ABSTRACT
Sharing information coherently between nodes of a quantum network is fundamental to distributed quantum information processing. In this scheme, the computation is divided into subroutines and performed on several smaller quantum registers that are connected by classical and quantum channels 1 . A direct quantum channel, which connects nodes deterministically rather than probabilistically, achieves larger entanglement rates between nodes and is advantageous for distributed fault-tolerant quantum computation 2 . Here we implement deterministic state-transfer and entanglement protocols between two superconducting qubits fabricated on separate chips. Superconducting circuits 3 constitute a universal quantum node 4 that is capable of sending, receiving, storing and processing quantum information5-8. Our implementation is based on an all-microwave cavity-assisted Raman process 9 , which entangles or transfers the qubit state of a transmon-type artificial atom 10 with a time-symmetric itinerant single photon. We transfer qubit states by absorbing these itinerant photons at the receiving node, with a probability of 98.1 ± 0.1 per cent, achieving a transfer-process fidelity of 80.02 ± 0.07 per cent for a protocol duration of only 180 nanoseconds. We also prepare remote entanglement on demand with a fidelity as high as 78.9 ± 0.1 per cent at a rate of 50 kilohertz. Our results are in excellent agreement with numerical simulations based on a master-equation description of the system. This deterministic protocol has the potential to be used for quantum computing distributed across different nodes of a cryogenic network.
ABSTRACT
The geometric aspects of quantum mechanics are emphasized most prominently by the concept of geometric phases, which are acquired whenever a quantum system evolves along a path in Hilbert space, that is, the space of quantum states of the system. The geometric phase is determined only by the shape of this path and is, in its simplest form, a real number. However, if the system has degenerate energy levels, then matrix-valued geometric state transformations, known as non-Abelian holonomies--the effect of which depends on the order of two consecutive paths--can be obtained. They are important, for example, for the creation of synthetic gauge fields in cold atomic gases or the description of non-Abelian anyon statistics. Moreover, there are proposals to exploit non-Abelian holonomic gates for the purposes of noise-resilient quantum computation. In contrast to Abelian geometric operations, non-Abelian ones have been observed only in nuclear quadrupole resonance experiments with a large number of spins, and without full characterization of the geometric process and its non-commutative nature. Here we realize non-Abelian non-adiabatic holonomic quantum operations on a single, superconducting, artificial three-level atom by applying a well-controlled, two-tone microwave drive. Using quantum process tomography, we determine fidelities of the resulting non-commuting gates that exceed 95 per cent. We show that two different quantum gates, originating from two distinct paths in Hilbert space, yield non-equivalent transformations when applied in different orders. This provides evidence for the non-Abelian character of the implemented holonomic quantum operations. In combination with a non-trivial two-quantum-bit gate, our method suggests a way to universal holonomic quantum computing.
ABSTRACT
Active qubit reset is a key operation in many quantum algorithms, and particularly in quantum error correction. Here, we experimentally demonstrate a reset scheme for a three-level transmon artificial atom coupled to a large bandwidth resonator. The reset protocol uses a microwave-induced interaction between the |f,0⟩ and |g,1⟩ states of the coupled transmon-resonator system, with |g⟩ and |f⟩ denoting the ground and second excited states of the transmon, and |0⟩ and |1⟩ the photon Fock states of the resonator. We characterize the reset process and demonstrate reinitialization of the transmon-resonator system to its ground state in less than 500 ns and with 0.2% residual excitation. Our protocol is of practical interest as it has no additional architectural requirements beyond those needed for fast and efficient single-shot readout of transmons, and does not require feedback.
ABSTRACT
Steering a quantum harmonic oscillator state along cyclic trajectories leads to a path-dependent geometric phase. Here we describe its experimental observation in an electronic harmonic oscillator. We use a superconducting qubit as a nonlinear probe of the phase, which is otherwise unobservable due to the linearity of the oscillator. We show that the geometric phase is, for a variety of cyclic paths, proportional to the area enclosed in the quadrature plane. At the transition to the nonadiabatic regime, we study corrections to the phase and dephasing of the qubit caused by qubit-resonator entanglement. In particular, we identify parameters for which this dephasing mechanism is negligible even in the nonadiabatic regime. The demonstrated controllability makes our system a versatile tool to study geometric phases in open quantum systems and to investigate their potential for quantum information processing.
ABSTRACT
A quantum system interacting with its environment is subject to dephasing, which ultimately destroys the information it holds. Here we use a superconducting qubit to experimentally show that this dephasing has both dynamic and geometric origins. It is found that geometric dephasing, which is present even in the adiabatic limit and when no geometric phase is acquired, can either reduce or restore coherence depending on the orientation of the path the qubit traces out in its projective Hilbert space. It accompanies the evolution of any system in Hilbert space subjected to noise.