Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
1.
Cytokine ; 175: 156484, 2024 03.
Article in English | MEDLINE | ID: mdl-38159471

ABSTRACT

The anti-inflammatory role of physical exercise is mediated by interleukin 10 (IL-10), and their release is possibly upregulated in response to IL-6. Previous studies demonstrated that mice lacking IL-6 (IL-6 KO mice) exhibited diminished exercise tolerance, and reduced strength. Rev-erbα, a transcriptional suppressor involved in circadian rhythm, has been discovered to inhibit the expression of genes linked to bodily functions, encompassing inflammation and metabolism. It also plays a significant role in skeletal muscle and exercise performance capacity. Given the potential association between Rev-erbα and the immune system and the fact that both pathways are modulated following acute aerobic exercise, we examined the physical performance of IL-10 KO mice and analyzed the modulation of the atrophy and Rev-erbα pathways in the muscle of wild type (WT) and IL-10 KO mice following one session of acute exercise. For each phenotype, WT and IL-10 KO were divided into two subgroups (Control and Exercise). The acute exercise session started at 6 m/min, followed by 3 m/min increments every 3 min until animal exhaustion. Two hours after the end of the exercise protocol, the gastrocnemius muscle was removed and prepared for the reverse transcription-quantitative polymerase chain reaction (RT-q-PCR) and immunoblotting technique. In summary, compared to WT, the IL-10 KO animals showed lower body weight and grip strength in the baseline. The IL-10 control group presented a lower protein content of BMAL1. After the exercise protocol, the IL-10 KO group had higher mRNA levels of Trim63 (atrophy signaling pathway) and lower mRNA levels of Clock and Bmal1 (Rev-erbα signaling pathway). This is the first study showing the relationship between Rev-erbα and atrophy in IL-10 KO mice. Also, we accessed a public database that analyzed the gastrocnemius of MuRF KO mice submitted to two processes of muscle atrophy, a denervation surgery and dexamethasone (Dexa) injections. Independently of knockout, the denervation demonstrated lower Nr1d1 levels. In conclusion, IL-10 seems to be a determinant in the Rev-erbα pathway and atrophy after acute exercise, with no modulation in the baseline state.


Subject(s)
ARNTL Transcription Factors , Interleukin-10 , Animals , Mice , ARNTL Transcription Factors/genetics , ARNTL Transcription Factors/metabolism , Atrophy , Interleukin-10/genetics , Interleukin-6/genetics , Mice, Knockout , Muscle Proteins/genetics , Muscle, Skeletal/metabolism , RNA, Messenger/metabolism , Tripartite Motif Proteins , Ubiquitin-Protein Ligases
2.
Clin Exp Pharmacol Physiol ; 51(12): e70001, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39477552

ABSTRACT

Senescence impairs liver physiology, mitochondrial function and circadian regulation, resulting in systemic metabolic dysregulation. Given the limited research on the effects of combined exercise on an ageing liver, this study aimed to evaluate its impact on liver metabolism, circadian rhythms and mitochondrial function in senescence-accelerated mouse-prone 8 (SAMP8) and senescence-accelerated mouse-resistant 1 (SAMR1) mice. Histological, reverse transcription quantitative polymerase chain reaction (RT-qPCR) and immunoblotting analyses were conducted, supplemented by transcriptomic data sets and AML12 hepatocyte studies. Sedentary SAMP8 mice exhibited decreased muscle strength, reduced mitochondrial complex I levels and increased lipid droplet accumulation. In contrast, combined exercise mitigated muscle strength loss, upregulated proteins involved in mitochondrial complexes (CIII, CIV, CV) and increased Bmal1 messenger RNA (mRNA) expression in the liver. These molecular adaptations are associated with healthier liver phenotypes and may influence metabolic function and cellular longevity. Notably, elevated lipid content in aged mice was reduced post-exercise, indicating liver benefits even after a relatively short intervention. The combined exercise regimen did not improve aerobic capacity, likely due to the low volume and brief duration of running. Moreover, no significant effects were observed in SAMR1 mice, possibly because the training intensity was insufficient for younger, healthier animals. These findings underscore the potential of combined strength and endurance exercise to attenuate age-related liver dysfunction, particularly in ageing populations.


Subject(s)
Aging , Liver , Physical Conditioning, Animal , Animals , Mice , Aging/genetics , Aging/physiology , Aging/metabolism , Liver/metabolism , Physical Conditioning, Animal/physiology , Male , Physical Functional Performance , Circadian Rhythm/physiology , Time Factors , Muscle Strength
3.
J Cell Physiol ; 238(5): 954-965, 2023 05.
Article in English | MEDLINE | ID: mdl-37013375

ABSTRACT

The mechanisms of autophagy have been related to Alzheimer's disease (AD) pathogenesis by the endosomal-lysosomal system, having a critical function in forming amyloid-ß (Aß) plaques. Nevertheless, the exact mechanisms mediating disease pathogenesis remain unclear. The transcription factor EB (TFEB), a primary transcriptional autophagy regulator, improves gene expression, mediating lysosome function, autophagic flux, and autophagosome biogenesis. In this review, we present for the first time the hypothesis of how TFEB, autophagy, and mitochondrial function are interconnected in AD, providing a logical foundation for unraveling the critical role of chronic physical exercise in this process. Aerobic exercise training promotes Adiponectin Receptor 1 (AdipoR1)/AMP-activated protein kinase (AMPK)/TFEB axis activation in the brain of the AD animal model, which contributes to alleviated Aß deposition and neuronal apoptosis while improving cognitive function. Moreover, TFEB upregulates Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) and nuclear factor erythroid 2-related factor 2 (NRF-2), improving mitochondrial biogenesis and redox status. In addition, tissue contraction activates calcineurin in skeletal muscle, which induces TFEB nuclear translocation, raising the hypothesis that the same would occur in the brain. Thus, a deep and comprehensive exploration of the TFEB could provide new directions and strategies for preventing AD. We conclude that chronic exercise can be an effective TFEB activator, inducing autophagy and mitochondrial biogenesis, representing a potential nonpharmacological strategy contributing to brain health.


Subject(s)
Alzheimer Disease , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Animals , Alzheimer Disease/therapy , Amyloid beta-Peptides/metabolism , Autophagy , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Exercise , Lysosomes/metabolism , Muscle, Skeletal/metabolism
4.
J Cell Biochem ; 124(4): 520-532, 2023 04.
Article in English | MEDLINE | ID: mdl-36791261

ABSTRACT

Gluten intolerance is associated with several disorders in the body. Although research has grown in recent years, the understanding of its impact on different tissues and the effects of physical exercise in mitigating health problems in the condition of gluten intolerance are still limited. Therefore, our objective was to test whether gliadin would affect metabolism and inflammation in liver tissue and whether aerobic physical exercise would mitigate the negative impacts of gliadin administration in rodents. Wistar rats were divided into exercised gliadin, gliadin, and control groups. Gliadin was administered by gavage from birth to 60 days of age. The rats in the exercised gliadin group performed an aerobic running exercise training protocol for 15 days. At the end of the experiments, physiological, histological, and molecular analyzes were performed in the study. Compared to the control group, the gliadin group had impaired weight gain and increased gluconeogenesis, lipogenesis, and inflammatory biomarkers in the liver. On the other hand, compared to the gliadin group, animals in the exercise-gliadin group had a recovery in body weight, improved insulin sensitivity, and a reduction in some gluconeogenesis, lipogenesis, and inflammatory biomarkers in the liver. In conclusion, our results revealed that the administration of gliadin from birth impaired weight gain and induced an increase in hepatic inflammatory cytokines, which was associated with an impairment of glycemic homeostasis in the liver, all of which were attenuated by adding aerobic exercise training in the gliadin group.


Subject(s)
Celiac Disease , Gliadin , Rats , Animals , Rats, Wistar , Celiac Disease/metabolism , Weight Gain , Inflammation/chemically induced , Inflammation/therapy , Biomarkers
5.
Cell Biochem Funct ; 41(1): 86-97, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36415950

ABSTRACT

Many conditions, such as inflammation and physical exercise, can induce endoplasmic reticulum (ER) stress. Toll-like Receptor 4 (TLR4) can trigger inflammation and ER stress events. However, there are still no data in the literature regarding the role of TLR4 in ER stress during exercise in skeletal muscle. Therefore, the current investigation aimed to verify the responses of ER stress markers in wild-type (WT) and Tlr4 global knockout (KO) mice after acute and chronic physical exercise protocols. Eight-week-old male WT and KO mice were submitted to acute (moderate or high intensity) and chronic (4-week protocol) treadmill exercises. Under basal conditions, KO mice showed lower performance in the rotarod test. Acute high-intensity exercise increased eIF2α protein in the WT group. After the acute high-intensity exercise, there was an increase in Casp3 and Ddit3 mRNA for the KO mice. Acute moderate exercise increased the cleaved Caspase-3/Caspase-3 in the KO group. In response to chronic exercise, the KO group showed no improvement in any performance evaluation. The 4-week chronic protocol did not generate changes in ATF6, CHOP, p-IRE1α, p-eIF2α/eIF2α, and cleaved Caspase-3/Caspase-3 ratio but reduced BiP protein compared with the KO-Sedentary group. These results demonstrate the global deletion of Tlr4 seems to have the same effects on UPR markers of WT animals after acute and chronic exercise protocols but decreased performance. The cleaved Caspase-3/Caspase-3 ratio may be activated by another pathway other than ER stress in Tlr4 KO animals.


Subject(s)
Apoptosis , Muscle, Skeletal , Toll-Like Receptor 4 , Animals , Male , Mice , Caspase 3/metabolism , Endoplasmic Reticulum Stress , Endoribonucleases/metabolism , Inflammation/metabolism , Mice, Inbred C57BL , Mice, Knockout , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Physical Conditioning, Animal
6.
Cell Biochem Funct ; 41(1): 128-137, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36515301

ABSTRACT

Dysfunction of the adipose tissue metabolism is considered as a significant hallmark of aging. It has been proposed that α-ß hydrolase domain containing 5 (ABHD5) plays a critical role in the control of lipolysis. However, the role of ABHD5 in the control of lipolysis during aging or exercise is unknown. Here we combined the experimental mouse model with transcriptomic analyzes by using murine and human databases to explore the role of ABHD5 in the adipose tissue during aging and in response to exercise. Transcriptomic data revealed a downregulation of Abhd5 messenger RNA levels in the subcutaneous white adipose tissue (scWAT) over time in individuals from 20 to 69 years old. Aged mice displayed dramatic reduction of ABHD5 protein content and lipolytic-related proteins in the scWAT. Interestingly, 4 weeks of high-intensity interval training increased ABHD5 protein level and restored the lipolytic pathway in the scWAT of aged mice. Altogether, our findings demonstrated that aging affects ABHD5 content in the adipose tissue of mice and humans. Conversely, exercise increases ABHD5 activity, recovering the lipolytic activity in aged mice.


Subject(s)
1-Acylglycerol-3-Phosphate O-Acyltransferase , Adipose Tissue , Aging , Exercise , Lipolysis , Adult , Aged , Animals , Humans , Mice , Middle Aged , Young Adult , 1-Acylglycerol-3-Phosphate O-Acyltransferase/genetics , 1-Acylglycerol-3-Phosphate O-Acyltransferase/metabolism , Adipose Tissue/enzymology , Aging/metabolism , Hydrolases/genetics , Hydrolases/metabolism
7.
J Cell Physiol ; 237(11): 4262-4274, 2022 11.
Article in English | MEDLINE | ID: mdl-36125908

ABSTRACT

Obesity is a worldwide health problem and is directly associated with insulin resistance and type 2 diabetes. The liver is an important organ for the control of healthy glycemic levels, since insulin resistance in this organ reduces phosphorylation of forkhead box protein 1 (FOXO1) protein, leading to higher hepatic glucose production (HGP) and fasting hyperglycemia. Aerobic physical training is known as an important strategy in increasing the insulin action in the liver by increasing FOXO1 phosphorylation and reducing gluconeogenesis. However, little is known about the effects of strength training in this context. This study aimed to investigate the effects of short-term strength training on hepatic insulin sensitivity and glycogen synthase kinase-3ß (GSK3ß) and FOXO1 phosphorylation in obese (OB) mice. To achieve this goal, OB Swiss mice performed the strength training protocol (one daily session for 15 days). Short-term strength training increased the phosphorylation of protein kinase B and GSK3ß in the liver after insulin stimulus and improved the control of HGP during the pyruvate tolerance test. On the other hand, sedentary OB animals reduced FOXO1 phosphorylation and increased the levels of nuclear FOXO1 in the liver, increasing the phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) content. The bioinformatics analysis also showed positive correlations between hepatic FOXO1 levels and gluconeogenic genes, reinforcing our findings. However, strength-trained animals reverted to this scenario, regardless of body adiposity changes. In conclusion, short-term strength training is an efficient strategy to enhance the insulin action in the liver of OB mice, contributing to glycemic control by reducing the activity of hepatic FOXO1 and lowering PEPCK and G6Pase contents.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Resistance Training , Mice , Humans , Animals , Mice, Obese , Insulin Resistance/genetics , Diabetes Mellitus, Type 2/metabolism , Glycogen Synthase Kinase 3 beta/genetics , Glycogen Synthase Kinase 3 beta/metabolism , Forkhead Box Protein O1/genetics , Forkhead Box Protein O1/metabolism , Liver/metabolism , Insulin/metabolism , Obesity/genetics , Obesity/metabolism , Phosphoenolpyruvate Carboxykinase (ATP)/metabolism , Mice, Inbred C57BL
8.
Cell Biochem Funct ; 40(4): 369-378, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35411956

ABSTRACT

The intensity, duration, type of contraction, and muscle damage influence interleukin-6 (IL-6) response to acute exercise. However, in response to an exhaustive exercise session, the upregulation of IL-6 in the serum and heart is associated with an inflammatory condition and can inhibit autophagy. This study aimed to investigate the role of IL-6 in autophagy pathway responses and mitochondrial function in the heart of mice submitted to acute exhaustive physical exercise. The mice were allocated into three groups, five animals per group, for the wild type (WT) and the IL-6 knockout (IL-6 KO): Basal (sedentary; Basal), 1 h (after 1 h of the acute exercise; 1 h), and 3 h (after 3 h of the acute exercise; 3 h). After the specific time for each group, the blood was collected, each mouse heart was removed, and the left ventricle (LV) was isolated. In summary, under basal conditions, without the influence of the acute exercise, the IL-6 KO group showed lower number of nuclei in the cardiac tissue, but higher collagen deposition; lower messenger RNA (mRNA) levels of Prkaa1 and Mtco1, but higher mRNA levels of Ulk1; and higher protein levels of the ratio p-AMPK/AMPK in the heart when compared to WT at the same time point. After the acute exercise (1 and 3 h), the IL-6 KO group had lower mRNA levels of Tfam, Mtnd1, Mtco1, and Nampt in the heart when compared to WT after exercise; higher serum levels of creatine kinase (CK), CK-MB, and lactate dehydrogenase for the IL-6 group when compared to the WT group after the exercise. Specifically, the heat-shock protein 60 protein levels in the heart increased 3 h after exhaustive exercise in the WT group, but not in the IL-6 KO group. The study emphasizes that IL-6 may offer cardioprotective effects, including mitochondrial adaptations in response to acute exhaustive exercise.


Subject(s)
Interleukin-6 , Physical Conditioning, Animal , AMP-Activated Protein Kinases , Animals , Interleukin-6/genetics , Interleukin-6/metabolism , Mice , Mice, Knockout , Physical Conditioning, Animal/physiology , RNA, Messenger/metabolism
9.
Clin Exp Pharmacol Physiol ; 49(8): 893-902, 2022 08.
Article in English | MEDLINE | ID: mdl-35637552

ABSTRACT

Regular endurance exercise is a non-pharmacological strategy to protect the liver against diseases. Conversely, exercise may be harmful when excessive, the so-called overtraining. As expected, mice who underwent an overtraining protocol presented higher levels of proinflammatory cytokines in the serum and liver. Based on the relationship among overtraining, inflammation and mammalian target of rapamycin complex 1 (mTORC1) upregulation, the present study verified if animals submitted to an overtraining protocol, but with inhibition of the mTOR pathway via rapamycin injections could mitigate the liver and serum inflammation. Once autophagy can be linked to the improvement of hepatic dysfunction, we also investigated if the inhibition of mTORC1 by rapamycin can improve hepatic autophagy. The animals were randomized into four groups: control (CT; sedentary mice), overtraining by downhill running (OT; mice submitted to the downhill running-based overtraining protocol), overtraining by downhill running with chronic administration of rapamycin (OT/Rapa; mice submitted to the downhill running-based overtraining protocol with intraperitoneal injections of rapamycin) and aerobic (AER; submitted to aerobic training protocol). The serum and liver of the animals were used for biochemical analysis, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and immunoblotting. The main results are (a) OT and OT/Rapa protocols decreased the performance; (b) the protein levels of interleukin 6 (IL-6) were higher for the OT group; the OT/Rapa group reduced the autophagic genes, increased the microtubule-associated protein light chain 3 II/I (LC3II/LC3I) protein ratio and decreased the sequestosome 1 (SQSTM1) protein. In conclusion, rapamycin appears efficiently to increase the autophagy proteins and decrease IL-6 protein in the liver of overtraining mice.


Subject(s)
Interleukin-6 , Sirolimus , Animals , Autophagy , Inflammation/metabolism , Mammals/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Microtubule-Associated Proteins/metabolism , Sirolimus/pharmacology
10.
Am J Physiol Endocrinol Metab ; 320(3): E488-E495, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33459179

ABSTRACT

Brown adipose tissue (BAT) has been encouraged as a potential treatment for obesity and comorbidities due to its thermogenic activity capacity and contribution to energy expenditure. Some interventions such as cold and ß-adrenergic drugs are able to activate BAT thermogenesis as well as promote differentiation of white adipocytes into brown-like cells (browning), enhancing the thermogenic activity of these cells. In this mini-review, we discuss new mechanisms related to BAT and energy expenditure. In this regard, we will also discuss recent studies that have revealed the existence of important secretory molecules from BAT "batokines" that act in autocrine, paracrine, and endocrine mechanisms, which in turn may explain some of the beneficial roles of BAT on whole body glucose and fat metabolism. Finally, we will discuss new insights related to BAT thermogenesis with an additional focus on the distinct features of BAT metabolism between rodents and humans.


Subject(s)
Adipose Tissue, Brown/physiology , Adipocytes, White/metabolism , Animals , Energy Metabolism/physiology , Glucose/metabolism , Humans , Thermogenesis/physiology
11.
Cytokine ; 142: 155494, 2021 06.
Article in English | MEDLINE | ID: mdl-33765652

ABSTRACT

Interleukin-6 (IL-6) is associated with pathological cardiac hypertrophy and can be dramatically increased in serum after an acute strenuous exercise session. However, IL-6 is also associated with the increased production and release of anti-inflammatory cytokines and the inhibition of tumor necrosis factor-alpha (TNF-α) after chronic moderate exercise. To elucidate the relevance of IL-6 in inflammatory and hypertrophic signaling in the heart in response to an acute strenuous exercise session, we combined transcriptome analysis using the BXD mice database and exercised IL-6 knockout mice (IL-6KO). Bioinformatic analysis demonstrated that low or high-levels of Il6 mRNA in the heart did not change the inflammation- and hypertrophy-related genes in BXD mice strains. On the other hand, bioinformatic analysis revealed a strong positive correlation between Il6 gene expression in skeletal muscle with inflammation-related genes in cardiac tissue in several BXD mouse strains, suggesting that skeletal muscle-derived IL-6 could alter the heart's intracellular signals, particularly the inflammatory signaling. As expected, an acute strenuous exercise session increased IL-6 levels in wild-type, but not in IL-6KO mice. Despite not showing morphofunctional differences in the heart at rest, the IL-6KO group presented a reduction in physical performance and attenuated IL-6, TNF-α, and IL-1beta kinetics in serum, as well as lower p38MAPK phosphorylation, Ampkalpha expression, and higher Acta1 and Tnf gene expressions in the left ventricle in the basal condition. In response to strenuous exercise, IL-6 ablation was linked to a reduction in the pro-inflammatory response and higher activation of classical physiological cardiac hypertrophy proteins.


Subject(s)
Biomarkers/metabolism , Heart/physiopathology , Inflammation/pathology , Interleukin-6/deficiency , Physical Conditioning, Animal , Adenylate Kinase/metabolism , Animals , Biomarkers/blood , Cardiomegaly/blood , Cardiomegaly/genetics , Electrocardiography , Gene Expression Profiling , Gene Expression Regulation , Heart/diagnostic imaging , Interleukin-6/genetics , Interleukin-6/metabolism , Mice, Inbred C57BL , Mice, Knockout , Muscle, Skeletal/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rest , Signal Transduction , TOR Serine-Threonine Kinases/metabolism
12.
Int J Mol Sci ; 22(5)2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33807902

ABSTRACT

Although physical exercise-induced autophagy activation has been considered a therapeutic target to enhance tissue health and extend lifespan, the effects of different exercise models on autophagy in specific metabolic tissues are not completely understood. This descriptive investigation compared the acute effects of endurance (END), exhaustive (ET), strength (ST), and concurrent (CC) physical exercise protocols on markers of autophagy, genes, and proteins in the gastrocnemius muscle, heart, and liver of mice. The animals were euthanized immediately (0 h) and six hours (6 h) after the acute exercise for the measurement of glycogen levels, mRNA expression of Prkaa1, Ppargc1a, Mtor, Ulk1, Becn1, Atg5, Map1lc3b, Sqstm1, and protein levels of Beclin 1 and ATG5. The markers of autophagy were measured by quantifying the protein levels of LC3II and Sqstm1/p62 in response to three consecutive days of intraperitoneal injections of colchicine. In summary, for gastrocnemius muscle samples, the main alterations in mRNA expressions were observed after 6 h and for the ST group, and the markers of autophagy for the CC group were increased (i.e., LC3II and Sqstm1/p62). In the heart, the Beclin 1 and ATG5 levels were downregulated for the ET group. Regarding the markers of autophagy, the Sqstm1/p62 in the heart tissue was upregulated for the END and ST groups, highlighting the beneficial effects of these exercise models. The liver protein levels of ATG5 were downregulated for the ET group. After the colchicine treatment, the liver protein levels of Sqstm1/p62 were decreased for the END and ET groups compared to the CT, ST, and CC groups. These results could be related to diabetes and obesity development or liver dysfunction improvement, demanding further investigations.


Subject(s)
Autophagy , Gene Expression Regulation , Muscle Proteins/biosynthesis , Muscle, Skeletal/metabolism , Physical Conditioning, Animal , Animals , Biomarkers/metabolism , Male , Mice
13.
Cytokine ; 136: 155273, 2020 12.
Article in English | MEDLINE | ID: mdl-32932194

ABSTRACT

Cardiovascular diseases are a leading cause of death for adults worldwide. Published articles have shown that toll-like receptor 4 (TLR4), a member of the toll-like receptor (TLR) family, is involved in several cardiovascular diseases and can be modulated by physical exercise. TLR4 is the most expressed TLR in cardiac tissue and is an essential mediator of the inflammatory and apoptosis processes in the heart, playing a pivotal role in the development of cardiovascular diseases. Physical exercise is recognized as a non-pharmacological strategy for the prevention and treatment of these diseases. In addition, physical exercise can modulate the TLR4 in the mice heart, and its absence attenuates apoptosis, endoplasmic reticulum stress, and inflammation. However, the relationship between TLR4 and physical exercise-induced cardiac adaptations has barely been explored. Thus, the objective of this brief review was to discuss studies describing how TLR4 influences cardiac responses to physical exercise and present a link between these responses and cardiovascular diseases, showing physical activity improves the cardiac function of individuals with cardiovascular diseases through the TLR4 modulation.


Subject(s)
Cardiovascular Diseases/immunology , Endoplasmic Reticulum Stress/immunology , Exercise , Toll-Like Receptor 4/immunology , Animals , Apoptosis/immunology , Humans , Inflammation/immunology , Mice
14.
Cytokine ; 130: 155085, 2020 Apr 04.
Article in English | MEDLINE | ID: mdl-32259772

ABSTRACT

BACKGROUND: Based on the crosstalk of inflammation with apoptosis, autophagy, and endoplasmic reticulum (ER) stress, the main objective of this study was to explore the role of interleukin-6 (IL-6) on genes and proteins related to these phenomena in the livers of mice submitted to acute exhaustive exercise. METHODS: Reverse transcription-quantitative polymerase chain reaction and immunoblotting technique were used to evaluate the livers of wild-type (WT) and IL-6 knockout (KO) mice at baseline (BL) and 3 h after the acute exhaustive physical exercise (EE). RESULTS: Compared to the WT at baseline, the IL-6 KO had lower exhaustion velocity, mRNA levels of Mtor, Ulk1, Map1lc3b, and Mapk14, and protein contents of ATG5 and p-p70S6K/p70S6K. For the WT group, the EE decreased glycemia, mRNA levels of Casp3, Mtor, Ulk1, Foxo1a, Mapk14, and Ppargc1a, and protein contents of ATG5 and p-p70S6K/p70S6K, but increased mRNA levels of Sqstm1. For the IL-6 KO group, the EE decreased glycemia, mRNA levels of Casp3 and Foxo1a, and protein contents of pAkt/Akt and Mature/Pro IL-1beta, but increased mRNA levels of Sqstm1, and protein contents of p-AMPK/AMPK. CONCLUSION: The inhibition of the hepatic autophagy markers induced by the acute EE was attenuated in IL-6 KO mice, highlighting a new function of this cytokine.

15.
Eur J Nutr ; 59(6): 2427-2437, 2020 Sep.
Article in English | MEDLINE | ID: mdl-31494696

ABSTRACT

PURPOSE: Nicotinamide riboside (NR) acts as a potent NAD+ precursor and improves mitochondrial oxidative capacity and mitochondrial biogenesis in several organisms. However, the effects of NR supplementation on aerobic performance remain unclear. Here, we evaluated the effects of NR supplementation on the muscle metabolism and aerobic capacity of sedentary and trained mice. METHODS: Male C57BL/6 J mice were supplemented with NR (400 mg/Kg/day) over 5 and 10 weeks. The training protocol consisted of 5 weeks of treadmill aerobic exercise, for 60 min a day, 5 days a week. Bioinformatic and physiological assays were combined with biochemical and molecular assays to evaluate the experimental groups. RESULTS: NR supplementation by itself did not change the aerobic performance, even though 5 weeks of NR supplementation increased NAD+ levels in the skeletal muscle. However, combining NR supplementation and aerobic training increased the aerobic performance compared to the trained group. This was accompanied by an increased protein content of NMNAT3, the rate-limiting enzyme for NAD + biosynthesis and mitochondrial proteins, including MTCO1 and ATP5a. Interestingly, the transcriptomic analysis using a large panel of isogenic strains of BXD mice confirmed that the Nmnat3 gene in the skeletal muscle is correlated with several mitochondrial markers and with different phenotypes related to physical exercise. Finally, NR supplementation during aerobic training markedly increased the amount of type I fibers in the skeletal muscle. CONCLUSION: Taken together, our results indicate that NR may be an interesting strategy to improve mitochondrial metabolism and aerobic capacity.


Subject(s)
Aerobiosis/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , NAD/metabolism , Niacinamide/analogs & derivatives , Pyridinium Compounds/metabolism , Pyridinium Compounds/pharmacology , Animals , Cell Respiration/drug effects , Male , Mice , Mice, Inbred C57BL , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Niacinamide/metabolism , Niacinamide/pharmacology
16.
Int J Mol Sci ; 21(22)2020 Nov 10.
Article in English | MEDLINE | ID: mdl-33182536

ABSTRACT

The protective effects of chronic moderate exercise-mediated autophagy include the prevention and treatment of several diseases and the extension of lifespan. In addition, physical exercise may impair cellular structures, requiring the action of the autophagy mechanism for clearance and renovation of damaged cellular components. For the first time, we investigated the adaptations on basal autophagy flux in vivo in mice's liver, heart, and skeletal muscle tissues submitted to four different chronic exercise models: endurance, resistance, concurrent, and overtraining. Measuring the autophagy flux in vivo is crucial to access the functionality of the autophagy pathway since changes in this pathway can occur in more than five steps. Moreover, the responses of metabolic, performance, and functional parameters, as well as genes and proteins related to the autophagy pathway, were addressed. In summary, the regular exercise models exhibited normal/enhanced adaptations with reduced autophagy-related proteins in all tissues. On the other hand, the overtrained group presented higher expression of Sqstm1 and Bnip3 with negative morphological and physical performance adaptations for the liver and heart, respectively. The groups showed different adaptions in autophagy flux in skeletal muscle, suggesting the activation or inhibition of basal autophagy may not always be related to improvement or impairment of performance.


Subject(s)
Autophagy/physiology , Physical Conditioning, Animal/physiology , Adaptation, Physiological/genetics , Adaptation, Physiological/physiology , Animals , Autophagy/genetics , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/metabolism , Liver/cytology , Male , Mice , Mice, Inbred C57BL , Models, Biological , Muscle, Skeletal/cytology , Muscle, Skeletal/metabolism , Myocardium/cytology , Myocardium/metabolism , Organ Specificity , Physical Endurance/genetics , Physical Endurance/physiology , RNA, Messenger/genetics , RNA, Messenger/metabolism
17.
J Cell Physiol ; 234(7): 10047-10059, 2019 07.
Article in English | MEDLINE | ID: mdl-30523638

ABSTRACT

Sphingolipids were discovered more than a century ago and were simply considered as a class of cell membrane lipids for a long time. However, after the discovery of several intracellular functions and their role in the control of many physiological and pathophysiological conditions, these molecules have gained much attention. For instance, the sphingosine-1-phosphate (S1P) is a circulating bioactive sphingolipid capable of triggering strong intracellular reactions through the family of S1P receptors (S1PRs) spread in several cell types and tissues. Recently, the role of S1P in the control of skeletal muscle metabolism, atrophy, regeneration, and metabolic disorders has been widely investigated. In this review, we summarized the knowledge of S1P and its effects in skeletal muscle metabolism, highlighting the role of S1P/S1PRs axis in skeletal muscle regeneration, fatigue, ceramide accumulation, and insulin resistance. Finally, we discussed the physical exercise role in S1P/S1PRs signaling in skeletal muscle cells, and how this nonpharmacological strategy may be prospective for future investigations due to its ability to increase S1P levels.


Subject(s)
Lysophospholipids/metabolism , Muscle, Skeletal/enzymology , Sphingosine/analogs & derivatives , Animals , Humans , Sphingosine/metabolism
18.
J Cell Biochem ; 120(2): 1304-1317, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30324688

ABSTRACT

Exhaustive and chronic physical exercise leads to peripheral inflammation, which is one of the molecular mechanisms responsible for the impairment of the insulin signaling pathway in the heart. Recently, 3 different running overtraining models performed downhill (OTR/down), uphill (OTR/up), and without inclination (OTR) increased the serum levels of proinflammatory cytokines. This proinflammatory status induced insulin signaling impairment in the skeletal muscle; however, the response of this signaling pathway in the cardiac muscle of overtrained mice was still unknown. Thus, we investigated the effects of OTR/down, OTR/up, and OTR protocols on the protein levels of phosphorylation of insulin receptor ß (pIRß) (Tyr), phosphorylation of protein kinase B (pAkt) (Ser473), plasma membrane glucose transporter-1 (GLUT1) and GLUT4, phosphorylation of insulin receptor substrate-1 (pIRS-1) (Ser307), phosphorylation of IκB kinase α/ß) (pIKKα/ß (Ser180/181), phosphorylation of p38 mitogen-activated protein kinase (p-p38MAPK) (Thr180/Tyr182), phosphorylation of stress-activated protein kinases-Jun amino-terminal kinases (pSAPK-JNK) (Thr183/Tyr185), and glycogen content in mice hearts. The rodents were divided into naïve (N, sedentary mice), control (CT, sedentary mice submitted to performance evaluations), trained (TR, performed the training protocol), OTR/down, OTR/up, and OTR groups. After the grip force test, the cardiac muscles (ie, left ventricle) were removed and used for immunoblotting and histology. Although the OTR/up and OTR groups exhibited higher cardiac levels of pIRß (Tyr), only the OTR group exhibited higher cardiac levels of pAkt (Ser473) and plasma membrane GLUT4. On the contrary, the OTR/down group exhibited higher cardiac levels of pIRS-1 (Ser307). The OTR model enhanced the cardiac insulin signaling pathway. All overtraining models increased the left ventricle glycogen content, with this probably acting as a compensatory organ in response to skeletal muscle insulin signaling impairment.

19.
J Cell Biochem ; 120(10): 18186-18192, 2019 10.
Article in English | MEDLINE | ID: mdl-31144370

ABSTRACT

Obesity and aging lead to abnormal transforming growth factor-ß1 (TGF-ß1) signaling in the hypothalamus, triggering the imbalance on glucose metabolism and energy homeostasis. Here, we determine the effect of acute exercise on TGF-ß1 expression in the hypothalamus of two models of obesity in mice. The bioinformatics analysis was performed to evaluate the correlation between hypothalamic Tgf-ß1 messenger RNA (mRNA) and genes related to thermogenesis in the brown adipose tissue (BAT) by using a large panel of isogenic BXD mice. Thereafter, leptin-deficient (ob/ob) mice and obese C57BL/6 mice fed on a high-fat diet (HFD) were submitted to the acute exercise protocol. Transcriptomic analysis by using BXD mouse reference population database revealed that hypothalamic Tgf-ß1 mRNA is negatively correlated with genes related to thermogenesis in brown adipose tissue of BXD mice, such as peroxisome proliferator-activated receptor gamma coactivator and is positively correlated with respiratory exchange ratio. In agreement with these results, leptin-deficient (ob/ob) and HFD-fed mice displayed high levels of Tgf-ß1 mRNA in the hypothalamus and reduction of Pgc1α mRNA in BAT. Interestingly, an acute exercise session reduced TGF-ß1 expression in the hypothalamus, increased Pgc1α mRNA in the BAT and reduced food consumption in obese mice. Our results demonstrated that acute physical exercise suppressed hypothalamic TGF-ß1 expression, increasing Pgc1α mRNA in BAT in obese mice.


Subject(s)
Down-Regulation , Hypothalamus/metabolism , Obesity/genetics , Physical Conditioning, Animal/physiology , Transforming Growth Factor beta1/genetics , Adipose Tissue, Brown/metabolism , Animals , Diet, High-Fat/adverse effects , Energy Metabolism/genetics , Gene Expression Profiling/methods , Leptin/deficiency , Leptin/genetics , Male , Mice, Inbred C57BL , Mice, Obese , Obesity/etiology , Obesity/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Thermogenesis/genetics , Transforming Growth Factor beta1/metabolism
20.
Cytokine ; 119: 57-61, 2019 07.
Article in English | MEDLINE | ID: mdl-30884427

ABSTRACT

Chronic moderate-intensity exercise is an efficient non-pharmacological strategy to prevent and treat several diseases such as type 2 diabetes mellitus, cardiovascular and chronic obstructive pulmonary diseases, cancers, and Parkinson's disease. On the other hand, improving an athlete's performance requires completing high-intensity and volume exercise sessions. When the delicate balance between high-load exercise sessions and adequate recovery periods is disrupted, excessive training (known as overtraining) can lead to performance decline. The cytokine hypothesis considers that an imbalance involving excessive exercise and inadequate recovery induces musculoskeletal trauma, increasing the production and release of proinflammatory cytokines, mainly interleukin 6 (IL-6), tumor necrosis factor-alpha (TNF-alpha), and interleukin 1beta (IL-1beta), which interact with different organic systems, initiating most of the signs and symptoms linked to performance decrement. This leading article used recent data to discuss the scientific basis of Smith's cytokine theory and highlighted that the adverse effects of excessive exercise go beyond performance decline, proposing a multi-organ approach for this issue. These recent insights will allow coaches and exercise physiologists to develop strategies to avoid chronic excessive exercise-induced adverse outcomes.


Subject(s)
Exercise/physiology , Inflammation/physiopathology , Animals , Cytokines/metabolism , Humans , Inflammation/metabolism , Teaching
SELECTION OF CITATIONS
SEARCH DETAIL