Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 199
Filter
Add more filters

Publication year range
1.
BMC Med ; 22(1): 227, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840159

ABSTRACT

BACKGROUND: We quantified SARS-CoV-2 dynamics in different community settings and the direct and indirect effect of the BNT162b2 mRNA vaccine in Monaco for different variants of concern (VOC). METHODS: Between July 2021 and September 2022, we prospectively investigated 20,443 contacts from 6320 index cases using data from the Monaco COVID-19 Public Health Programme. We calculated secondary attack rates (SARs) in households (n = 13,877), schools (n = 2508) and occupational (n = 6499) settings. We used binomial regression with a complementary log-log link function to measure adjusted hazard ratios (aHR) and vaccine effectiveness (aVE) for index cases to infect contacts and contacts to be infected in households. RESULTS: In households, the SAR was 55% (95% CI 54-57) and 50% (48-51) among unvaccinated and vaccinated contacts, respectively. The SAR was 32% (28-36) and 12% (10-13) in workplaces, and 7% (6-9) and 6% (3-10) in schools, among unvaccinated and vaccinated contacts respectively. In household, the aHR was lower in contacts than in index cases (aHR 0.68 [0.55-0.83] and 0.93 [0.74-1.1] for delta; aHR 0.73 [0.66-0.81] and 0.89 [0.80-0.99] for omicron BA.1&2, respectively). Vaccination had no significant effect on either direct or indirect aVE for omicron BA.4&5. The direct aVE in contacts was 32% (17, 45) and 27% (19, 34), and for index cases the indirect aVE was 7% (- 17, 26) and 11% (1, 20) for delta and omicron BA.1&2, respectively. The greatest aVE was in contacts with a previous SARS-CoV-2 infection and a single vaccine dose during the omicron BA.1&2 period (45% [27, 59]), while the lowest were found in contacts with either three vaccine doses (aVE - 24% [- 63, 6]) or one single dose and a previous SARS-CoV-2 infection (aVE - 36% [- 198, 38]) during the omicron BA.4&5 period. CONCLUSIONS: Protection conferred by the BNT162b2 mRNA vaccine against transmission and infection was low for delta and omicron BA.1&2, regardless of the number of vaccine doses and previous SARS-CoV-2 infection. There was no significant vaccine effect for omicron BA.4&5. Health authorities carrying out vaccination campaigns should bear in mind that the current generation of COVID-19 vaccines may not represent an effective tool in protecting individuals from either transmitting or acquiring SARS-CoV-2 infection.


Subject(s)
BNT162 Vaccine , COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Vaccine Efficacy , Humans , BNT162 Vaccine/administration & dosage , COVID-19/prevention & control , COVID-19/epidemiology , COVID-19/transmission , Male , Adult , Female , Middle Aged , SARS-CoV-2/immunology , Adolescent , Young Adult , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Aged , Prospective Studies , Child , Child, Preschool , Infant , Spain/epidemiology
2.
Rev Med Virol ; 33(3): e2329, 2023 05.
Article in English | MEDLINE | ID: mdl-35142401

ABSTRACT

The most effective means of preventing seasonal influenza is through vaccination. In this systematic review, we investigated the efficacy, effectiveness and safety of MF59® adjuvanted trivalent and quadrivalent influenza vaccines to prevent laboratory-confirmed influenza. A systematic literature search was conducted in electronic databases and grey literature sources up to 7 February 2020. Randomised controlled trials and non-randomised studies of interventions (NRSIs) were eligible for inclusion. The search returned 28,846 records, of which 48 studies on MF59® adjuvanted vaccines met our inclusion criteria. No efficacy trials were identified. In terms of vaccine effectiveness (VE), MF59® adjuvanted trivalent influenza vaccines were effective in preventing laboratory-confirmed influenza in older adults (aged ≥65 years) compared with no vaccination (VE = 45%, 95% confidence interval (CI) 23%-61%, 5 NRSIs across 3 influenza seasons). By subtype, significant effect was found for influenza A(H1N1) (VE = 61%, 95% CI 44%-73%) and B (VE = 29%, 95% CI 5%-46%), but not for A(H3N2). In terms of relative VE, there was no significant difference comparing MF59® adjuvanted trivalent vaccines with either non-adjuvanted trivalent or quadrivalent vaccines. Compared with traditional trivalent influenza vaccines, MF59® adjuvanted trivalent influenza vaccines were associated with a greater number of local adverse events (RR = 1.90, 95% CI 1.50-2.39) and systemic reactions (RR = 1.18, 95% CI 1.02-1.38). In conclusion, MF59® adjuvanted trivalent influenza vaccines were found to be more effective than 'no vaccination'. Based on limited data, there was no significant difference comparing the effectiveness of MF59® adjuvanted vaccines with their non-adjuvanted counterparts.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Adolescent , Aged , Humans , Adjuvants, Immunologic/adverse effects , Antibodies, Viral , Influenza A Virus, H3N2 Subtype , Influenza Vaccines/adverse effects , Influenza, Human/prevention & control , Seasons
3.
Rev Med Virol ; 33(3): e2331, 2023 05.
Article in English | MEDLINE | ID: mdl-35106885

ABSTRACT

The most effective means of preventing seasonal influenza is through vaccination. In this systematic review, we investigated the efficacy, effectiveness and safety of recombinant haemagglutinin (HA) seasonal influenza vaccines to prevent laboratory-confirmed influenza. A systematic literature search was conducted in electronic databases and grey literature sources up to 7 February 2020. Randomised controlled trials and non-randomised studies of interventions were eligible for inclusion. The search returned 28,846 records, of which 10 studies on recombinant HA influenza vaccine met our inclusion criteria. One study found that the quadrivalent recombinant HA influenza vaccine had higher relative vaccine efficacy (rVE) in preventing laboratory-confirmed influenza during the 2014-15 season compared with traditional quadrivalent vaccination in adults aged ≥50 years (rVE = 30%, 95% CI 10%-47%, moderate-certainty evidence). In a subgroup analysis, higher rVE was reported for influenza A (rVE = 36%, 95% CI 14% to 53%), but not for B (non-significant). Another study reported higher efficacy for the trivalent recombinant HA vaccine compared with placebo (VE = 45%, 95% CI 19-63, 1 RCT, low-certainty evidence) in adults aged 18-55 years. With the exception of a higher rate of chills (RR = 1.33, 95% CI 1.03-1.72), the safety profile of recombinant HA vaccines was comparable to that of traditional influenza vaccines. The evidence base for the efficacy and effectiveness of recombinant HA influenza vaccines is limited at present, although one study found that the quadrivalent recombinant HA influenza vaccine had higher rVE compared with traditional quadrivalent vaccination in adults aged ≥50 years.


Subject(s)
Influenza Vaccines , Influenza, Human , Adult , Humans , Adolescent , Influenza, Human/prevention & control , Influenza, Human/drug therapy , Hemagglutinins , Seasons , Vaccination , Vaccines, Synthetic/adverse effects
4.
Rev Med Virol ; 33(3): e2330, 2023 05.
Article in English | MEDLINE | ID: mdl-35119149

ABSTRACT

This review sought to assess the efficacy, effectiveness and safety of high-dose inactivated influenza vaccines (HD-IIV) for the prevention of laboratory-confirmed influenza in individuals aged 18 years or older. A systematic literature search was conducted in electronic databases and grey literature sources up to 7 February 2020. Randomised controlled trials (RCTs) and non-randomised studies of interventions (NRSIs) were included. The search returned 28,846 records, of which 36 studies were included. HD-IIV was shown to have higher relative vaccine efficacy in preventing influenza compared with standard-dose influenza vaccines (SD-IIV3) in older adults (Vaccine effectiveness (VE) = 24%, 95% CI 10-37, one RCT). One NRSI demonstrated significant effect for HD-IIV3 against influenza B (VE = 89%, 95% CI 47-100), but not for influenza A(H3N2) (VE = 22%, 95% CI -82 to 66) when compared with no vaccination in older adults. HD-IIV3 showed significant relative effect compared with SD-IIV3 for influenza-related hospitalisation (VE = 11.8%, 95% CI 6.4-17.0, two NRSIs), influenza- or pneumonia-related hospitalisation (VE = 13.7%, 95% CI 9.5-17.7, three NRSIs), influenza-related hospital encounters (VE = 13.1%, 95% CI 8.4-17.7, five NRSIs), and influenza-related office visits (VE = 3.5%, 95% CI 1.5-5.5, two NRSIs). For safety, HD-IIV were associated with significantly higher rates of local and systemic adverse events compared with SD-IIV (combined local reactions, pain at injection site, swelling, induration, headache, chills and malaise). From limited data, compared with SD-IIV, HD-IIV were found to be more effective in the prevention of laboratory-confirmed influenza, for a range of proxy outcome measures, and associated with more adverse events.


Subject(s)
Influenza Vaccines , Influenza, Human , Adolescent , Aged , Humans , Influenza, Human/prevention & control , Seasons , Vaccination/adverse effects , Vaccines, Inactivated/adverse effects
5.
Rev Med Virol ; 33(3): e2332, 2023 05.
Article in English | MEDLINE | ID: mdl-35137512

ABSTRACT

The most effective means of preventing seasonal influenza is through strain-specific vaccination. In this study, we investigated the efficacy, effectiveness and safety of cell-based trivalent and quadrivalent influenza vaccines. A systematic literature search was conducted in electronic databases and grey literature sources up to 7 February 2020. Randomised controlled trials (RCTs) and non-randomised studies of interventions (NRSIs) were eligible for inclusion. Two reviewers independently screened, extracted data and assessed the risk of bias of included studies. Certainty of evidence for key outcomes was assessed using the GRADE methodology. The search returned 28,846 records, of which 868 full-text articles were assessed for relevance. Of these, 19 studies met the inclusion criteria. No relative efficacy data were identified for the direct comparison of cell-based vaccines compared with traditional vaccines (egg-based). Efficacy data were available comparing cell-based trivalent influenza vaccines with placebo in adults (aged 18-49 years). Overall vaccine efficacy was 70% against any influenza subtype (95% CI 61%-77%, two RCTS), 82% against influenza A(H1N1) (95% CI 71%-89%, 2 RCTs), 72% against influenza A(H3N2) (95% CI 39%-87%, 2 RCTs) and 52% against influenza B (95% CI 30%-68%, 2 RCTs). Limited and heterogeneous data were presented for effectiveness when compared with no vaccination. One NRSI compared cell-based trivalent and quadrivalent vaccination with traditional trivalent and quadrivalent vaccination, finding a small but significant difference in favour of cell-based vaccines for influenza-related hospitalisation, hospital encounters and physician office visits. The safety profile of cell-based trivalent vaccines was comparable to traditional trivalent influenza vaccines. Compared with placebo, cell-based trivalent influenza vaccines have demonstrated greater efficacy in adults aged 18-49 years. Overall cell-based vaccines are well-tolerated in adults, however, evidence regarding the effectiveness of these vaccines compared with traditional seasonal influenza vaccines is limited.


Subject(s)
Influenza Vaccines , Influenza, Human , Adolescent , Adult , Humans , Hospitalization , Seasons , Vaccination
6.
Eur J Public Health ; 34(2): 387-393, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38261364

ABSTRACT

BACKGROUND: During the COVID-19 pandemic, effective contact tracing was recognized as a crucial public health response to mitigate the spread of SARS-CoV-2 and reduce COVID-19-related morbidity and mortality, particularly before widespread vaccination. The World Health Organization (WHO) recommended implementing active surveillance strategies to trace and quarantine contacts of confirmed or suspected COVID-19 cases. METHODS: A detailed review and analysis of the COVID-19 contact tracing responses was conducted in five European countries and territories, between March 2021 and August 2022. The countries and territories were selected to ensure geographical representation across the WHO European Region and applied a mixed-methods approach of in-depth interviews with various stakeholders across different administrative levels to identify good practices in COVID-19 contact tracing. The interviews covered 12 themes, including methods and procedures for COVID-19 contact tracing, information technology, quality assurance and key performance indicators. RESULTS: The findings demonstrate that the policy approach, digitalization capabilities and implementation approach varied in the countries and territories and were dynamic throughout the pandemic. The analysis revealed that some practices were applicable across all countries and territories, while others were context-specific, catering to each country's and territory's unique needs. The study highlighted a need for all countries to institutionalize contact tracing as an essential function of existing health systems, to digitalize contact tracing practices and processes, and to build and retain contact tracing capacities for better pandemic preparedness. CONCLUSION: The lessons related to COVID-19 contact tracing should be utilized to strengthen future outbreak response operations as part of epidemic and pandemic preparedness.


Subject(s)
COVID-19 , Humans , Austria , Contact Tracing/methods , COVID-19/epidemiology , COVID-19/prevention & control , Georgia (Republic) , Kosovo , Kyrgyzstan , Pandemics/prevention & control , SARS-CoV-2 , Ukraine
7.
Eur Heart J ; 44(7): 610-620, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36537199

ABSTRACT

AIMS: Previous studies show a reduced incidence of first myocardial infarction and stroke 1-3 months after influenza vaccination, but it is unclear how underlying cardiovascular risk impacts the association. METHODS AND RESULTS: The study used linked Clinical Practice Research Datalink, Hospital Episode Statistics Admitted Patient Care and Office for National Statistics mortality data from England between 1 September 2008 and 31 August 2019. From the data, individuals aged 40-84 years with a first acute cardiovascular event and influenza vaccination occurring within 12 months of each September were selected. Using a self-controlled case series analysis, season-adjusted cardiovascular risk stratified incidence ratios (IRs) for cardiovascular events after vaccination compared with baseline time before and >120 days after vaccination were generated. 193 900 individuals with a first acute cardiovascular event and influenza vaccine were included. 105 539 had hypertension and 172 050 had a QRISK2 score ≥10%. In main analysis, acute cardiovascular event risk was reduced in the 15-28 days after vaccination [IR 0.72 (95% CI 0.70-0.74)] and, while the effect size tapered, remained reduced to 91-120 days after vaccination [0.83 (0.81-0.88)]. Reduced cardiovascular events were seen after vaccination among individuals of all age groups and with raised and low cardiovascular risk. CONCLUSIONS: Influenza vaccine may offer cardiovascular benefit among individuals at varying cardiovascular risk. Further studies are needed to characterize the populations who could derive the most cardiovascular benefits from vaccination.


Subject(s)
Influenza Vaccines , Influenza, Human , Myocardial Infarction , Stroke , Humans , Influenza Vaccines/therapeutic use , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Stroke/epidemiology , Stroke/prevention & control , Stroke/drug therapy , Myocardial Infarction/epidemiology , Myocardial Infarction/prevention & control , Myocardial Infarction/complications , Vaccination/adverse effects
8.
Emerg Infect Dis ; 29(10): 2125-2129, 2023 10.
Article in English | MEDLINE | ID: mdl-37647121

ABSTRACT

The 2022-2023 mpox outbreak predominantly affected adult men; 1.3% of reported cases were in children and adolescents <18 years of age. Analysis of global surveillance data showed 1 hospital intensive care unit admission and 0 deaths in that age group. Transmission routes and clinical manifestations varied across age subgroups.


Subject(s)
Mpox (monkeypox) , Adolescent , Child , Humans , Disease Outbreaks , Hospitalization , Intensive Care Units
9.
Bull World Health Organ ; 101(11): 707-716, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37961054

ABSTRACT

Since the beginning of the coronavirus disease 2019 (COVID-19) pandemic, numerous severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have emerged, some leading to large increases in infections, hospitalizations and deaths globally. The virus's impact on public health depends on many factors, including the emergence of new viral variants and their global spread. Consequently, the early detection and surveillance of variants and characterization of their clinical effects are vital for assessing their health risk. The unprecedented capacity for viral genomic sequencing and data sharing built globally during the pandemic has enabled new variants to be rapidly detected and assessed. This article describes the main variants circulating globally between January 2020 and June 2023, the genetic features driving variant evolution, and the epidemiological impact of these variants across countries and regions. Second, we report how integrating genetic variant surveillance with epidemiological data and event-based surveillance, through a network of World Health Organization partners, supported risk assessment and helped provide guidance on pandemic responses. In addition, given the evolutionary characteristics of circulating variants and the immune status of populations, we propose future directions for the sustainable genomic surveillance of SARS-CoV-2 variants, both nationally and internationally: (i) optimizing variant surveillance by including environmental monitoring; (ii) coordinating laboratory assessment of variant evolution and phenotype; (iii) linking data on circulating variants with clinical data; and (iv) expanding genomic surveillance to additional pathogens. Experience during the COVID-19 pandemic has shown that genomic surveillance of pathogens can provide essential, timely and evidence-based information for public health decision-making.


Depuis le début de la pandémie de coronavirus survenue en 2019 (COVID-19), de nombreux variants du coronavirus 2 du syndrome respiratoire aigu sévère (SARS-CoV-2) sont apparus, certains entraînant une forte augmentation du nombre d'infections, d'hospitalisations et de décès dans le monde. L'impact du virus sur la santé publique dépend de nombreux facteurs, notamment l'émergence de nouveaux variants viraux et leur propagation à l'échelle mondiale. Par conséquent, la détection précoce et la surveillance des variants ainsi que la caractérisation de leurs effets cliniques sont essentielles pour évaluer leur risque pour la santé. La capacité sans précédent de séquençage du génome viral et de partage des données, capacité mise en place à l'échelle mondiale pendant la pandémie, a permis de détecter et d'évaluer rapidement de nouveaux variants. Le présent article décrit les principaux variants circulant dans le monde entre janvier 2020 et juin 2023, les caractéristiques génétiques à l'origine de leur évolution et leur impact épidémiologique dans les différents pays et régions. Ensuite, nous expliquerons comment l'intégration de la surveillance des variants génétiques aux données épidémiologiques et à la surveillance fondée sur les événements, par l'intermédiaire d'un réseau de partenaires de l'Organisation mondiale de la santé, a permis de faciliter l'évaluation des risques et de fournir des orientations sur les mesures à prendre en période de pandémie. En outre, compte tenu des caractéristiques évolutives des variants en circulation et de l'état immunitaire des populations, nous proposons des orientations futures pour une surveillance génomique durable des variants du SARS-CoV-2, au niveau tant national qu'international: (i) optimiser la surveillance des variants en incluant le suivi environnemental; (ii) coordonner l'évaluation en laboratoire de l'évolution des variants et du phénotype; (iii) établir un lien entre les données sur les variants en circulation et les données cliniques; et (iv) étendre la surveillance génomique à d'autres agents pathogènes. L'expérience de la pandémie de COVID-19 a mis en évidence que la surveillance génomique des agents pathogènes peut fournir en temps utile des informations essentielles fondées sur des preuves en vue de la prise de décisions en matière de santé publique.


Desde el inicio de la pandemia de la enfermedad por coronavirus de 2019 (COVID-19), han aparecido numerosas variantes del coronavirus de tipo 2 causante del síndrome respiratorio agudo severo (SRAS-CoV-2), algunas de las que han provocado un gran aumento de las infecciones, hospitalizaciones y muertes en todo el mundo. El impacto del virus en la salud pública depende de muchos factores, entre ellos la aparición de nuevas variantes víricas y su propagación mundial. En consecuencia, la detección y vigilancia tempranas de las variantes y la caracterización de sus efectos clínicos son vitales para evaluar su riesgo sanitario. La capacidad sin precedentes de secuenciación genómica viral y de intercambio de datos creada a nivel mundial durante la pandemia ha permitido detectar y evaluar rápidamente variantes nuevas. En este artículo se describen las principales variantes que circulan a nivel mundial entre enero de 2020 y junio de 2023, la característica genética que impulsa la evolución de las variantes y el impacto epidemiológico de estas variantes en los diferentes países y regiones. En segundo lugar, se informa de cómo la integración de la vigilancia de variantes genéticas con los datos epidemiológicos y la vigilancia basada en eventos, a través de una red de asociados de la Organización Mundial de la Salud, apoyó la evaluación de riesgos y ayudó a proporcionar orientación sobre las respuestas a la pandemia. Además, dadas las características evolutivas de las variantes circulantes y el estado inmunitario de las poblaciones, se proponen orientaciones futuras para la vigilancia genómica sostenible de las variantes del SRAS-CoV-2, tanto a nivel nacional como internacional: (i) optimizar la vigilancia de las variantes mediante la inclusión de la monitorización ambiental; (ii) coordinar la evaluación de laboratorio de la evolución y el fenotipo de las variantes; (iii) vincular los datos sobre las variantes circulantes con los datos clínicos; y (iv) ampliar la vigilancia genómica a patógenos adicionales. La experiencia durante la pandemia de la COVID-19 ha demostrado que la vigilancia genómica de patógenos puede proporcionar información esencial, oportuna y basada en evidencias para la toma de decisiones en materia de salud pública.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Pandemics , Risk Assessment
10.
Euro Surveill ; 28(36)2023 09.
Article in English | MEDLINE | ID: mdl-37676146

ABSTRACT

Several SARS-CoV-2 variants that evolved during the COVID-19 pandemic have appeared to differ in severity, based on analyses of single-country datasets. With decreased testing and sequencing, international collaborative studies will become increasingly important for timely assessment of the severity of new variants. Therefore, a joint WHO Regional Office for Europe and ECDC working group was formed to produce and pilot a standardised study protocol to estimate relative case-severity of SARS-CoV-2 variants during periods when two variants were co-circulating. The study protocol and its associated statistical analysis code was applied by investigators in Denmark, England, Luxembourg, Norway, Portugal and Scotland to assess the severity of cases with the Omicron BA.1 virus variant relative to Delta. After pooling estimates using meta-analysis methods (random effects estimates), the risk of hospital admission (adjusted hazard ratio (aHR) = 0.41; 95% confidence interval (CI): 0.31-0.54), admission to intensive care unit (aHR = 0.12; 95% CI: 0.05-0.27) and death (aHR = 0.31; 95% CI: 0.28-0.35) was lower for Omicron BA.1 compared with Delta cases. The aHRs varied by age group and vaccination status. In conclusion, this study demonstrates the feasibility of conducting variant severity analyses in a multinational collaborative framework and adds evidence for the reduced severity of the Omicron BA.1 variant.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Pandemics , Europe/epidemiology , Meta-Analysis as Topic
11.
PLoS Med ; 19(11): e1004107, 2022 11.
Article in English | MEDLINE | ID: mdl-36355774

ABSTRACT

BACKGROUND: Our understanding of the global scale of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection remains incomplete: Routine surveillance data underestimate infection and cannot infer on population immunity; there is a predominance of asymptomatic infections, and uneven access to diagnostics. We meta-analyzed SARS-CoV-2 seroprevalence studies, standardized to those described in the World Health Organization's Unity protocol (WHO Unity) for general population seroepidemiological studies, to estimate the extent of population infection and seropositivity to the virus 2 years into the pandemic. METHODS AND FINDINGS: We conducted a systematic review and meta-analysis, searching MEDLINE, Embase, Web of Science, preprints, and grey literature for SARS-CoV-2 seroprevalence published between January 1, 2020 and May 20, 2022. The review protocol is registered with PROSPERO (CRD42020183634). We included general population cross-sectional and cohort studies meeting an assay quality threshold (90% sensitivity, 97% specificity; exceptions for humanitarian settings). We excluded studies with an unclear or closed population sample frame. Eligible studies-those aligned with the WHO Unity protocol-were extracted and critically appraised in duplicate, with risk of bias evaluated using a modified Joanna Briggs Institute checklist. We meta-analyzed seroprevalence by country and month, pooling to estimate regional and global seroprevalence over time; compared seroprevalence from infection to confirmed cases to estimate underascertainment; meta-analyzed differences in seroprevalence between demographic subgroups such as age and sex; and identified national factors associated with seroprevalence using meta-regression. We identified 513 full texts reporting 965 distinct seroprevalence studies (41% low- and middle-income countries [LMICs]) sampling 5,346,069 participants between January 2020 and April 2022, including 459 low/moderate risk of bias studies with national/subnational scope in further analysis. By September 2021, global SARS-CoV-2 seroprevalence from infection or vaccination was 59.2%, 95% CI [56.1% to 62.2%]. Overall seroprevalence rose steeply in 2021 due to infection in some regions (e.g., 26.6% [24.6 to 28.8] to 86.7% [84.6% to 88.5%] in Africa in December 2021) and vaccination and infection in others (e.g., 9.6% [8.3% to 11.0%] in June 2020 to 95.9% [92.6% to 97.8%] in December 2021, in European high-income countries [HICs]). After the emergence of Omicron in March 2022, infection-induced seroprevalence rose to 47.9% [41.0% to 54.9%] in Europe HIC and 33.7% [31.6% to 36.0%] in Americas HIC. In 2021 Quarter Three (July to September), median seroprevalence to cumulative incidence ratios ranged from around 2:1 in the Americas and Europe HICs to over 100:1 in Africa (LMICs). Children 0 to 9 years and adults 60+ were at lower risk of seropositivity than adults 20 to 29 (p < 0.001 and p = 0.005, respectively). In a multivariable model using prevaccination data, stringent public health and social measures were associated with lower seroprevalence (p = 0.02). The main limitations of our methodology include that some estimates were driven by certain countries or populations being overrepresented. CONCLUSIONS: In this study, we observed that global seroprevalence has risen considerably over time and with regional variation; however, over one-third of the global population are seronegative to the SARS-CoV-2 virus. Our estimates of infections based on seroprevalence far exceed reported Coronavirus Disease 2019 (COVID-19) cases. Quality and standardized seroprevalence studies are essential to inform COVID-19 response, particularly in resource-limited regions.


Subject(s)
COVID-19 , SARS-CoV-2 , Child , Adult , Humans , COVID-19/epidemiology , Seroepidemiologic Studies , Cross-Sectional Studies , Pandemics
12.
Epidemiol Infect ; 150: e182, 2022 11 17.
Article in English | MEDLINE | ID: mdl-36394345

ABSTRACT

Mass gatherings (MG) present a number of challenges to public health authorities and governments across the world with sporting events, tournaments, music festivals, religious gatherings and all other MG having historically posed a risk to the spread and amplification of a range of infectious diseases. Transmission of gastrointestinal, respiratory, waterborne and sexually transmitted infectious diseases pose a particular risk: all have been linked to MG events [-]. Infection risk often depends on the nature of the mass gathering, and on the profile and behaviour of its participants. The interaction between environmental, psychological, biological and social factors plays a vital part. The risk of outbreaks particularly as a result of respiratory transmission remains high at MG, with the majority of outbreaks over the last two decades resulting from a variety of respiratory and vaccine preventable pathogens [-]. Concerns about the spread of infectious diseases at MG are often focussed on crowding, lack of sanitation and the mixing of population groups from different places. Sporting events, which have in recent decades become more complex and international in nature, pose a challenge to the control of communicable disease transmission []. Despite this, large scale outbreaks at sporting events have been rare in recent decades, particularly since the rise of more robust public health planning, prevention, risk assessment and improved health infrastructures in host countries [].


Subject(s)
COVID-19 , Communicable Diseases , United States , Humans , COVID-19/epidemiology , Mass Gatherings , Pandemics/prevention & control , Disease Outbreaks/prevention & control , Communicable Diseases/epidemiology
13.
J Public Health (Oxf) ; 44(2): 370-377, 2022 06 27.
Article in English | MEDLINE | ID: mdl-33348353

ABSTRACT

BACKGROUND: In response to the outbreak of Ebola Virus Disease (EVD) in West Africa in 2014 and evidence of spread to other countries, pre-entry screening was introduced by PHE at five major ports of entry in the England. METHODS: All passengers that entered the England via the five ports returning from Liberia, Guinea and Sierra Leonne were required to complete a Health Assessment Form and have their temperature taken. The numbers, characteristics and outcomes of these passengers were analysed. RESULTS: Between 14 October 2014 and 13 October 2015, a total of 12 648 passengers from affected countries had been screened. The majority of passengers were assessed as having no direct contact with EVD cases or high-risk events (12 069, 95.4%), although 535 (4.2%) passengers were assessed as requiring public health follow-up. In total, 39 passengers were referred directly to secondary care, although none were diagnosed with EVD. One high-risk passenger was later referred to secondary care and diagnosed with EVD. CONCLUSIONS: Collection of these screening data enabled timely monitoring of the numbers and characteristics of passengers screened for EVD, facilitated resourcing decisions and acted as a mechanism to inform passengers of the necessary public health actions.


Subject(s)
Hemorrhagic Fever, Ebola , Disease Outbreaks/prevention & control , Hemorrhagic Fever, Ebola/diagnosis , Hemorrhagic Fever, Ebola/epidemiology , Hemorrhagic Fever, Ebola/prevention & control , Humans , Liberia/epidemiology , Mass Screening , Public Health
14.
Euro Surveill ; 27(15)2022 04.
Article in English | MEDLINE | ID: mdl-35426364

ABSTRACT

In the WHO European Region, COVID-19 non-pharmaceutical interventions continued slowing influenza circulation in the 2021/22 season, with reduced characterisation data. A(H3) predominated and, in some countries, co-circulated with A(H1)pdm09 and B/Victoria viruses. No B/Yamagata virus detections were confirmed. Substantial proportions of characterised circulating virus subtypes or lineages differed antigenically from their respective northern hemisphere vaccine components. Appropriate levels of influenza virus characterisations should be maintained until the season end and in future seasons, when surveillance is adapted to integrate SARS-CoV-2.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Humans , Influenza A Virus, H3N2 Subtype/genetics , Influenza B virus/genetics , Influenza, Human/epidemiology , Influenza, Human/prevention & control , SARS-CoV-2 , Seasons , World Health Organization
15.
Euro Surveill ; 27(35)2022 09.
Article in English | MEDLINE | ID: mdl-36052721

ABSTRACT

BackgroundUnderlying conditions are risk factors for severe COVID-19 outcomes but evidence is limited about how risks differ with age.AimWe sought to estimate age-specific associations between underlying conditions and hospitalisation, death and in-hospital death among COVID-19 cases.MethodsWe analysed case-based COVID-19 data submitted to The European Surveillance System between 2 June and 13 December 2020 by nine European countries. Eleven underlying conditions among cases with only one condition and the number of underlying conditions among multimorbid cases were used as exposures. Adjusted odds ratios (aOR) were estimated using 39 different age-adjusted and age-interaction multivariable logistic regression models, with marginal means from the latter used to estimate probabilities of severe outcome for each condition-age group combination.ResultsCancer, cardiac disorder, diabetes, immunodeficiency, kidney, liver and lung disease, neurological disorders and obesity were associated with elevated risk (aOR: 1.5-5.6) of hospitalisation and death, after controlling for age, sex, reporting period and country. As age increased, age-specific aOR were lower and predicted probabilities higher. However, for some conditions, predicted probabilities were at least as high in younger individuals with the condition as in older cases without it. In multimorbid patients, the aOR for severe disease increased with number of conditions for all outcomes and in all age groups.ConclusionWhile supporting age-based vaccine roll-out, our findings could inform a more nuanced, age- and condition-specific approach to vaccine prioritisation. This is relevant as countries consider vaccination of younger people, boosters and dosing intervals in response to vaccine escape variants.


Subject(s)
COVID-19 , Age Factors , Aged , Hospital Mortality , Hospitalization , Humans , SARS-CoV-2
16.
Clin Infect Dis ; 73(9): 1722-1732, 2021 11 02.
Article in English | MEDLINE | ID: mdl-33772586

ABSTRACT

This systematic review assesses the literature for estimates of influenza vaccine effectiveness (IVE) against laboratory-confirmed influenza-associated hospitalization in children. Studies of any design to June 8, 2020, were included if the outcome was hospitalization, participants were 17 years or younger and influenza infection was laboratory-confirmed. A random-effects meta-analysis of 37 studies that used a test-negative design gave a pooled seasonal IVE against hospitalization of 53.3% (47.2-58.8) for any influenza. IVE was higher against influenza A/H1N1pdm09 (68.7%, 56.9-77.2) and lowest against influenza A/H3N2 (35.8%, 23.4-46.3). Estimates by vaccine type ranged from 44.3% (30.1-55.7) for live-attenuated influenza vaccines to 68.9% (53.6-79.2) for inactivated vaccines. IVE estimates were higher in seasons when the circulating influenza strains were antigenically matched to vaccine strains (59.3%, 48.3-68.0). Influenza vaccination gives moderate overall protection against influenza-associated hospitalization in children supporting annual vaccination. IVE varies by influenza subtype and vaccine type.


Subject(s)
Influenza Vaccines , Influenza, Human , Case-Control Studies , Child , Hospitalization , Humans , Influenza A Virus, H3N2 Subtype , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Seasons , Vaccination
17.
BMC Infect Dis ; 21(1): 1243, 2021 Dec 11.
Article in English | MEDLINE | ID: mdl-34895141

ABSTRACT

BACKGROUND: Higher incidence of and risk of hospitalisation and death from Influenza A(H1N1)pdm09 during the 2009 pandemic was reported in ethnic minority groups in many high-income settings including in the United Kingdom (UK). Many of these studies rely on geographical and temporal aggregation of cases and can be difficult to interpret due to the spatial and temporal factors in outbreak spread. Further, it can be challenging to distinguish between disparities in health outcomes caused by variation in transmission risk or disease severity. METHODS: We used anonymised laboratory confirmed and suspected case data, classified by ethnicity and deprivation status, to evaluate how disparities in risk between socio-economic and ethnic groups vary over the early stages of the 2009 Influenza A(H1N1)pdm09 epidemic in Birmingham and London, two key cities in the emergence of the UK epidemic. We evaluated the relative risk of infection in key ethnic minority groups and by national and city level deprivation rank. RESULTS: We calculated higher incidence in more deprived areas and in people of South Asian ethnicity in both Birmingham and London, although the magnitude of these disparities reduced with time. The clearest disparities existed in school-aged children in Birmingham, where the most deprived fifth of the population was 2.8 times more likely to be infected than the most affluent fifth of the population. CONCLUSIONS: Our analysis shows that although disparities in reported cases were present in the early phase of the Influenza A(H1N1)pdm09 outbreak in both Birmingham and London, they vary substantially depending on the period over which they are measured. Further, the development of disparities suggest that clustering of social groups play a key part as the outbreak appears to move from one ethnic and socio-demographic group to another. Finally, high incidence and large disparities between children indicate that they may hold an important role in driving inequalities.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza, Human , Child , Ethnic and Racial Minorities , Ethnicity , Humans , Influenza, Human/epidemiology , Minority Groups , Socioeconomic Factors , United Kingdom/epidemiology
18.
J Public Health (Oxf) ; 43(2): e153-e160, 2021 06 07.
Article in English | MEDLINE | ID: mdl-32009178

ABSTRACT

BACKGROUND: Established surveillance systems can follow trends in community disease and illness over many years. However, within England there are known regional differences in healthcare utilisation, which can affect interpretation of trends. Here, we explore regional differences for a range of respiratory conditions using general practitioner (GP) consultation data. METHODS: Daily data for respiratory conditions were extracted from a national GP surveillance system. Average daily GP consultation rates per 100 000 registered patient population were calculated by each region of England and for each study year (2013-17). Consultation rates and incidence rate ratios were also calculated for each condition by deprivation quintile and by rural, urban, and conurbation groups. RESULTS: Upper and lower respiratory tract infections and asthma were higher in the North and the Midlands than in London and the South, were highest in the most deprived groups and tended to be higher in more urban areas. Influenza-like illness was highest in the least deprived and rural areas. CONCLUSIONS: There are consistent differences in GP consultation rates across the English regions. This work has improved our understanding and interpretation of GP surveillance data at regional level and will guide more accurate public health messages.


Subject(s)
General Practice , Respiratory Tract Infections , England/epidemiology , Humans , London , Respiratory Tract Infections/epidemiology , Sentinel Surveillance
19.
Euro Surveill ; 26(11)2021 03.
Article in English | MEDLINE | ID: mdl-33739256

ABSTRACT

Between weeks 40 2020 and 8 2021, the World Health Organization European Region experienced a 99.8% reduction in sentinel influenza virus positive detections (33/25,606 tested; 0.1%) relative to an average of 14,966/39,407 (38.0%; p < 0.001) over the same time in the previous six seasons. COVID-19 pandemic public health and physical distancing measures may have extinguished the 2020/21 European seasonal influenza epidemic with just a few sporadic detections of all viral subtypes. This might possibly continue during the remainder of the influenza season.


Subject(s)
COVID-19 , Influenza, Human/epidemiology , Sentinel Surveillance , Europe , Humans , Influenza, Human/prevention & control , Pandemics , Physical Distancing , Seasons , World Health Organization
20.
Euro Surveill ; 26(40)2021 10.
Article in English | MEDLINE | ID: mdl-34622760

ABSTRACT

BackgroundAnnual seasonal influenza activity in the northern hemisphere causes a high burden of disease during the winter months, peaking in the first weeks of the year.AimWe describe the 2019/20 influenza season and the impact of the COVID-19 pandemic on sentinel surveillance in the World Health Organization (WHO) European Region.MethodsWe analysed weekly epidemiological and virological influenza data from sentinel primary care and hospital sources reported by countries, territories and areas (hereafter countries) in the European Region.ResultsWe observed co-circulation of influenza B/Victoria-lineage, A(H1)pdm09 and A(H3) viruses during the 2019/20 season, with different dominance patterns observed across the Region. A higher proportion of patients with influenza A virus infection than type B were observed. The influenza activity started in week 47/2019, and influenza positivity rate was ≥ 50% for 2 weeks (05-06/2020) rather than 5-8 weeks in the previous five seasons. In many countries a rapid reduction in sentinel reports and the highest influenza activity was observed in weeks 09-13/2020. Reporting was reduced from week 14/2020 across the Region coincident with the onset of widespread circulation of SARS-CoV-2.ConclusionsOverall, influenza type A viruses dominated; however, there were varying patterns across the Region, with dominance of B/Victoria-lineage viruses in a few countries. The COVID-19 pandemic contributed to an earlier end of the influenza season and reduced influenza virus circulation probably owing to restricted healthcare access and public health measures.


Subject(s)
COVID-19 , Influenza, Human , Humans , Influenza, Human/epidemiology , Pandemics , SARS-CoV-2 , Seasons , World Health Organization
SELECTION OF CITATIONS
SEARCH DETAIL