Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 201
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 152(5): 1008-20, 2013 Feb 28.
Article in English | MEDLINE | ID: mdl-23452850

ABSTRACT

Metazoan evolution involves increasing protein domain complexity, but how this relates to control of biological decisions remains uncertain. The Ras guanine nucleotide exchange factor (RasGEF) Sos1 and its adaptor Grb2 are multidomain proteins that couple fibroblast growth factor (FGF) signaling to activation of the Ras-Erk pathway during mammalian development and drive embryonic stem cells toward the primitive endoderm (PrE) lineage. We show that the ability of Sos1/Grb2 to appropriately regulate pluripotency and differentiation factors and to initiate PrE development requires collective binding of multiple Sos1/Grb2 domains to their protein and phospholipid ligands. This provides a cooperative system that only allows lineage commitment when all ligand-binding domains are occupied. Furthermore, our results indicate that the interaction domains of Sos1 and Grb2 have evolved so as to bind ligands not with maximal strength but with specificities and affinities that maintain cooperativity. This optimized system ensures that PrE lineage commitment occurs in a timely and selective manner during embryogenesis.


Subject(s)
Embryo, Mammalian/metabolism , Embryonic Stem Cells/metabolism , GRB2 Adaptor Protein/metabolism , SOS1 Protein/metabolism , Amino Acid Sequence , Animals , Cell Lineage , Endoderm/metabolism , Eukaryota/genetics , Eukaryota/metabolism , Humans , Models, Molecular , Molecular Sequence Data , Protein Structure, Tertiary , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Sequence Alignment , ras Guanine Nucleotide Exchange Factors/metabolism
2.
Cell ; 149(1): 214-31, 2012 Mar 30.
Article in English | MEDLINE | ID: mdl-22464331

ABSTRACT

Bromodomains (BRDs) are protein interaction modules that specifically recognize ε-N-lysine acetylation motifs, a key event in the reading process of epigenetic marks. The 61 BRDs in the human genome cluster into eight families based on structure/sequence similarity. Here, we present 29 high-resolution crystal structures, covering all BRD families. Comprehensive crossfamily structural analysis identifies conserved and family-specific structural features that are necessary for specific acetylation-dependent substrate recognition. Screening of more than 30 representative BRDs against systematic histone-peptide arrays identifies new BRD substrates and reveals a strong influence of flanking posttranslational modifications, such as acetylation and phosphorylation, suggesting that BRDs recognize combinations of marks rather than singly acetylated sequences. We further uncovered a structural mechanism for the simultaneous binding and recognition of diverse diacetyl-containing peptides by BRD4. These data provide a foundation for structure-based drug design of specific inhibitors for this emerging target family.


Subject(s)
Histones/chemistry , Protein Processing, Post-Translational , Protein Structure, Tertiary , Acetylation , Amino Acid Sequence , Animals , Crystallography, X-Ray , Genome, Human , Histones/metabolism , Humans , Lysine/metabolism , Models, Molecular , Molecular Sequence Data , Phylogeny , Protein Interaction Domains and Motifs , Proteome/analysis
3.
Cell ; 151(2): 384-99, 2012 Oct 12.
Article in English | MEDLINE | ID: mdl-23063127

ABSTRACT

Vascular endothelial growth factor and its receptors, FLK1/KDR and FLT1, are key regulators of angiogenesis. Unlike FLK1/KDR, the role of FLT1 has remained elusive. FLT1 is produced as soluble (sFLT1) and full-length isoforms. Here, we show that pericytes from multiple tissues produce sFLT1. To define the biologic role of sFLT1, we chose the glomerular microvasculature as a model system. Deletion of Flt1 from specialized glomerular pericytes, known as podocytes, causes reorganization of their cytoskeleton with massive proteinuria and kidney failure, characteristic features of nephrotic syndrome in humans. The kinase-deficient allele of Flt1 rescues this phenotype, demonstrating dispensability of the full-length isoform. Using cell imaging, proteomics, and lipidomics, we show that sFLT1 binds to the glycosphingolipid GM3 in lipid rafts on the surface of podocytes, promoting adhesion and rapid actin reorganization. sFLT1 also regulates pericyte function in vessels outside of the kidney. Our findings demonstrate an autocrine function for sFLT1 to control pericyte behavior.


Subject(s)
Kidney Glomerulus/cytology , Kidney Glomerulus/metabolism , Podocytes/metabolism , Vascular Endothelial Growth Factor Receptor-1/metabolism , Animals , Gangliosides/metabolism , Humans , In Vitro Techniques , Lipid Metabolism , Lipids/chemistry , Mice , Mice, Transgenic , Pericytes/metabolism , Proteinuria/metabolism , Signal Transduction , Syndecans/metabolism , Vascular Endothelial Growth Factor Receptor-1/genetics
4.
Cell ; 147(6): 1340-54, 2011 Dec 09.
Article in English | MEDLINE | ID: mdl-22153077

ABSTRACT

The poly(ADP-ribose)polymerases Tankyrase 1/2 (TNKS/TNKS2) catalyze the covalent linkage of ADP-ribose polymer chains onto target proteins, regulating their ubiquitylation, stability, and function. Dysregulation of substrate recognition by Tankyrases underlies the human disease cherubism. Tankyrases recruit specific motifs (often called RxxPDG "hexapeptides") in their substrates via an N-terminal region of ankyrin repeats. These ankyrin repeats form five domains termed ankyrin repeat clusters (ARCs), each predicted to bind substrate. Here we report crystal structures of a representative ARC of TNKS2 bound to targeting peptides from six substrates. Using a solution-based peptide library screen, we derive a rule-based consensus for Tankyrase substrates common to four functionally conserved ARCs. This 8-residue consensus allows us to rationalize all known Tankyrase substrates and explains the basis for cherubism-causing mutations in the Tankyrase substrate 3BP2. Structural and sequence information allows us to also predict and validate other Tankyrase targets, including Disc1, Striatin, Fat4, RAD54, BCR, and MERIT40.


Subject(s)
Cherubism/metabolism , Tankyrases/chemistry , Tankyrases/metabolism , Amino Acid Sequence , Animals , Ankyrin Repeat , Crystallography, X-Ray , Humans , Mice , Models, Molecular , Molecular Sequence Data , Sequence Alignment
5.
Cell ; 147(2): 306-19, 2011 Oct 14.
Article in English | MEDLINE | ID: mdl-22000011

ABSTRACT

Chronic myelogenous leukemia (CML) is caused by the constitutively active tyrosine kinase Bcr-Abl and treated with the tyrosine kinase inhibitor (TKI) imatinib. However, emerging TKI resistance prevents complete cure. Therefore, alternative strategies targeting regulatory modules of Bcr-Abl in addition to the kinase active site are strongly desirable. Here, we show that an intramolecular interaction between the SH2 and kinase domains in Bcr-Abl is both necessary and sufficient for high catalytic activity of the enzyme. Disruption of this interface led to inhibition of downstream events critical for CML signaling and, importantly, completely abolished leukemia formation in mice. Furthermore, disruption of the SH2-kinase interface increased sensitivity of imatinib-resistant Bcr-Abl mutants to TKI inhibition. An engineered Abl SH2-binding fibronectin type III monobody inhibited Bcr-Abl kinase activity both in vitro and in primary CML cells, where it induced apoptosis. This work validates the SH2-kinase interface as an allosteric target for therapeutic intervention.


Subject(s)
Fusion Proteins, bcr-abl/antagonists & inhibitors , Fusion Proteins, bcr-abl/chemistry , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/chemistry , Amino Acid Sequence , Animals , Base Sequence , Benzamides , Cells, Cultured , Fusion Proteins, bcr-abl/metabolism , Humans , Imatinib Mesylate , Isoleucine/metabolism , Mice , Models, Molecular , Molecular Sequence Data , Piperazines/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/metabolism , Pyrimidines/pharmacology , Signal Transduction , src Homology Domains
6.
Nat Immunol ; 14(9): 966-75, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23913047

ABSTRACT

The adaptor Nck links receptor signaling to cytoskeleton regulation. Here we found that Nck also controlled the phosphatidylinositol-3-OH kinase (PI(3)K)-kinase Akt pathway by recruiting the adaptor BCAP after activation of B cells. Nck bound directly to the B cell antigen receptor (BCR) via the non-immunoreceptor tyrosine-based activation motif (ITAM) phosphorylated tyrosine residue at position 204 in the tail of the immunoglobulin-α component. Genetic ablation of Nck resulted in defective BCR signaling, which led to hampered survival and proliferation of B cells in vivo. Indeed, antibody responses in Nck-deficient mice were also considerably impaired. Thus, we demonstrate a previously unknown adaptor function for Nck in recruiting BCAP to sites of BCR signaling and thereby modulating the PI(3)K-Akt pathway in B cells.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , B-Lymphocytes/metabolism , Oncogene Proteins/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Antigen, B-Cell/metabolism , Signal Transduction , Adaptor Proteins, Signal Transducing/deficiency , Adaptor Proteins, Signal Transducing/genetics , Animals , B-Lymphocytes/immunology , Female , Immunoglobulin alpha-Chains/chemistry , Immunoglobulin alpha-Chains/metabolism , Male , Mice , Mice, Knockout , Oncogene Proteins/deficiency , Oncogene Proteins/genetics , Phosphorylation , Protein Binding , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Tyrosine/metabolism
7.
Nat Rev Mol Cell Biol ; 14(6): 393-8, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23636498

ABSTRACT

The past few years have marked significant anniversaries in signal transduction, including the identification of classic growth factors and morphogens, the notion of protein modification through phosphorylation and the characterization of protein interaction domains. Here, six researchers reflect on the context in which these discoveries were made, and how our concept of cell signalling has evolved during the past three decades.


Subject(s)
Biomedical Research/history , Intercellular Signaling Peptides and Proteins/metabolism , Protein Processing, Post-Translational , Signal Transduction , Animals , Biomedical Research/methods , History, 20th Century , History, 21st Century , Humans , Phosphorylation
8.
Cell ; 142(5): 661-7, 2010 Sep 03.
Article in English | MEDLINE | ID: mdl-20813250

ABSTRACT

Tyrosine phosphorylation controls many cellular functions. Yet the three-part toolkit that regulates phosphotyrosine signaling-tyrosine kinases, phosphotyrosine phosphatases, and Src Homology 2 (SH2) domains-is a relatively new innovation. Genomic analyses reveal how this revolutionary signaling system may have originated and why it rapidly became critical to metazoans.


Subject(s)
Evolution, Molecular , Phosphotyrosine/metabolism , Signal Transduction , Animals , Choanoflagellata/genetics , Choanoflagellata/metabolism , Protein-Tyrosine Kinases/metabolism
9.
Nature ; 569(7754): 131-135, 2019 05.
Article in English | MEDLINE | ID: mdl-30996350

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis largely owing to inefficient diagnosis and tenacious drug resistance. Activation of pancreatic stellate cells (PSCs) and consequent development of dense stroma are prominent features accounting for this aggressive biology1,2. The reciprocal interplay between PSCs and pancreatic cancer cells (PCCs) not only enhances tumour progression and metastasis but also sustains their own activation, facilitating a vicious cycle to exacerbate tumorigenesis and drug resistance3-7. Furthermore, PSC activation occurs very early during PDAC tumorigenesis8-10, and activated PSCs comprise a substantial fraction of the tumour mass, providing a rich source of readily detectable factors. Therefore, we hypothesized that the communication between PSCs and PCCs could be an exploitable target to develop effective strategies for PDAC therapy and diagnosis. Here, starting with a systematic proteomic investigation of secreted disease mediators and underlying molecular mechanisms, we reveal that leukaemia inhibitory factor (LIF) is a key paracrine factor from activated PSCs acting on cancer cells. Both pharmacologic LIF blockade and genetic Lifr deletion markedly slow tumour progression and augment the efficacy of chemotherapy to prolong survival of PDAC mouse models, mainly by modulating cancer cell differentiation and epithelial-mesenchymal transition status. Moreover, in both mouse models and human PDAC, aberrant production of LIF in the pancreas is restricted to pathological conditions and correlates with PDAC pathogenesis, and changes in the levels of circulating LIF correlate well with tumour response to therapy. Collectively, these findings reveal a function of LIF in PDAC tumorigenesis, and suggest its translational potential as an attractive therapeutic target and circulating marker. Our studies underscore how a better understanding of cell-cell communication within the tumour microenvironment can suggest novel strategies for cancer therapy.


Subject(s)
Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/pathology , Leukemia Inhibitory Factor/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Paracrine Communication , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Carcinogenesis/genetics , Carcinoma, Pancreatic Ductal/diagnosis , Cell Differentiation/drug effects , Cell Differentiation/immunology , Cell Line, Tumor , Disease Progression , Drug Resistance, Neoplasm , Epithelial-Mesenchymal Transition , Female , Humans , Leukemia Inhibitory Factor/antagonists & inhibitors , Leukemia Inhibitory Factor/blood , Male , Mass Spectrometry , Mice , Pancreatic Neoplasms/diagnosis , Paracrine Communication/drug effects , Receptors, OSM-LIF/deficiency , Receptors, OSM-LIF/genetics , Receptors, OSM-LIF/metabolism , Tumor Microenvironment
10.
Nat Rev Mol Cell Biol ; 12(10): 629-42, 2011 Sep 14.
Article in English | MEDLINE | ID: mdl-21915143

ABSTRACT

Proteins can be modified by post-translational modifications such as phosphorylation, methylation, acetylation and ubiquitylation, creating binding sites for specific protein domains. Methylation has pivotal roles in the formation of complexes that are involved in cellular regulation, including in the generation of small RNAs. Arginine methylation was discovered half a century ago, but the ability of methylarginine sites to serve as binding motifs for members of the Tudor protein family, and the functional significance of the protein-protein interactions that are mediated by Tudor domains, has only recently been appreciated. Tudor proteins are now known to be present in PIWI complexes, where they are thought to interact with methylated PIWI proteins and regulate the PIWI-interacting RNA (piRNA) pathway in the germ line.


Subject(s)
Arginine/metabolism , Proteins/metabolism , Animals , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Humans , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Methylation , Protein Binding , Proteins/genetics , RNA, Small Interfering/metabolism
11.
Cell ; 134(5): 793-803, 2008 Sep 05.
Article in English | MEDLINE | ID: mdl-18775312

ABSTRACT

The SH2 domain of cytoplasmic tyrosine kinases can enhance catalytic activity and substrate recognition, but the molecular mechanisms by which this is achieved are poorly understood. We have solved the structure of the prototypic SH2-kinase unit of the human Fes tyrosine kinase, which appears specialized for positive signaling. In its active conformation, the SH2 domain tightly interacts with the kinase N-terminal lobe and positions the kinase alphaC helix in an active configuration through essential packing and electrostatic interactions. This interaction is stabilized by ligand binding to the SH2 domain. Our data indicate that Fes kinase activation is closely coupled to substrate recognition through cooperative SH2-kinase-substrate interactions. Similarly, we find that the SH2 domain of the active Abl kinase stimulates catalytic activity and substrate phosphorylation through a distinct SH2-kinase interface. Thus, the SH2 and catalytic domains of active Fes and Abl pro-oncogenic kinases form integrated structures essential for effective tyrosine kinase signaling.


Subject(s)
Proto-Oncogene Proteins c-abl/chemistry , Proto-Oncogene Proteins c-fes/chemistry , Amino Acid Sequence , Crystallography, X-Ray , Enzyme Activation , Humans , Ligands , Models, Molecular , Molecular Sequence Data , Protein Interaction Domains and Motifs , Protein Structure, Tertiary , Proto-Oncogene Proteins c-abl/metabolism , Proto-Oncogene Proteins c-fes/metabolism
12.
Mol Cell ; 57(5): 936-947, 2015 Mar 05.
Article in English | MEDLINE | ID: mdl-25747659

ABSTRACT

Cells chemically isolate molecules in compartments to both facilitate and regulate their interactions. In addition to membrane-encapsulated compartments, cells can form proteinaceous and membraneless organelles, including nucleoli, Cajal and PML bodies, and stress granules. The principles that determine when and why these structures form have remained elusive. Here, we demonstrate that the disordered tails of Ddx4, a primary constituent of nuage or germ granules, form phase-separated organelles both in live cells and in vitro. These bodies are stabilized by patterned electrostatic interactions that are highly sensitive to temperature, ionic strength, arginine methylation, and splicing. Sequence determinants are used to identify proteins found in both membraneless organelles and cell adhesion. Moreover, the bodies provide an alternative solvent environment that can concentrate single-stranded DNA but largely exclude double-stranded DNA. We propose that phase separation of disordered proteins containing weakly interacting blocks is a general mechanism for forming regulated, membraneless organelles.


Subject(s)
Cytoplasmic Granules/chemistry , DEAD-box RNA Helicases/chemistry , Organelles/chemistry , Phase Transition , Amino Acid Sequence , Cell Nucleus/chemistry , Cell Nucleus/metabolism , Cytoplasmic Granules/metabolism , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , DNA/chemistry , DNA/metabolism , HeLa Cells , Humans , Intracellular Membranes/chemistry , Intracellular Membranes/metabolism , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Methylation , Microscopy, Confocal , Microscopy, Fluorescence , Molecular Sequence Data , Mutation , Organelles/metabolism , Osmolar Concentration , Sequence Homology, Amino Acid , Static Electricity , Time-Lapse Imaging , Transition Temperature
13.
J Cell Sci ; 133(4)2020 02 24.
Article in English | MEDLINE | ID: mdl-31974115

ABSTRACT

Assembly of signaling molecules into micrometer-sized clusters is driven by multivalent protein-protein interactions, such as those found within the nephrin-Nck (Nck1 or Nck2) complex. Phosphorylation on multiple tyrosine residues within the tail of the nephrin transmembrane receptor induces recruitment of the cytoplasmic adaptor protein Nck, which binds via its triple SH3 domains to various effectors, leading to actin assembly. The physiological consequences of nephrin clustering are not well understood. Here, we demonstrate that nephrin phosphorylation regulates the formation of membrane clusters in podocytes. We also reveal a connection between clustering and endocytosis, which appears to be driven by threshold levels of nephrin tyrosine phosphorylation and Nck SH3 domain signaling. Finally, we expose an in vivo correlation between transient changes in nephrin tyrosine phosphorylation, nephrin localization and integrity of the glomerular filtration barrier during podocyte injury. Altogether, our results suggest that nephrin phosphorylation determines the composition of effector proteins within clusters to dynamically regulate nephrin turnover and podocyte health.


Subject(s)
Podocytes , Tyrosine , Cluster Analysis , Endocytosis , Membrane Proteins , Oncogene Proteins/metabolism , Phosphorylation , Podocytes/metabolism , Tyrosine/metabolism
14.
Nature ; 529(7584): 48-53, 2016 Jan 07.
Article in English | MEDLINE | ID: mdl-26700805

ABSTRACT

The carboxy-terminal domain (CTD) of the RNA polymerase II (RNAP II) subunit POLR2A is a platform for modifications specifying the recruitment of factors that regulate transcription, mRNA processing, and chromatin remodelling. Here we show that a CTD arginine residue (R1810 in human) that is conserved across vertebrates is symmetrically dimethylated (me2s). This R1810me2s modification requires protein arginine methyltransferase 5 (PRMT5) and recruits the Tudor domain of the survival of motor neuron (SMN, also known as GEMIN1) protein, which is mutated in spinal muscular atrophy. SMN interacts with senataxin, which is sometimes mutated in ataxia oculomotor apraxia type 2 and amyotrophic lateral sclerosis. Because POLR2A R1810me2s and SMN, like senataxin, are required for resolving RNA-DNA hybrids created by RNA polymerase II that form R-loops in transcription termination regions, we propose that R1810me2s, SMN, and senataxin are components of an R-loop resolution pathway. Defects in this pathway can influence transcription termination and may contribute to neurodegenerative disorders.


Subject(s)
Arginine/metabolism , RNA Polymerase II/chemistry , RNA Polymerase II/metabolism , Survival of Motor Neuron 1 Protein/metabolism , Transcription Termination, Genetic , Cell Line , DNA Damage , DNA Helicases , Humans , Methylation , Multifunctional Enzymes , Neurodegenerative Diseases/genetics , Protein Binding , Protein Structure, Tertiary , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism , RNA Helicases/genetics , RNA Helicases/metabolism , Survival of Motor Neuron 1 Protein/genetics , Transcription Elongation, Genetic
16.
Mol Cell ; 54(6): 1034-1041, 2014 Jun 19.
Article in English | MEDLINE | ID: mdl-24910098

ABSTRACT

Cell signaling depends on dynamic protein-protein interaction (PPI) networks, often assembled through modular domains each interacting with multiple peptide motifs. This complexity raises a conceptual challenge, namely to define whether a particular cellular response requires assembly of the complete PPI network of interest or can be driven by a specific interaction. To address this issue, we designed variants of the Grb2 SH2 domain ("pY-clamps") whose specificity is highly biased toward a single phosphotyrosine (pY) motif among many potential pYXNX Grb2-binding sites. Surprisingly, directing Grb2 predominantly to a single pY site of the Ptpn11/Shp2 phosphatase, but not other sites tested, was sufficient for differentiation of the essential primitive endoderm lineage from embryonic stem cells. Our data suggest that discrete connections within complex PPI networks can underpin regulation of particular biological events. We propose that this directed wiring approach will be of general utility in functionally annotating specific PPIs.


Subject(s)
Cell Differentiation , Embryonic Stem Cells/cytology , GRB2 Adaptor Protein/metabolism , Protein Interaction Maps/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Animals , Binding Sites/genetics , Cell Differentiation/genetics , Cell Line , Crystallography, X-Ray , Embryonic Stem Cells/metabolism , Fibroblast Growth Factor 4/metabolism , GRB2 Adaptor Protein/genetics , Mice , Models, Molecular , Protein Binding/genetics , Protein Structure, Tertiary , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 11/ultrastructure , Signal Transduction/genetics
17.
Mol Cell ; 48(4): 547-59, 2012 Nov 30.
Article in English | MEDLINE | ID: mdl-23063527

ABSTRACT

The mitogenic and second-messenger signals that promote cell proliferation often proceed through multienzyme complexes. The kinase-anchoring protein Gravin integrates cAMP and calcium/phospholipid signals at the plasma membrane by sequestering protein kinases A and C with G protein-coupled receptors. In this report we define a role for Gravin as a temporal organizer of phosphorylation-dependent protein-protein interactions during mitosis. Mass spectrometry, molecular, and cellular approaches show that CDK1/Cyclin B1 phosphorylates Gravin on threonine 766 to prime the recruitment of the polo-like kinase Plk1 at defined phases of mitosis. Fluorescent live-cell imaging reveals that cells depleted of Gravin exhibit mitotic defects that include protracted prometaphase and misalignment of chromosomes. Moreover, a Gravin T766A phosphosite mutant that is unable to interact with Plk1 negatively impacts cell proliferation. In situ detection of phospho-T766 Gravin in biopsy sections of human glioblastomas suggests that this phosphorylation event might identify malignant neoplasms.


Subject(s)
A Kinase Anchor Proteins/metabolism , Cell Cycle Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , A Kinase Anchor Proteins/genetics , Animals , Cell Cycle Proteins/genetics , Cell Division , Cell Proliferation , Humans , Mice , Mitosis , Phosphorylation , Protein Binding , Tumor Cells, Cultured , Polo-Like Kinase 1
18.
Nature ; 499(7457): 166-71, 2013 Jul 11.
Article in English | MEDLINE | ID: mdl-23846654

ABSTRACT

Cell-surface receptors frequently use scaffold proteins to recruit cytoplasmic targets, but the rationale for this is uncertain. Activated receptor tyrosine kinases, for example, engage scaffolds such as Shc1 that contain phosphotyrosine (pTyr)-binding (PTB) domains. Using quantitative mass spectrometry, here we show that mammalian Shc1 responds to epidermal growth factor (EGF) stimulation through multiple waves of distinct phosphorylation events and protein interactions. After stimulation, Shc1 rapidly binds a group of proteins that activate pro-mitogenic or survival pathways dependent on recruitment of the Grb2 adaptor to Shc1 pTyr sites. Akt-mediated feedback phosphorylation of Shc1 Ser 29 then recruits the Ptpn12 tyrosine phosphatase. This is followed by a sub-network of proteins involved in cytoskeletal reorganization, trafficking and signal termination that binds Shc1 with delayed kinetics, largely through the SgK269 pseudokinase/adaptor protein. Ptpn12 acts as a switch to convert Shc1 from pTyr/Grb2-based signalling to SgK269-mediated pathways that regulate cell invasion and morphogenesis. The Shc1 scaffold therefore directs the temporal flow of signalling information after EGF stimulation.


Subject(s)
Epidermal Growth Factor/metabolism , Shc Signaling Adaptor Proteins/metabolism , Signal Transduction , Animals , Breast/cytology , Cell Line , Epithelial Cells/cytology , ErbB Receptors/agonists , ErbB Receptors/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Feedback, Physiological , GRB2 Adaptor Protein/deficiency , GRB2 Adaptor Protein/genetics , GRB2 Adaptor Protein/metabolism , Humans , Mice , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Phosphorylation , Protein Binding , Protein-Tyrosine Kinases , Proto-Oncogene Proteins c-akt/metabolism , Rats , Shc Signaling Adaptor Proteins/deficiency , Shc Signaling Adaptor Proteins/genetics , Src Homology 2 Domain-Containing, Transforming Protein 1 , Time Factors
19.
Biochim Biophys Acta Mol Cell Res ; 1864(12): 2449-2459, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28964849

ABSTRACT

Although Hematopoietic Stem and Progenitor Cell (HSPC) proliferation, survival and expansion have been shown to be supported by the cooperative action of different cytokines, little is known about the intracellular signaling pathways that are activated by cytokines upon binding to their receptors. Our study showed that Growth factor receptor-bound protein 2 (Grb2) mRNAs are preferentially expressed in HSC compared to progenitors and differentiated cells of the myeloid and erythroid lineages. Conditional deletion of Grb2 induced a rapid decline of erythroid and myeloid progenitors and a progressive decline of HSC numbers in steady state conditions. We showed that when transplanted, Grb2 deleted bone marrow cells could not reconstitute irradiated recipients. Strinkingly, Grb2 deletion did not modify HSPC quiescence, but impaired LT-HSC and progenitors ability to respond a proliferative signal induced by 5FU in vivo and by various cytokines in vitro. We showed finally that Grb2 links IL3 signaling to the ERK/MAPK proliferative pathway and that both SH2 and SH3 domains of Grb2 are crucial for IL3 signaling in progenitor cells. Our findings position Grb2 as a key adaptor that integrates various cytokines response in cycling HSPC.


Subject(s)
Cell Differentiation/genetics , Cell Lineage/genetics , GRB2 Adaptor Protein/genetics , Hematopoietic Stem Cells/metabolism , Animals , Bone Marrow Cells/metabolism , Bone Marrow Transplantation , Cell Proliferation/genetics , Erythroid Cells/metabolism , Gene Knockout Techniques , Hematopoietic Stem Cells/cytology , Mice , Myeloid Cells/metabolism , Signal Transduction
20.
Proc Natl Acad Sci U S A ; 112(13): E1594-603, 2015 Mar 31.
Article in English | MEDLINE | ID: mdl-25829543

ABSTRACT

Systematic characterization of intercellular signaling approximating the physiological conditions of stimulation that involve direct cell-cell contact is challenging. We describe a proteomic strategy to analyze physiological signaling mediated by the T-cell costimulatory receptor CD28. We identified signaling pathways activated by CD28 during direct cell-cell contact by global analysis of protein phosphorylation. To define immediate CD28 targets, we used phosphorylated forms of the CD28 cytoplasmic region to obtain the CD28 interactome. The interaction profiles of selected CD28-interacting proteins were further characterized in vivo for amplifying the CD28 interactome. The combination of the global phosphorylation and interactome analyses revealed broad regulation of CD28 and its interactome by phosphorylation. Among the cellular phosphoproteins influenced by CD28 signaling, CapZ-interacting protein (CapZIP), a regulator of the actin cytoskeleton, was implicated by functional studies. The combinatorial approach applied herein is widely applicable for characterizing signaling networks associated with membrane receptors with short cytoplasmic tails.


Subject(s)
CD28 Antigens/metabolism , Cell Communication , Gene Expression Regulation , Receptors, Peptide/metabolism , Actins/metabolism , Cell Line, Tumor , Cytoskeleton/metabolism , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Jurkat Cells , Mass Spectrometry , Phosphoproteins/metabolism , Phosphorylation , Protein Binding , Protein Structure, Tertiary , Proteomics , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL