Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Food Sci Technol ; 52(6): 3660-70, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26028749

ABSTRACT

Psophocarpus tetragonolobus (L.) DC. is a tropical legume with potential nutritional properties. In present study, the physical properties and proximate composition of the seeds were evaluated. Besides, the physico-chemical properties of fatty oil from fully mature seeds were also studied. The fatty oil compositions of immature, mature and fully mature seeds were evaluated by GC-FID, GC/MS and (1)H-NMR. The study revealed that, fatty oil from fully mature seeds contained high proportion of unsaturated fatty acids (75.5 %), whereas immature seeds contained higher percentage of saturated fatty acid (61.3 %). In addition, unsaponification matter (0.25 %) of fatty oil was identified as stigmasterol (66.4 %) and ß-sitosterol (25.1 %). Total lipids of fully mature seeds were extracted and isolated as neutral, glyco- and phospholipids. Overall, the fatty oil of fully mature seeds was enriched with mono-unsaturated fatty acids (38.6 %) and poly-unsaturated fatty acids (36.9 %) without trans-fatty acids, thus meeting the edible oil standard.

2.
Arch Insect Biochem Physiol ; 87(3): 105-25, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25060353

ABSTRACT

Insect hydrocarbons (HCs) primarily serve as a waterproofing cuticular layer and function extensively in chemical communication by facilitating species, sex, and colony recognition. In this study, headspace solid-phase microextraction is employed for investigating the sex-specific volatile HC profile of five ladybirds collected from Lucknow, India namely, Coccinella septempunctata (L.), Coccinella transversalis (Fabr.), Menochilus sexmaculatus (Fabr.), Propylea dissecta (Mulsant), and Anegleis cardoni (Weise) for the first time. Major compounds reported in C. septempunctata, C. transversalis, and A. cardoni are methyl-branched saturated HCs, whereas in M. sexmaculatus, and P. dissecta, they are unsaturated HCs. Other than A. cardoni, both the sexes of the other four ladybirds had similar compounds at highest peak but with statistically significant differences. However, in A. cardoni, which is a beetle with a narrow niche, the major compound in both male and female was different. The difference in volatile HC profile of the sexes of the five ladybirds indicates that gender-specific differences primarily exist due to quantitative differences in chemicals with only very few chemicals being unique to a gender. This variation in semiochemicals might have a role in behavioral or ecological aspects of the studied ladybirds.


Subject(s)
Coleoptera/chemistry , Hydrocarbons/metabolism , Sex Characteristics , Animals , Epidermis/metabolism , Female , Gas Chromatography-Mass Spectrometry , Hydrocarbons/chemistry , India , Male , Pheromones/metabolism , Species Specificity
3.
Environ Toxicol Pharmacol ; 107: 104432, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38554986

ABSTRACT

Metal oxide nanomaterials have toxicity towards aquatic organisms, especially microbes and invertebrates, but little is known about their impact on amphibians. We conducted a study on Duttaphrynus melanostictus (D. melanostictus) tadpoles to explore the chronic toxicity effects of iron oxide nanoparticles (IONPs) and the underlying mechanisms of IONPs-induced oxidative stress. IONPs exposure led to increased iron accumulation in the blood, liver, and kidneys of tadpoles, significantly affecting blood parameters and morphology. Higher IONPs concentrations (10 and 50 mg L-1) triggered reactive oxygen species generation, resulting in lipid peroxidation, oxidative stress, and pronounced toxicity in tadpoles. The activity levels of antioxidant enzymes/proteins (SOD, CAT, albumin, and lysozyme) decreased after IONPs exposure, and immunological measures in the blood serum were significantly reduced compared to the control group. Molecular docking analysis revealed that IONPs primarily attached to the surface of SOD/CAT/albumin/lysozyme through hydrogen bonding and hydrophobic forces. Overall, this study emphasizes the ability of IONPs to induce oxidative damage by decreasing immunological profiles such as ACH50 (34.58 ± 2.74 U mL-1), lysozyme (6.94 ± 0.82 U mL-1), total Ig (5.00 ± 0.35 g dL-1), total protein (1.20 ± 0.17 g dL-1), albumin (0.52 ± 0.01 g dL-1) and globulin (0.96 ± 0.01 g dL-1) and sheds light on their potential toxic effects on tadpoles.


Subject(s)
Ferric Compounds , Muramidase , Animals , Larva/metabolism , Molecular Docking Simulation , Ferric Compounds/toxicity , Ferric Compounds/chemistry , Oxidative Stress , Superoxide Dismutase/metabolism , Albumins/pharmacology , Magnetic Iron Oxide Nanoparticles
4.
Chemosphere ; 314: 137754, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36608887

ABSTRACT

In recent years, copper oxide nanoparticles (CONPs) have gained considerable importance in ecotoxicology studies. CONP ecotoxicity studies on amphibians are limited, particularly on Duttaphrynus melanostictus (D. melanostictus) tadpoles, and most CONP ecotoxicity studies have shown developmental effects on amphibians. Therefore, the present study aimed to determine the ecotoxicity of CONPs in D. melanostictus tadpoles by assessing multi-biomarkers including bioaccumulation, antioxidants, biochemical, haematological, immunological and oxidative stress biomarkers. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) were used to characterize the morphology and physicochemical properties of CONPs. After 30 d of the experiment, blood and organs were collected to measure the levels of multiple biomarkers. The dissolution rate of copper ions in exposed media was observed in all studied groups. According to the results, significant (p < 0.05) increase in copper ion bioaccumulation (blood, liver and kidney), oxidative stress and biochemical biomarkers in the blood serum of CONPs exposed tadpoles compared to control tadpoles, which was accompanied by significant variations in morphological and haematological parameters. In contrast to the untreated tadpoles, the CONPs-exposed tadpoles showed statistically significant (p < 0.05) decreases in antioxidants and immunological indices of blood serum. Based on our results, we concluded that the ecotoxicity of CONPs is due to the production of reactive oxygen species (ROS), which can cause oxidative stress in tadpoles, resulting in impairments. According to our knowledge, the present study was the first to use a multi-biomarker ecotoxicity approach on D. melanostictus tadpoles that could be used as an ecological bioindicator to assess aquatic toxicity.


Subject(s)
Antioxidants , Nanoparticles , Animals , Larva , Antioxidants/pharmacology , Copper/toxicity , Bufonidae , Nanoparticles/toxicity , Biomarkers , Oxides/pharmacology
5.
Methods Mol Biol ; 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38095835

ABSTRACT

Autophagy is a vital cellular process responsible for breaking down faulty cellular components and organelles, ultimately routed through lysosomes for degradation. This intricate mechanism involves the translocation of LC3, a cytoplasmic protein, onto the autophagosome membranes. As a result, it becomes feasible to discern cells engaged in autophagy by employing fluorescent markers designed for LC3 or other indicative autophagy markers. Although a variety of techniques such as immunofluorescence and western blotting serve as indispensable tools for assessing autophagy, the definitive confirmation comes from the visualization of autophagosomes using transmission electron microscopy. While numerous protocols for antibody staining can be found in scientific literature and on antibody suppliers' websites, these procedures often demand significant time and financial resources for setup. This chapter endeavors to provide a user-friendly and cost-effective guide for practitioners seeking proficiency in immunofluorescence staining and western blotting techniques.

6.
Rev Environ Health ; 2022 Dec 26.
Article in English | MEDLINE | ID: mdl-36563406

ABSTRACT

OBJECTIVES: Over 50 countries are affected by arsenic contamination. The problem is becoming worse as the number of affected people increases and new sites are reported globally. CONTENT: Various human activities have increased arsenic pollution, notably in both terrestrial and aquatic environments. Contamination of our water and soil by arsenic poses a threat to our environment and natural resources. Arsenic poisoning harms several physiological systems and may cause cancer and death. Excessive exposure may cause toxic build-up in human and animal tissues. Arsenic-exposed people had different skin lesion shapes and were vulnerable to extra arsenic-induced illness risks. So far, research shows that varying susceptibility plays a role in arsenic-induced diseases. Several studies have revealed that arsenic is a toxin that reduces metabolic activities. Diverse remediation approaches are being developed to control arsenic in surrounding environments. SUMMARY AND OUTLOOK: A sustainable clean-up technique (nanoremediation) is required to restore natural equilibrium. More research is therefore required to better understand the biogeochemical processes involved in removing arsenic from soils and waters.

7.
Chemosphere ; 293: 133511, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34995626

ABSTRACT

Nanoparticles (NPs), especially silver nanoparticles (Ag NPs) and zinc oxide nanoparticles (ZnO NPs), are widely used in various industrial applications and are released into the surrounding environment through industrial and household wastewater. They have enormous toxic effects on aquatic animals and amphibians. In the current study, a multi-biomarker approach was used to assess toxicity on Polypedates maculatus (P. maculatus) tadpoles collected from a freshwater pond and exposed to sub-lethal concentrations of Ag-NPs (1, 5 and 10 mg L-1) and ZnO-NPs (1, 10 and 50 mg L-1). A significant bioaccumulation of silver (Ag) and Zinc (Zn) was observed in the blood, liver, kidney and bones in comparison to control tadpoles. Blood parameters (Red blood cells (RBC), Hematocrit (Htc), White blood cells (WBC), monocytes, lymphocytes and neutrophils), immunological markers (ACH50, lysozyme, total Ig, total protein, albumin, and globulin), biochemical markers (glucose, cortisol, cholesterol, triglycerides, alanine transaminase (ALT), asparatate transaminase (AST), alkaline phosphatase (ALP), urea and creatinine) and the oxidative stress marker (LPO) of serum were increased significantly (p < 0.05) in Ag/ZnO-NPs exposed groups when compared to the control groups. The levels of mean corpuscular haemoglobin (MCH), mean corpuscular haemoglobin concentration (MCHC), mean corpuscular volume (MCV) and haemoglobin (Hb) in the ZnO NP-exposed groups were significantly different from those in the control group. Antioxidant (SOD and CAT) levels were significantly declined in the treatment groups. Based on the results, Ag/ZnO-NPs are toxic to aquatic organisms and amphibians at sub-lethal concentrations. The species P. maculatus can be used as a bioindicator for the nanomaterial (NM) contamination of freshwater systems.


Subject(s)
Metal Nanoparticles , Nanoparticles , Zinc Oxide , Animals , Biomarkers , Fresh Water , Larva , Metal Nanoparticles/toxicity , Silver/toxicity , Zinc Oxide/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL