroism , Down-Regulation , Female , Humans , Male , Models, Molecular , Mutagenesis, Site-Directed , Protein Binding/drug effects , Protein Conformation , Protein Stability/drug effects , Tyrosine 3-Monooxygenase/metabolism , Zebrafish , Zebrafish Proteins/chemistry , Zebrafish Proteins/metabolism
4.
RNA Biol ; 18(sup1): 337-354, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34346292

ABSTRACT

The expression and localization of the oncoprotein c-Myc is highly regulated at the level of transcription, mRNA transport, translation, as well as stability of the protein. We previously showed that Annexin A2 (AnxA2) binds to a specific localization element in the 3'untranslated region (UTR) of c-myc mRNA and is involved in its localization to the perinuclear region. In the present study, we demonstrate that AnxA2 binds in a Ca2+-dependent manner to the internal ribosomal entry site (IRES) containing two pseudo-knots in the 5´UTR of the c-myc mRNA. Here, we employ an in vitro rabbit reticulocyte lysate system with chimeric c-myc reporter mRNAs to demonstrate that binding of AnxA2 to the c-myc IRES modulates the expression of c-Myc. Notably, we show that low levels of AnxA2 appear to increase, while high levels of AnxA2 inhibits translation of the chimeric mRNA. However, when both the AnxA2-binding site and the ribosomal docking site in the c-myc IRES are deleted, AnxA2 has no effect on the translation of the reporter mRNA. Forskolin-treatment of PC12 cells results in upregulation of Ser25 phosphorylated AnxA2 expression while c-Myc expression is down-regulated. The effect of forskolin on c-Myc expression and the level of Ser25 phosphorylated AnxA2 was abolished in the presence of EGTA. These findings indicate that AnxA2 regulates both the transport and subsequent translation of the c-myc mRNA, possibly by silencing the mRNA during its transport. They also suggest that AnxA2 act as a switch to turn off the c-myc IRES activity in the presence of calcium.Abbreviations: AnxA2, Annexin A2; ß2--µglob, ß2-microglobulin; cpm, counts per minute; hnRNP, heterogenous nuclear ribonucleoprotein; IRES, internal ribosomal entry site; ITAF, IRES trans-acting factor; MM, multiple myeloma; PABP, poly(A)-binding protein; PCBP, poly(rC) binding protein; PSF, PTB-associated splicing factor; PTB, polypyrimidine tract binding protein; RRL, rabbit reticulocyte lysate; UTR, untranslated region; YB, Y-box binding protein.


Subject(s)
5' Untranslated Regions/genetics , Annexin A2/metabolism , Internal Ribosome Entry Sites , Protein Biosynthesis , Proto-Oncogene Proteins c-myc/genetics , RNA, Messenger/genetics , Annexin A2/genetics , Binding Sites , Humans , Protein Binding , Proto-Oncogene Proteins c-myc/metabolism , RNA, Messenger/metabolism
5.
Semin Cell Dev Biol ; 77: 33-42, 2018 05.
Article in English | MEDLINE | ID: mdl-28890419

ABSTRACT

Mammalian excitatory synapses express diverse types of synaptic plasticity. A major challenge in neuroscience is to understand how a neuron utilizes different types of plasticity to sculpt brain development, function, and behavior. Neuronal activity-induced expression of the immediate early protein, Arc, is critical for long-term potentiation and depression of synaptic transmission, homeostatic synaptic scaling, and adaptive functions such as long-term memory formation. However, the molecular basis of Arc protein function as a regulator of synaptic plasticity and cognition remains a puzzle. Recent work on the biophysical and structural properties of Arc, its protein-protein interactions and post-translational modifications have shed light on the issue. Here, we present Arc protein as a flexible, multifunctional and interactive hub. Arc interacts with specific effector proteins in neuronal compartments (dendritic spines, nuclear domains) to bidirectionally regulate synaptic strength by distinct molecular mechanisms. Arc stability, subcellular localization, and interactions are dictated by synaptic activity and post-translational modification of Arc. This functional versatility and context-dependent signaling supports a view of Arc as a highly specialized master organizer of long-term synaptic plasticity, critical for information storage and cognition.


Subject(s)
Brain/physiology , Cognition/physiology , Cytoskeletal Proteins/metabolism , Memory, Long-Term/physiology , Nerve Tissue Proteins/metabolism , Neuronal Plasticity/physiology , Synaptic Transmission/physiology , Animals , Brain/growth & development , Endocytosis/physiology , Humans , Mice , Protein Processing, Post-Translational/genetics , Rats , Receptors, Glutamate/metabolism , Synapses/metabolism
6.
Hippocampus ; 23(8): 672-83, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23536525

ABSTRACT

Protein phosphorylation and dephosphorylation events play a key role in memory formation and various protein kinases and phosphatases have been firmly associated with memory performance. Here, we determined expression changes of protein kinases and phosphatases following retrieval of spatial memory in CD1 mice in a Morris Water Maze task, using antibody microarrays and confirmatory Western blot. Comparing changes following single and consecutive retrieval, we identified stably and differentially expressed kinases, some of which have never been implicated before in memory functions. On the basis of these findings we define a small signaling network associated with spatial memory retrieval. Moreover, we describe differential regulation and correlation of expression levels with behavioral performance of polo-like kinase 1. Together with its recently observed genetic association to autism-spectrum disorders our data suggest a role of this kinase in balancing preservation and flexibility of learned behavior.


Subject(s)
Discrimination, Psychological/physiology , Gene Expression Regulation/physiology , Hippocampus/physiology , Mental Recall/physiology , Protein Kinases/metabolism , Space Perception/physiology , Animals , Cell Cycle Proteins/metabolism , Extinction, Psychological , Male , Maze Learning , Mice , Phosphorylation/physiology , Protein Array Analysis , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , Signal Transduction/physiology , Time Factors , Polo-Like Kinase 1
7.
Neurochem Int ; 171: 105629, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37865339

ABSTRACT

Phenylketonuria (PKU) is an autosomal recessive metabolic disorder caused by mutations in the phenylalanine hydroxylase (PAH) gene, resulting in phenylalanine accumulation and impaired tyrosine production. In Tyrosinemia type 1 (TYRSN1) mutations affect fumarylacetoacetate hydrolase, leading to accumulation of toxic intermediates of tyrosine catabolism. Treatment of TYRSN1 with nitisinone results in extreme tissue levels of tyrosine. Although PKU and TYRSN1 have opposite effects on tyrosine levels, both conditions have been associated with neuro-psychiatric symptoms typically present in ADHD, possibly indicating an impaired dopamine (DA) synthesis. However, concrete in vivo data on the possible molecular basis for disrupted DA production under disease mimicking conditions have been lacking. In pursuit to uncover associated molecular mechanisms, we exposed an established, DA producing cell line (PC12) to different concentrations of phenylalanine and tyrosine in culture media. We measured the effects on viability, proteomic composition, tyrosine, DA and tyrosine hydroxylase (TH) levels and TH phosphorylation. TH catalyzes the rate-limiting step in DA synthesis. High extracellular levels of phenylalanine depleted cells of intracellular tyrosine and DA. Compared to physiological levels (75 µM), either low (35 µM) or high concentrations of tyrosine (275 or 835 µM) decreased cellular DA, TH protein, and its phosphorylation levels. Using deep proteomic analysis, we identified multiple proteins, biological processes and pathways that were altered, including enzymes and transporters involved in amino acid metabolism. Using this information and published data, we developed a mathematical model to predict how extracellular levels of aromatic amino acids can affect the cellular synthesis of DA via different mechanisms. Together, these data provide new information about the normal regulation of neurotransmitter synthesis and how this may be altered in neurometabolic disorders, such as PKU and TYRSN1, with implications for the treatment of cognitive symptoms resulting from comorbid neurodevelopmental disorders.


Subject(s)
Neurodevelopmental Disorders , Phenylketonurias , Tyrosinemias , Rats , Animals , Dopamine/metabolism , Tyrosine/metabolism , Phenylalanine , PC12 Cells , Proteomics , Phenylketonurias/metabolism , Tyrosine 3-Monooxygenase/metabolism
8.
Front Cell Dev Biol ; 11: 1094941, 2023.
Article in English | MEDLINE | ID: mdl-37250892

ABSTRACT

Introduction: Annexin A2 (AnxA2) plays a critical role in cell transformation, immune response, and resistance to cancer therapy. Besides functioning as a calcium- and lipidbinding protein, AnxA2 also acts as an mRNA-binding protein, for instance, by interacting with regulatory regions of specific cytoskeleton-associated mRNAs. Methods and Results: Nanomolar concentrations of FL3, an inhibitor of the translation factor eIF4A, transiently increases the expression of AnxA2 in PC12 cells and stimulates shortterm transcription/translation of anxA2 mRNA in the rabbit reticulocyte lysate. AnxA2 regulates the translation of its cognate mRNA by a feed-back mechanism, which can partly be relieved by FL3. Results obtained using the holdup chromatographic retention assay results suggest that AnxA2 interacts transiently with eIF4E (possibly eIF4G) and PABP in an RNA-independent manner while cap pulldown experiments indicate a more stable RNA-dependent interaction. Short-term (2 h) treatment of PC12 cells with FL3 increases the amount of eIF4A in cap pulldown complexes of total lysates, but not of the cytoskeletal fraction. AnxA2 is only present in cap analogue-purified initiation complexes from the cytoskeletal fraction and not total lysates confirming that AnxA2 binds to a specific subpopulation of mRNAs. Discussion: Thus, AnxA2 interacts with PABP1 and subunits of the initiation complex eIF4F, explaining its inhibitory effect on translation by preventing the formation of the full eIF4F complex. This interaction appears to be modulated by FL3. These novel findings shed light on the regulation of translation by AnxA2 and contribute to a better understanding of the mechanism of action of eIF4A inhibitors.

9.
Front Cell Dev Biol ; 11: 1161588, 2023.
Article in English | MEDLINE | ID: mdl-37397259

ABSTRACT

Introduction: The regulation of intracellular functions in mammalian cells involves close coordination of cellular processes. During recent years it has become evident that the sorting, trafficking and distribution of transport vesicles and mRNA granules/complexes are closely coordinated to ensure effective simultaneous handling of all components required for a specific function, thereby minimizing the use of cellular energy. Identification of proteins acting at the crossroads of such coordinated transport events will ultimately provide mechanistic details of the processes. Annexins are multifunctional proteins involved in a variety of cellular processes associated with Ca2+-regulation and lipid binding, linked to the operation of both the endocytic and exocytic pathways. Furthermore, certain Annexins have been implicated in the regulation of mRNA transport and translation. Since Annexin A2 binds specific mRNAs via its core structure and is also present in mRNP complexes, we speculated whether direct association with RNA could be a common property of the mammalian Annexin family sharing a highly similar core structure. Methods and results: Therefore, we performed spot blot and UV-crosslinking experiments to assess the mRNA binding abilities of the different Annexins, using annexin A2 and c-myc 3'UTRs as well as c-myc 5'UTR as baits. We supplemented the data with immunoblot detection of selected Annexins in mRNP complexes derived from the neuroendocrine rat PC12 cells. Furthermore, biolayer interferometry was used to determine the KD of selected Annexin-RNA interactions, which indicated distinct affinities. Amongst these Annexins, Annexin A13 and the core structures of Annexin A7, Annexin A11 bind c-myc 3'UTR with KDs in the nanomolar range. Of the selected Annexins, only Annexin A2 binds the c-myc 5'UTR indicating some selectivity. Discussion: The oldest members of the mammalian Annexin family share the ability to associate with RNA, suggesting that RNA-binding is an ancient trait of this protein family. Thus, the combined RNA- and lipid-binding properties of the Annexins make them attractive candidates to participate in coordinated long-distance transport of membrane vesicles and mRNAs regulated by Ca2+. The present screening results can thus pave the way for studies of the multifunctional Annexins in a novel cellular context.

10.
iScience ; 26(5): 106649, 2023 May 19.
Article in English | MEDLINE | ID: mdl-37250335

ABSTRACT

The mRNA cap-binding protein, eukaryotic initiation factor 4E (eIF4E), is crucial for translation and regulated by Ser209 phosphorylation. However, the biochemical and physiological role of eIF4E phosphorylation in translational control of long-term synaptic plasticity is unknown. We demonstrate that phospho-ablated Eif4eS209A Knockin mice are profoundly impaired in dentate gyrus LTP maintenance in vivo, whereas basal perforant path-evoked transmission and LTP induction are intact. mRNA cap-pulldown assays show that phosphorylation is required for synaptic activity-induced removal of translational repressors from eIF4E, allowing initiation complex formation. Using ribosome profiling, we identified selective, phospho-eIF4E-dependent translation of the Wnt signaling pathway in LTP. Surprisingly, the canonical Wnt effector, ß-catenin, was massively recruited to the eIF4E cap complex following LTP induction in wild-type, but not Eif4eS209A, mice. These results demonstrate a critical role for activity-evoked eIF4E phosphorylation in dentate gyrus LTP maintenance, remodeling of the mRNA cap-binding complex, and specific translation of the Wnt pathway.

11.
Hippocampus ; 22(5): 1075-86, 2012 May.
Article in English | MEDLINE | ID: mdl-21618641

ABSTRACT

In own previous work CD1 mice were tested in the Multiple T-maze (MTM), a robust land maze allowing determination of latency to reach the goal box with food reward and to evaluate correct decisions made on the way to the goal box. Herein, hippocampi of these animals were used for the current study with the aim to investigate differences in protein levels between trained and yoked mice and, moreover, to determine differences in protein levels between trained and yoked mice with and without memory formation in the MTM. Three training sessions were carried out for four training days each, followed by probe trials on Days 5 and 12. Good and no-performers in the MTM were separated based on means and median of latency to reach the goal box on probe trial Day 12. Six hours following the probe trial on Day 12, animals were sacrificed and hippocampi were taken. Proteins were extracted and run on two-dimensional gel electrophoresis, spots were quantified and differentially expressed proteins were identified by mass spectrometry using an ion trap. Levels of 17 proteins were significantly different in trained vs. yoked mice. Seven proteins were differentially expressed comparing trained vs. yoked mice from good and no-performers. A series of proteins were significantly correlated with latency and may link these proteins to spatial memory formation. Differential protein expression in trained vs. yoked mice and in good and no-performers may allow insight into spatial memory formation as well as represent tentative pharmacological targets.


Subject(s)
Hippocampus/metabolism , Maze Learning/physiology , Memory/physiology , Nerve Tissue Proteins/metabolism , 14-3-3 Proteins/analysis , 14-3-3 Proteins/metabolism , Analysis of Variance , Animals , Apolipoprotein A-I/analysis , Apolipoprotein A-I/metabolism , Calbindins , Electrophoresis, Gel, Two-Dimensional , Heat-Shock Proteins/analysis , Heat-Shock Proteins/metabolism , Hippocampus/chemistry , Male , Mass Spectrometry , Mice , Nerve Tissue Proteins/analysis , S100 Calcium Binding Protein G/analysis , S100 Calcium Binding Protein G/metabolism , Signal Transduction/physiology , Space Perception/physiology , Tropomyosin/analysis , Tropomyosin/metabolism
12.
Amino Acids ; 43(4): 1739-49, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22402595

ABSTRACT

A series of individual proteins have been linked to performance in the Morris water maze (MWM) but no global effects have been reported. It was therefore the aim of the study to show which proteins were strain-independent, global factors for training in the MWM. Strains C57BL/6J, apodemus sylvaticus and PWD/PhJ were used. MWM and gels from trained animals were from a previous own study and corresponding yoked groups were generated. Hippocampal proteins were extracted and run on two-dimensional gel electrophoresis. Spots with different expressional levels between trained and yoked groups were punched and identified by mass spectrometry (nano-LC-ESI-MS/MS, ion trap). Two-way ANOVA with two factors (strain and training) was carried out and a Bonferroni test was used to compare groups. 12 proteins from several pathways and cascades showed different levels in trained mice versus corresponding yoked animals in all strains tested. Four out of these proteins were verified by immunoblotting: beta-synuclein, profilin 2, nucleoside diphosphate kinase A (NME1) and isocitrate dehydrogenase 3. Four proteins verified by immunoblotting could be shown to be involved in training in the MWM as a global effect, independent of the strain tested.


Subject(s)
Hippocampus/physiology , Isocitrate Dehydrogenase/genetics , Maze Learning/physiology , Memory/physiology , NM23 Nucleoside Diphosphate Kinases/genetics , Profilins/genetics , beta-Synuclein/genetics , Analysis of Variance , Animals , Electrophoresis, Gel, Two-Dimensional , Gene Expression/physiology , Hippocampus/chemistry , Isocitrate Dehydrogenase/metabolism , Isoenzymes/genetics , Isoenzymes/metabolism , Male , Mice , Mice, Inbred Strains , NM23 Nucleoside Diphosphate Kinases/metabolism , Profilins/metabolism , Signal Transduction , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry , Water , beta-Synuclein/metabolism
13.
Proteomics ; 11(18): 3706-24, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21770032

ABSTRACT

Studying fear extinction is a major topic in neuroscience. No information on systematic studies on the linkage of contextual fear conditioning (cFC) with hippocampal protein levels is available and we were therefore interested in protein differences between animals with poor and good extinction. cFC was carried out in C57BL/6J mice, hippocampi were taken and proteins were run on two-dimensional gel electrophoresis with subsequent quantification of protein spots. In-gel digestion with trypsin and identification by ion trap MS/MS (high-capacity ion trap) was used for the identification of significantly different hippocampal proteins between mice with good and poor performance of extinction. Signaling protein ras-related protein rab-7A and septin 8 levels were significantly higher in hippocampus of poor extinguishers, whereas ubiquitin carboxyterminal hydrolase isozyme L1 showed higher levels in animals with good extinction performance. A series of additional proteins showed significantly different levels between groups but the abovementioned were confirmed by immunoblotting. The abovementioned proteins have never been reported to be linked to extinction, memory, or learning and herein evidence for the involvement of several proteins in extinction mechanism as well as probably representing pharmaceutical targets is provided. Moreover, it is intriguing to demonstrate the differences between good and poor extinction performance at the protein level.


Subject(s)
Conditioning, Psychological/physiology , Extinction, Psychological/physiology , Fear/physiology , Hippocampus/chemistry , Amino Acid Sequence , Animals , Blotting, Western , Dual Specificity Phosphatase 3/metabolism , Electrophoresis, Gel, Two-Dimensional , Hippocampus/physiology , Immunoblotting , Male , Mass Spectrometry/methods , Mice , Mice, Inbred C57BL , Molecular Sequence Data , Peptide Mapping/methods , Proteomics/methods , Septins/metabolism , Signal Transduction , Ubiquitin Thiolesterase/metabolism , rab GTP-Binding Proteins/metabolism , rab7 GTP-Binding Proteins
14.
Hippocampus ; 21(7): 714-23, 2011 Jul.
Article in English | MEDLINE | ID: mdl-20740491

ABSTRACT

There is a significant strain-dependent performance in the Morris water maze (MWM), a paradigm for the evaluation of spatial memory. In contrast, information on molecular differences that may be responsible for differences in spatial memory performance is limited. The aim of the study was therefore to investigate differences in hippocampal protein levels in three groups with different performance in the MWM. C57BL/6J (inbred laboratory strain), PWD/PhJ (inbred strain derived from wild animals of Mus musculus), and Apodemus sylvaticus (AS, genus Apodemus) mice were used for the experiments. Proteins from hippocampi, obtained from a behavioral study on these animals, were extracted and run on two-dimensional gel electrophoresis. Proteins spots were quantified, and spots with significantly different levels were identified by mass spectrometry using an ion trap. A series of 49 proteins from different pathways and cascades (signaling, neuronal network, protein synthesis, secretion and degradation, and antioxidant system; intermediary, fat, and carbohydrate metabolism) were significantly different among hippocampi at the stringent statistical level of P ≤ 0.001. These findings are paralleled by differences in the spatial navigation abilities between the strains within the species Mus musculus (C57BL/6 vs. PWD/PhJ) and between the genera Mus and Apodemus. As shown previously, AS learned the task in the MWM and showed good memory retention when tested at the probe trial (day 12), whereas C57BL/6J learned the task, but failed at the probe trial at day 12 as well as PWD/PhJ that failed to learn the task and failed at the probe trial at day 12. A list of above-mentioned proteins were different between PWD/PhJ with bad and AS with good memory retention and may therefore be related to performance in the MWM and thus to spatial memory formation. The experimental approach, however, does not allow discriminating between differences in protein levels a priori and different protein levels induced by the MWM testing. © 2010 Wiley-Liss, Inc.


Subject(s)
Hippocampus/metabolism , Maze Learning/physiology , Memory/physiology , Nerve Tissue Proteins/biosynthesis , Nerve Tissue Proteins/genetics , Space Perception/physiology , Animals , Male , Mice , Mice, Inbred C57BL , Murinae , Species Specificity
15.
Amino Acids ; 39(1): 75-87, 2010 Jun.
Article in English | MEDLINE | ID: mdl-19890699

ABSTRACT

Although a series of signaling cascades involved in spatial memory have been identified, their link to spatial memory and strain-dependent expression has not been reported so far. Hippocampal levels of the abovementioned signaling proteins were determined in laboratory inbred strain C57BL/6J, the wild-derived inbred strain PWD/PhJ and the wild caught mouse Apodemus sylvaticus (AS) by immunoblotting. The resulting hippocampal protein levels were correlated with results from MWM. Hippocampal signaling protein (hSP) levels were tested also in yoked controls. Within-strain comparison between trained and yoked controls revealed significant differences between levels of Phospho-CaMKII (alpha), Phospho-CREB, Egr-1, c-Src, Phospho-ERK5, Phospho-MEK5 and NOS1 in all of the three strains tested. In addition, the three strains revealed different involvement of individual hSP levels clearly indicating that individual mouse strains were linked to individual hSPs in spatial memory. Phospho-ERK5 levels were not detectable in hippocampi of yoked controls of each strain. We learn from this study that a series of hSPs are associated with spatial memory and that different hSPs are linked to spatial memory in different strains that show different outcome in the MWM. Even correlational patterns in the individual hSPs differed between mouse strains. This is of importance for the interpretation of previous studies on the abovementioned signaling cascades as well as for the design of future studies on these hippocampal proteins. It is intriguing that individual mouse strains, laboratory or wild caught, may use different signaling pathways for spatial memory in the Morris water maze.


Subject(s)
Hippocampus/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Memory/physiology , Signal Transduction/physiology , Spatial Behavior/physiology , Animals , Cognition , Male , Maze Learning , Mice , Mice, Inbred Strains
16.
Amino Acids ; 39(3): 871-86, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20225135

ABSTRACT

Information on systematic analysis of olfactory memory-related proteins is poor. In this study, the odor discrimination task to investigate olfactory recognition memory of adult male C57BL/6J mice was used. Subsequently, olfactory bulbs (OBs) were taken, proteins extracted, and run on two-dimensional gel electrophoresis with in-gel-protein digestion, followed by mass spectrometry and quantification of differentially expressed proteins. Dual specificity mitogen-activated protein kinase kinase 1 (MEK1), dihydropyrimidinase-related protein 1 (DRP1), and fascin are related with Lemon odor memory. Microtubule-associated protein RP/EB family member 3 is related to Rose odor memory. Hypoxanthine-guanine phosphoribosyltransferase is related with both Lemon and Rose odors memory. MEK1 and DRP1 levels were increased, while microtubule-associated protein RP/EB family member 3, fascin and hypoxanthine-guanine phosphoribosyltransferase levels were decreased during olfactory memory. In summary, neurogenesis, signal transduction, cytoskeleton, and nucleotide metabolism are involved in olfactory memory formation and storage of C57BL/6J mice.


Subject(s)
Mice/physiology , Olfactory Bulb/metabolism , Olfactory Perception , Animals , Male , Mice, Inbred C57BL , Molecular Sequence Data , Odorants/analysis , Olfactory Bulb/chemistry , Proteins/chemistry , Proteins/metabolism
17.
Mol Neurobiol ; 57(3): 1432-1445, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31754996

ABSTRACT

Activity-dependent synaptic plasticity involves rapid regulation of neuronal protein synthesis on a time-scale of minutes. miRNA function in synaptic plasticity and memory formation has been elucidated by stable experimental manipulation of miRNA expression and activity using transgenic approaches and viral vectors. However, the impact of rapid miRNA modulation on synaptic efficacy is unknown. Here, we examined the effect of acute (12 min), intrahippocampal infusion of a miR-34a antagonist (antimiR) on medial perforant path-evoked synaptic transmission in the dentate gyrus of adult anesthetised rats. AntimiR-34a infusion acutely depressed medial perforant path-evoked field excitatory post-synaptic potentials (fEPSPs). The fEPSP decrease was detected within 9 min of infusion, lasted for hours, and was associated with knockdown of antimiR-34a levels. AntimiR-34a-induced synaptic depression was sequence-specific; no changes were elicited by infusion of scrambled or mismatch control. The rapid modulation suggests that a target, or set of targets, is regulated by miR-34a. Western blot analysis of dentate gyrus lysates revealed enhanced expression of Arc, a known miR-34a target, and four novel predicted targets (Ctip2, PKI-1α, TCF4 and Ube2g1). Remarkably, antimiR-34a had no effect when infused during the maintenance phase of long-term potentiation. We conclude that miR-34a regulates basal synaptic efficacy in the adult dentate gyrus in vivo. To our knowledge, these in vivo findings are the first to demonstrate acute (< 9 min) regulation of synaptic efficacy in the adult brain by a miRNA.


Subject(s)
Dentate Gyrus/metabolism , Hippocampus/metabolism , Long-Term Potentiation/genetics , Neuronal Plasticity/genetics , Animals , Excitatory Postsynaptic Potentials/physiology , Long-Term Potentiation/drug effects , MicroRNAs/metabolism , Neurons/metabolism , Rats , Rats, Sprague-Dawley , Synaptic Transmission/drug effects , Synaptic Transmission/genetics
18.
Curr Biol ; 30(18): 3507-3521.e7, 2020 09 21.
Article in English | MEDLINE | ID: mdl-32707059

ABSTRACT

Levels of adult neurogenesis in the dentate gyrus (DG) of the hippocampus are correlated with unique cognitive functions. However, the molecular pathways controlling it are poorly understood. Here, we found that the known physiological ways to enhance neurogenesis converged on the eEF2/eEF2K pathway via AMPK in the DG. Enhancing the elongation phase of mRNA translation in eEF2K-knockout (eEF2K-KO) mice induced the expression of neurogenesis-related proteins in the hippocampus. We thus tested the hypothesis that inducing eEF2K-KO in mature neurons of the DG controls neurogenesis. Indeed, both general eEF2K-KO and targeted KO in DG excitatory mature neurons resulted in enhanced neurogenesis levels and upregulation of neurogenesis-related proteins. Increased neurogenesis was correlated with enhanced performance in DG-dependent learning. Moreover, general and local eEF2K-KO in old mice rejuvenated the DG, paving the way for better mechanistic understanding of how neurogenesis is controlled in the mature DG and possible treatments for incurable aging-associated diseases.


Subject(s)
Cognition/physiology , Dentate Gyrus/metabolism , Elongation Factor 2 Kinase/physiology , Hippocampus/metabolism , Neurogenesis , Neurons/cytology , Animals , Male , Mice , Mice, Knockout , Neurons/metabolism , Phosphorylation , Signal Transduction
19.
Sci Rep ; 10(1): 13141, 2020 08 04.
Article in English | MEDLINE | ID: mdl-32753733

ABSTRACT

Many occupations require operations during the night-time when the internal circadian clock promotes sleep, in many cases resulting in impairments in cognitive performance and brain functioning. Here, we use a rat model to attempt to identify the biological mechanisms underlying such impaired performance. Rats were exposed to forced activity, either in their rest-phase (simulating night-shift work; rest work) or in their active-phase (simulating day-shift work; active work). Sleep, wakefulness and body temperature rhythm were monitored throughout. Following three work shifts, spatial memory performance was tested on the Morris Water Maze task. After 4 weeks washout, the work protocol was repeated, and blood and brain tissue collected. Simulated night-shift work impaired spatial memory and altered biochemical markers of cerebral cortical protein synthesis. Measures of daily rhythm strength were blunted, and sleep drive increased. Individual variation in the data suggested differences in shift work tolerance. Hierarchical regression analyses revealed that type of work, changes in daily rhythmicity and changes in sleep drive predict spatial memory performance and expression of brain protein synthesis regulators. Moreover, serum corticosterone levels predicted expression of brain protein synthesis regulators. These findings open new research avenues into the biological mechanisms that underlie individual variation in shift work tolerance.


Subject(s)
Circadian Rhythm , Cognition , Glucocorticoids/blood , Neuronal Plasticity , Shift Work Schedule , Sleep , Spatial Memory , Animals , Male , Rats , Rats, Sprague-Dawley
20.
Biomolecules ; 10(4)2020 04 24.
Article in English | MEDLINE | ID: mdl-32344647

ABSTRACT

The functions of the annexin family of proteins involve binding to Ca2+, lipid membranes, other proteins, and RNA, and the annexins share a common folded core structure at the C terminus. Annexin A11 (AnxA11) has a long N-terminal region, which is predicted to be disordered, binds RNA, and forms membraneless organelles involved in neuronal transport. Mutations in AnxA11 have been linked to amyotrophic lateral sclerosis (ALS). We studied the structure and stability of AnxA11 and identified a short stabilising segment in the N-terminal end of the folded core, which links domains I and IV. The crystal structure of the AnxA11 core highlights main-chain hydrogen bonding interactions formed through this bridging segment, which are likely conserved in most annexins. The structure was also used to study the currently known ALS mutations in AnxA11. Three of these mutations correspond to buried Arg residues highly conserved in the annexin family, indicating central roles in annexin folding. The structural data provide starting points for detailed structure-function studies of both full-length AnxA11 and the disease variants being identified in ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Annexins/chemistry , Annexins/genetics , Mutation/genetics , Amino Acid Sequence , Animals , Models, Molecular , Mutant Proteins/chemistry , Protein Multimerization , Protein Stability , Rats , Scattering, Small Angle , Solubility , Solutions , Structure-Activity Relationship , Temperature , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL