Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
J Chem Phys ; 145(2): 024104, 2016 Jul 14.
Article in English | MEDLINE | ID: mdl-27421394

ABSTRACT

Due to the importance of both static and dynamical correlation in the bond formation, low-dimensional beryllium systems constitute interesting case studies to test correlation methods. Aiming to describe the whole dissociation curve of extended Be systems we chose to apply the method of increments (MoI) in its multireference (MR) formalism. To gain insight into the main characteristics of the wave function, we started by focusing on the description of small Be chains using standard quantum chemical methods. In a next step we applied the MoI to larger beryllium systems, starting from the Be6 ring. The complete active space formalism was employed and the results were used as reference for local MR calculations of the whole dissociation curve. Although this is a well-established approach for systems with limited multireference character, its application regarding the description of whole dissociation curves requires further testing. Subsequent to the discussion of the role of the basis set, the method was finally applied to larger rings and extrapolated to an infinite chain.

2.
J Chem Phys ; 143(11): 114108, 2015 Sep 21.
Article in English | MEDLINE | ID: mdl-26395688

ABSTRACT

The method of increments (MoI) has been employed using the complete active space formalism in order to calculate the dissociation curve of beryllium ring-shaped clusters Be(n) of different sizes. Benchmarks obtained through different quantum chemical methods including the ab initio density matrix renormalization group were used to verify the validity of the MoI truncation which showed a reliable behavior for the whole dissociation curve. Moreover we investigated the size dependence of the correlation energy at different interatomic distances in order to extrapolate the values for the periodic chain and to discuss the transition from a metal-like to an insulator-like behavior of the wave function through quantum chemical considerations.

3.
Phys Chem Chem Phys ; 15(18): 6749-56, 2013 May 14.
Article in English | MEDLINE | ID: mdl-23549162

ABSTRACT

In this work the influence of many-electron effects on the shape of characteristic X-ray emission bands of the simple metals Mg and Al is examined by means of ab initio calculations and semi-empirical models. These approaches are also used for the analysis of C K-emission and absorption spectra of graphene. Both the dynamical screening of the core vacancy and the Auger-effect in the valence band (VB) have been taken into account. Dynamical screening of the core vacancy by valence electrons (the so-called MND effect) is considered ab initio in the framework of density functional theory. The Auger effect in the VB was taken into account within a semi-empirical method, approximating the quadratic dependence of the VB hole level width on the difference between the level energy and the Fermi energy. All theoretical spectra are in very good agreement with available experimental data.

4.
J Phys Chem A ; 117(36): 8519-27, 2013 Sep 12.
Article in English | MEDLINE | ID: mdl-23425513

ABSTRACT

A molecule in the electronic ground state described in the Born­Oppenheimer approximation (BOA) by the wave function ΨBO = Φ0χ0 (where Φ0 is the time-independent electronic energy eigenfunction and χ0 is a time-dependent nuclear wave packet) exhibits a nonzero nuclear flux density, whereas it always displays zero electronic flux density (EFD), because the electrons are in a stationary state. A hierarchical approach to the computation of the EFD within the context of the BOA, which utilizes only standard techniques of quantum chemistry (to obtain Φ0) and quantum dynamics (to describe the evolution of χ0 on the ground-state potential energy surface), provides a resolution of this puzzling, nonintuitive result. The procedure is applied to H2(+) oriented parallel with the z-axis and vibrating in the ground state (2)Σg(+). First, Φ0 and χ0 are combined by the coupled-channels technique to give the normally dominant z-component of the EFD. Imposition of the constraints of electronic continuity, cylindrical symmetry of Φ0 and two boundary conditions on the EFD through a scaling procedure yields an improved z-component, which is then used to compute the complementary orthogonal ρ-component. The resulting EFD agrees with its highly accurate counterpart furnished by a non-BOA treatment of the system.

5.
J Phys Condens Matter ; 35(30)2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37072003

ABSTRACT

We have investigated the local atomic structures of several compositions of the amorphous phase of the system CuxGe50-xTe50(0⩽x⩽33.3), based on extended x-ray absorption fine-structure as well as anomalous x-ray scattering experiments, and discuss the unusual trend regarding their thermal stability as a function of the Cu content. At low concentrations (x⩽15), Cu atoms tend to agglomerate in flat nanoclusters reminiscent of the crystalline phase of metallic Cu, leading to a more and more Ge-deficient Ge-Te host network structure with growing Cu content and an increasing thermal stability. At higher Cu concentrations (x⩾25), Cu is incorporated into the network, leading to an overall weaker bonding situation which is associated with a decreasing thermal stability.

6.
J Phys Condens Matter ; 35(38)2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37253361

ABSTRACT

The microscopic structures of two amorphous molecular solids with extremely nonlinear optical properties have been studied. They consist of organotetrel chalcogenide clusters with the chemical formula [(RSn)4S6]. The basic molecular building blocks are adamantane-like {Sn4S6} cores with organic ligands R attached to the Sn atoms. While the material equipped with R=naphthyl generates frequency doubling upon irradiation with a simple infrared laser diode, the material decorated with R=phenyl responds by emitting brilliant white light. The structural differences were investigated using x-ray scattering and extended x-ray absorption fine structure combined with molecular Reverse Monte Carlo. Transmission electron microscopy and scanning precession electron diffraction were used to examine structural differences from mesoscopic down to microscopic scales. Characteristic differences were found on all scales. While close core-to-core distances between {Sn4S6} cluster cores and molecular distortions are found in the white light emitting material, undistorted molecules and significantly larger core distances characterize the material showing frequency doubling. Here however, results of scanning precession electron diffraction reveal the formation of nanocrystalline structures in the amorphous matrix, which we identify as cause for the suppression of white light emission.

7.
J Phys Chem A ; 116(11): 2736-42, 2012 Mar 22.
Article in English | MEDLINE | ID: mdl-22103738

ABSTRACT

This article presents the results of the first quantum simulations of the electronic flux density (j(e)) by the "coupled-channels" (CC) theory, the fundamentals of which are presented in the previous article [Diestler, D. J. J. Phys. Chem. A 2012, DOI: 10.1021/jp207843z]. The principal advantage of the CC scheme is that it employs exclusively standard methods of quantum chemistry and quantum dynamics within the framework of the Born-Oppenheimer approximation (BOA). The CC theory goes beyond the BOA in that it yields a nonzero j(e) for electronically adiabatic processes, in contradistinction to the BOA itself, which always gives j(e) = 0. The CC is applied to oriented H(2)(+) vibrating in the electronic ground state ((2)Σ(g)(+)), for which the nuclear and electronic flux densities evolve on a common time scale of about 22 fs per vibrational period. The system is chosen as a touchstone for the CC theory, because it is the only one for which highly accurate flux densities have been calculated numerically without invoking the BOA [Barth et al, Chem. Phys. Lett. 2009, 481, 118]. Good agreement between CC and accurate results supports the CC approach, another advantage of which is that it allows a transparent interpretation of the temporal and spatial properties of j(e).

8.
Phys Rev B Condens Matter ; 54(4): 2556-2560, 1996 Jul 15.
Article in English | MEDLINE | ID: mdl-9986103
9.
Phys Rev B Condens Matter ; 51(16): 10572-10578, 1995 Apr 15.
Article in English | MEDLINE | ID: mdl-9977752
10.
Biochemistry ; 36(25): 7832-8, 1997 Jun 24.
Article in English | MEDLINE | ID: mdl-9201926

ABSTRACT

The ATP analog ATPgammaS is a competitive inhibitor of the recA protein-catalyzed ssDNA-dependent ATP hydrolysis reaction. The degree of inhibition by ATPgammaS, however, changes in a time-dependent manner and is consistent with a two step binding mechanism. In the first step, ATPgammaS binds to the recA-ssDNA complex in a rapid equilibrium step (KD = 50 microM). This initial binding step is followed by an isomerization of the recA-ssDNA-ATPgammaS complex to a new conformational state in which ATPgammaS is bound with a significantly higher affinity (overall K(D) = 0.3 microM). This isomerization is followed by the slow hydrolysis of ATPgammaS to ADP and thiophosphate (0.01 min(-1)). The first-order rate constant for the ATPgammaS-mediated isomerization step (20 min(-1)), although significantly greater than the rate of ATPgammaS hydrolysis, is identical to the steady-state rate constant for the recA protein-catalyzed ATP hydrolysis reaction. These results are consistent with a kinetic model in which an ATP-mediated isomerization of the recA-ssDNA complex represents the rate-determining step on the recA protein-catalyzed ssDNA-dependent ATP hydrolysis reaction pathway.


Subject(s)
Adenosine Triphosphate/analogs & derivatives , Adenosine Triphosphate/metabolism , Rec A Recombinases/metabolism , Adenosine Triphosphate/pharmacology , Catalysis , DNA, Single-Stranded/metabolism , Hydrolysis , Kinetics , Rec A Recombinases/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL