Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Int J Mol Sci ; 24(4)2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36835664

ABSTRACT

Correct protein folding is the basis of cellular well-being; thus, accumulation of misfolded proteins within the endoplasmic reticulum (ER) leads to an imbalance of homeostasis that causes stress to the ER. Various studies have shown that protein misfolding is a significant factor in the etiology of many human diseases, including cancer, diabetes, and cystic fibrosis. Misfolded protein accumulation in the ER triggers a sophisticated signal transduction pathway, the unfolded protein response (UPR), which is controlled by three proteins, resident in ER: IRE1α, PERK, and ATF6. Briefly, when ER stress is irreversible, IRE1α induces the activation of pro-inflammatory proteins; PERK phosphorylates eIF2α which induces ATF4 transcription, while ATF6 activates genes encoding ER chaperones. Reticular stress causes an alteration of the calcium homeostasis, which is released from the ER and taken up by the mitochondria, leading to an increase in the oxygen radical species production, and consequently, to oxidative stress. Accumulation of intracellular calcium, in combination with lethal ROS levels, has been associated with an increase of pro-inflammatory protein expression and the initiation of the inflammatory process. Lumacaftor (Vx-809) is a common corrector used in cystic fibrosis treatment which enhances the folding of mutated F508del-CFTR, one of the most prevalent impaired proteins underlying the disease, promoting a higher localization of the mutant protein on the cell membrane. Here, we demonstrate that this drug reduces the ER stress and, consequently, the inflammation that is caused by such events. Thus, this molecule is a promising drug to treat several pathologies that present an etiopathogenesis due to the accumulation of protein aggregates that lead to chronic reticular stress.


Subject(s)
Cystic Fibrosis , Protein Serine-Threonine Kinases , Humans , Protein Serine-Threonine Kinases/metabolism , Endoribonucleases/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , eIF-2 Kinase/metabolism , Calcium/metabolism , Unfolded Protein Response , Endoplasmic Reticulum Stress/genetics , Protein Folding
2.
Int J Mol Sci ; 24(8)2023 Apr 20.
Article in English | MEDLINE | ID: mdl-37108737

ABSTRACT

This study aimed to evaluate if Simvastatin can reduce, and/or prevent, Doxorubicin (Doxo)-induced cardiotoxicity. H9c2 cells were treated with Simvastatin (10 µM) for 4 h and then Doxo (1 µM) was added, and the effects on oxidative stress, calcium homeostasis, and apoptosis were evaluated after 20 h. Furthermore, we evaluated the effects of Simvastatin and Doxo co-treatment on Connexin 43 (Cx43) expression and localization, since this transmembrane protein forming gap junctions is widely involved in cardioprotection. Cytofluorimetric analysis showed that Simvastatin co-treatment significantly reduced Doxo-induced cytosolic and mitochondrial ROS overproduction, apoptosis, and cytochrome c release. Spectrofluorimetric analysis performed by means of Fura2 showed that Simvastatin co-treatment reduced calcium levels stored in mitochondria and restored cytosolic calcium storage. Western blot, immunofluorescence, and cytofluorimetric analyses showed that Simvastatin co-treatment significantly reduced Doxo-induced mitochondrial Cx43 over-expression and significantly increased the membrane levels of Cx43 phosphorylated on Ser368. We hypothesized that the reduced expression of mitochondrial Cx43 could justify the reduced levels of calcium stored in mitochondria and the consequent induction of apoptosis observed in Simvastatin co-treated cells. Moreover, the increased membrane levels of Cx43 phosphorylated on Ser368, which is responsible for the closed conformational state of the gap junction, let us to hypothesize that Simvastatin leads to cell-to-cell communication interruption to block the propagation of Doxo-induced harmful stimuli. Based on these results, we can conclude that Simvastatin could be a good adjuvant in Doxo anticancer therapy. Indeed, we confirmed its antioxidant and antiapoptotic activity, and, above all, we highlighted that Simvastatin interferes with expression and cellular localization of Cx43 that is widely involved in cardioprotection.


Subject(s)
Antioxidants , Connexin 43 , Humans , Antioxidants/pharmacology , Antioxidants/metabolism , Connexin 43/metabolism , Simvastatin/pharmacology , Simvastatin/metabolism , Myocytes, Cardiac/metabolism , Calcium/metabolism , Doxorubicin/toxicity , Doxorubicin/metabolism , Cardiotoxicity/drug therapy , Cardiotoxicity/etiology , Cardiotoxicity/prevention & control , Apoptosis
3.
Molecules ; 28(23)2023 Dec 03.
Article in English | MEDLINE | ID: mdl-38067642

ABSTRACT

(1) Background: almond peels are rich in polyphenols such as catechin and epicatechin, which are important anti-free-radical agents, anti-inflammatory compounds, and capable of breaking down cholesterol plaques. This work aims to evaluate the biological and technological activity of a "green" dry aqueous extract from Sicilian almond peels, a waste product of the food industry, and to develop healthy nutraceuticals with natural ingredients. Eudraguard® Natural is a natural coating polymer chosen to develop atomized formulations that improve the technological properties of the extract. (2) Methods: the antioxidant and free radical scavenger activity of the extract was rated using different methods (DPPH assay, ABTS, ORAC, NO). The metalloproteinases of the extracts (MMP-2 and MMP-9), the enhanced inhibition of the final glycation products, and the effects of the compounds on cell viability were also tested. All pure materials and formulations were characterized using UV, HPLC, FTIR, DSC, and SEM methods. (3) Results: almond peel extract showed appreciable antioxidant and free radical activity with a stronger NO inhibition effect, strong activity on MMP-2, and good antiglycative effects. In light of this, a food supplement with added health value was formulated. Eudraguard® Natural acted as a swelling substrate by improving extract solubility and dissolution/release (4) Conclusions: almond peel extract has significant antioxidant activity and MMP/AGE inhibition effects, resulting in an optimal candidate to formulate safe microsystems with potential antimetabolic activity. Eudraguard® Natural is capable of obtaining spray-dried microsystems with an improvement in the extract's biological and technological characteristics. It also protects the dry extract from degradation and oxidation, prolonging the shelf life of the final product.


Subject(s)
Antioxidants , Prunus dulcis , Antioxidants/pharmacology , Antioxidants/chemistry , Matrix Metalloproteinase 2 , Plant Extracts/pharmacology , Plant Extracts/chemistry , Dietary Supplements , Free Radicals/chemistry
4.
J Nat Prod ; 85(3): 647-656, 2022 03 25.
Article in English | MEDLINE | ID: mdl-35196017

ABSTRACT

Seven new terpenoids, namely, guaiane (1-4), eudesmane (5), and bisabolane (6) sesquiterpenoids and a furanone (7), were isolated from the aerial parts of Ammoides atlantica, a herbaceous plant growing in Algeria, together with eight known compounds. All metabolites were characterized by their 1D and 2D NMR and HRESIMS data. A combined DFT/NMR method was applied to study the relative configurations of 1-4, 6, and 7. All compounds, except 2, were assayed against MCF-7, A375, A549, HaCaT, and Jurkat cell lines. Compounds 8, 10, and 11 induced a dose-dependent reduction in cell viability with different potency on almost all cell lines used. The most active compounds, 8 and 10, were studied to assess their potential apoptotic effects and cell cycle inhibition.


Subject(s)
Apiaceae , Sesquiterpenes , Algeria , Molecular Structure , Plant Components, Aerial/chemistry , Sesquiterpenes/chemistry
5.
Int J Mol Sci ; 23(12)2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35742818

ABSTRACT

Human epidermal growth factor receptor-2 (HER2) is overexpressed in up to 30% of breast cancer cases, causing a more aggressive tumour growth and poor prognosis. Trastuzumab, the humanized antibody targeted to HER2, increased the life expectancy of patients, but severe cardiotoxicity emerged as a long-term adverse effect. Clinical evidence highlights that Trastuzumab-induced cardiotoxicity drastically increases in association with Doxorubicin; however, the exact mechanisms involved remain incompletely understood. In order to analyse the molecular mechanisms involved and the possible adaptative responses to Trastuzumab and Doxorubicin treatment, in this study, H9c2 cardiomyoblasts were used. Results showed that Trastuzumab and Doxorubicin sequential administration in cardiomyoblast increased cytosolic and mitochondrial ROS production, intracellular calcium dysregulation, mitochondrial membrane depolarization, and the consequent apoptosis, induced by both Trastuzumab and Doxorubicin alone. Furthermore, in these conditions, we observed increased levels of Connexin43 phosphorylated on Ser368 (pCx43). Since phosphorylation on Ser368 decreases gap junction intracellular communication, thus reducing the spread of death signals to adjacent cells, we hypothesized that the increase in pCx43 could be an adaptative response implemented by cells to defend neighbouring cells by Trastuzumab and Doxorubicin sequential administration. However, the other side of the coin is the resulting conduction abnormalities.


Subject(s)
Breast Neoplasms , Connexin 43 , Breast Neoplasms/metabolism , Cardiotoxicity/drug therapy , Cardiotoxicity/etiology , Connexin 43/metabolism , Doxorubicin/adverse effects , Female , Humans , Oxidative Stress , Phosphorylation , Receptor, ErbB-2/metabolism , Trastuzumab/adverse effects
6.
Molecules ; 27(3)2022 Jan 20.
Article in English | MEDLINE | ID: mdl-35163936

ABSTRACT

The multidomain BAG3 protein is a member of the BAG (Bcl-2-associated athanogene) family of co-chaperones, involved in a wide range of protein-protein interactions crucial for many key cellular pathways, including autophagy, cytoskeletal dynamics, and apoptosis. Basal expression of BAG3 is elevated in several tumor cell lines, where it promotes cell survival signaling and apoptosis resistance through the interaction with many protein partners. In addition, its role as a key player of several hallmarks of cancer, such as metastasis, angiogenesis, autophagy activation, and apoptosis inhibition, has been established. Due to its involvement in malignant transformation, BAG3 has emerged as a potential and effective biological target to control multiple cancer-related signaling pathways. Recently, by using a multidisciplinary approach we reported the first synthetic BAG3 modulator interfering with its BAG domain (BD), based on a 2,4-thiazolidinedione scaffold and endowed with significant anti-proliferative activity. Here, a further in silico-driven selection of a 2,4-thiazolidinedione-based compound was performed. Thanks to a straightforward synthesis, relevant binding affinity for the BAG3BD domain, and attractive biological activities, this novel generation of compounds is of great interest for the development of further BAG3 binders, as well as for the elucidation of the biological roles of this protein in tumors. Specifically, we found compound 6 as a new BAG3 modulator with a relevant antiproliferative effect on two different cancer cell lines (IC50: A375 = 19.36 µM; HeLa = 18.67 µM).


Subject(s)
Adaptor Proteins, Signal Transducing/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Apoptosis Regulatory Proteins/antagonists & inhibitors , Gene Expression Regulation, Neoplastic/drug effects , Neoplasms/drug therapy , Thiazolidinediones/pharmacology , Antineoplastic Agents/chemistry , Apoptosis , Autophagy , Cell Proliferation , Humans , Neoplasms/metabolism , Neoplasms/pathology , Thiazolidinediones/chemistry , Tumor Cells, Cultured
7.
Int J Mol Sci ; 22(21)2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34769027

ABSTRACT

Hypoxia is the leading cause of death in cardiomyocytes. Cells respond to oxygen deprivation by activating cytoprotective programs, such as mitochondrial connexin43 (mCx43) overexpression and the opening of mitochondrial KATP channels, aimed to reduce mitochondrial dysfunction. In this study we used an in vitro model of CoCl2-induced hypoxia to demonstrate that mCx43 and KATP channels cooperate to induce cytoprotection. CoCl2 administration induces apoptosis in H9c2 cells by increasing mitochondrial ROS production, intracellular and mitochondrial calcium overload and by inducing mitochondrial membrane depolarization. Diazoxide, an opener of KATP channels, reduces all these deleterious effects of CoCl2 only in the presence of mCx43. In fact, our results demonstrate that in the presence of radicicol, an inhibitor of Cx43 translocation to mitochondria, the cytoprotective effects of diazoxide disappear. In conclusion, these data confirm that there exists a close functional link between mCx43 and KATP channels.


Subject(s)
Connexin 43/metabolism , Cytoprotection/drug effects , Diazoxide/pharmacology , Hypoxia/metabolism , Mitochondria, Heart/drug effects , Mitochondria, Heart/metabolism , Animals , Apoptosis/drug effects , Cell Line , Cell Survival/drug effects , Cobalt/pharmacology , Membrane Potential, Mitochondrial/drug effects , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Potassium Channels/metabolism , Rats , Reactive Oxygen Species/metabolism
8.
Molecules ; 25(22)2020 Nov 11.
Article in English | MEDLINE | ID: mdl-33187371

ABSTRACT

Natural products black cumin-Nigella sativa (N. sativa) and wild garlic-Allium ursinum (AU) are known for their potential role in reducing cardiovascular risk factors, including antracycline chemotherapy. Therefore, this study investigates the effect of N. sativa and AU water and methanolic extracts in a cellular model of doxorubicin (doxo)-induced cardiotoxicity. The extracts were characterized using Ultraviolet-visible (UV-VIS) spectroscopy, Fourier-transform infrared (FT-IR) spectroscopy, Liquid Chromatography coupled with Mass Spectrometry (LC-MS) and Gas Chromatography coupled with Mass Spectrometry (GC-MS) techniques. Antioxidant activity was evaluated on H9c2 cells. Cytosolic and mitochondrial reactive oxygen species (ROS) release was evaluated using 2',7'-dichlorofluorescin-diacetate (DHCF-DA) and mitochondria-targeted superoxide indicator (MitoSOX red), respectively. Mitochondrial membrane depolarization was evaluated by flow cytometry. LC-MS analysis identified 12 and 10 phenolic compounds in NSS and AU extracts, respectively, with flavonols as predominant compounds. FT-IR analysis identified the presence of carbohydrates, amino acids and lipids in both plants. GC-MS identified the sulfur compounds in the AU water extract. N. sativa seeds (NSS) methanolic extract had the highest antioxidant activity reducing both intracellular and mitochondrial ROS release. All extracts (excepting AU methanolic extract) preserved H9c2 cells viability. None of the investigated plants affected the mitochondrial membrane depolarization. N. sativa and AU are important sources of bioactive compounds with increased antioxidant activities, requiring different extraction solvents to obtain the pharmacological effects.


Subject(s)
Allium/chemistry , Antioxidants/chemistry , Doxorubicin/chemistry , Myoblasts, Cardiac/drug effects , Nigella sativa/chemistry , Plant Extracts/pharmacology , Animals , Cardiotoxicity , Cell Line , Cell Survival , Flavonols/analysis , Gas Chromatography-Mass Spectrometry , Membrane Potential, Mitochondrial , Phenols/pharmacology , Polyphenols/chemistry , Rats , Reactive Oxygen Species/metabolism , Risk Factors , Seeds/chemistry , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared
9.
Crit Rev Eukaryot Gene Expr ; 29(4): 295-304, 2019.
Article in English | MEDLINE | ID: mdl-31679291

ABSTRACT

Mitochondria represent the heart unit of the cardiac cell because they are involved in ATP production and in the transfer to the contractile apparatus. Furthermore, mitochondria modulate Ca2+ homeostasis, manage redox status, and regulate response to cellular and environmental stresses. Abnormalities in mitochondrial organelle structure and function have been observed in many cardiovascular diseases, such as ischemic cardiomyopathy, heart failure, and stroke, and in drug-induced cardiomyopathies. This review summarizes the recent literature in this field.


Subject(s)
Adenosine Triphosphate/metabolism , Calcium/metabolism , Cardiovascular Diseases/metabolism , Electron Transport Chain Complex Proteins/metabolism , Mitochondria/metabolism , Animals , Humans , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Permeability Transition Pore , Models, Biological , Reactive Oxygen Species/metabolism
10.
Planta Med ; 85(11-12): 1024-1033, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31261420

ABSTRACT

Halimium halimifolium (Hh) is a shrub used in Algerian folk medicine to treat gastrointestinal pain. An UHPLC-PDA-ESI/MSn method was developed to identify the metabolic profile of the traditionally used infusion (Hh-A) from the aerial parts. The structures of flavanols were confirmed by NMR analysis after the isolation procedure from a hydrohalcolic extract (Hh-B) that also allowed for the identification of phenolic acids, an aryl butanol glucoside, and different derivatives of quercetin, myricetin, and kaempferol. Tiliroside isomers were the chemical markers of Hh-A and Hh-B (54.33 and 36.00 mg/g, respectively). Hh-A showed a significant scavenging activity both against the radicals 1,1-diphenyl-2-picrylhydrazyl and 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (EC50 = 10.49 µg/mL and TEAC value = 1.98 mM Trolox/mg infusion) and the lipopolysaccharide-induced reactive oxygen species release in A375 and HeLa cells. Moreover, the antihyperglycemic properties, by inhibiting the α-amylase and α-glucosidase enzymes (IC50 = 0.82 mg/mL and 25.01 µg/mL, respectively), were demonstrated. To upgrade the therapeutic effect, a microencapsulation process is proposed as a strategy to optimize stability, handling, and delivery of bioactive components, avoiding the degradation and loss of the biological efficacy after oral intake. Hh-loaded microparticles were designed using cellulose acetate phthalate as the enteric coating material and spray drying as a production process. The results showed a satisfactory process yield (67.9%), encapsulation efficiency (96.7%), and micrometric characteristics of microparticles (laser-scattering, fluorescent, and scanning electron microscopy). In vitro dissolution studies (USPII-pH change method) showed that Hh-loaded microparticles are able to prevent the release and degradation of the bioactive components in the gastric tract, releasing them into the intestinal environment.


Subject(s)
Cistaceae/chemistry , Antioxidants/isolation & purification , Antioxidants/pharmacology , Cell Line , Cistaceae/metabolism , Dietary Supplements , Drug Compounding , HeLa Cells , Humans , Hypoglycemic Agents/isolation & purification , Hypoglycemic Agents/pharmacology , Magnetic Resonance Spectroscopy , Medicine, African Traditional , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Plants, Medicinal/chemistry , Plants, Medicinal/metabolism
11.
Int J Mol Sci ; 20(7)2019 Apr 05.
Article in English | MEDLINE | ID: mdl-30959745

ABSTRACT

Heart failure is a complex clinical syndrome involving a multitude of neurohormonal pathways including the renin-angiotensin-aldosterone system, sympathetic nervous system, and natriuretic peptides system. It is now emerging that neurohumoral mechanisms activated during heart failure, with both preserved and reduced ejection fraction, modulate cells of the immune system. Indeed, these cells express angiotensin I receptors, adrenoceptors, and natriuretic peptides receptors. Ang II modulates macrophage polarization, promoting M2 macrophages phenotype, and this stimulation can influence lymphocytes Th1/Th2 balance. ß-AR activation in monocytes is responsible for inhibition of free oxygen radicals production, and together with α2-AR can modulate TNF-α receptor expression and TNF-α release. In dendritic cells, activation of ß2-AR inhibits IL-12 production, resulting in the inhibition of Th1 and promotion of Th2 differentiation. ANP induces the activation of secretion of superoxide anion in polymorphonucleated cells; reduces TNF-α and nitric oxide secretion in macrophages; and attenuates the exacerbated TH1 responses. BNP in macrophages can stimulate ROS production, up-regulates IL-10, and inhibits IL-12 and TNF-α release by dendritic cells, suggesting an anti-inflammatory cytokines profile induction. Therefore, different neurohormonal-immune cross-talks can determine the phenotype of cardiac remodeling, promoting either favorable or maladaptive responses. This review aims to summarize the available knowledge on neurohormonal modulation of immune responses, providing supportive rational background for further research.


Subject(s)
Heart Failure/immunology , Immune System/metabolism , Neurotransmitter Agents/metabolism , Animals , Humans , Immunomodulation , Models, Biological , Translational Research, Biomedical
12.
Int J Mol Sci ; 19(3)2018 Mar 07.
Article in English | MEDLINE | ID: mdl-29518932

ABSTRACT

Doxorubicin (DOXO) administration induces alterations in Connexin 43 (Cx43) expression and localization, thus, inducing alterations in chemical and electrical signal transmission between cardiomyocytes and in intracellular calcium homeostasis even evident after a single administration. This study was designed to evaluate if Diazoxide (DZX), a specific opener of mitochondrial KATP channels widely used for its cardioprotective effects, can fight DOXO-induced cardiotoxicity in a short-time mouse model. DZX (20 mg/kg i.p.) was administered 30 min before DOXO (10 mg/kg i.p.) in C57BL/6j female mice for 1-3 or seven days once every other day. A recovery of cardiac parameters, evaluated by Echocardiography, were observed in DZX+DOXO co-treated mice. Western blot analysis performed on heart lysates showed an increase in sarco/endoplasmic reticulum Ca2+-ATPase (SERCAII) and a reduction in phospholamban (PLB) amounts in DZX+DOXO co-treated mice. A contemporary recovery of intracellular Ca2+-signal, detected spectrofluorometrically by means of FURA-2AM, was observed in these mice. Cx43 expression and localization, analyzed by Western blot and confirmed by immunofluorescence analysis, showed that DZX co-treatement increases Cx43 amount both on sarcoplasmic membrane and on mitochondria. In conclusion, our data demonstrate that, in a short-time mouse model of DOXO-induced cardiotoxicity, DZX exerts its cardioprotective effects also by enhancing the amount Cx43.


Subject(s)
Cardiotoxicity , Connexin 43/genetics , Diazoxide/pharmacology , Doxorubicin/adverse effects , Gene Expression , Mitochondria/drug effects , Mitochondria/genetics , Protective Agents/pharmacology , Animals , Calcium/metabolism , Connexin 43/metabolism , Disease Models, Animal , Echocardiography , Heart Diseases/diagnosis , Heart Diseases/drug therapy , Heart Diseases/etiology , Heart Diseases/physiopathology , Heart Function Tests , Homeostasis , Mice , Protein Transport
13.
Int J Mol Sci ; 18(10)2017 Oct 11.
Article in English | MEDLINE | ID: mdl-29019935

ABSTRACT

The use of Doxorubicin (DOXO), a potent antineoplastic agent, is limited by the development of cardiotoxicity. DOXO-induced cardiotoxicity is multifactorial, although alterations in calcium homeostasis, seem to be involved. Since even the Connexin43 (Cx43) plays a pivotal role in these two phenomena, in this study we have analyzed the effects of DOXO on Cx43 expression and localization. Damage caused by anthracyclines on cardiomyocytes is immediate after each injection, in the present study we used a short-term model of DOXO-induced cardiomyopathy. C57BL/6j female mice were randomly divided in groups and injected with DOXO (2 or 10 mg/kg i.p.) for 1-3 or 7 days once every other day. Cardiac function was assessed by Echocardiography. Sarco/endoplasmic reticulum Ca2+-ATPase (SERCAII) and phospholamban (PLB) expression were assessed by Western blot analysis, intracellular [Ca2+] were detected spectrofluorometrically by means of Fura-2 pentakis (acetoxymethyl) ester (FURA-2AM), and Cx43 and pCx43 expression and localization was analyzed by Western blot and confirmed by immunofluorescence analysis. DOXO induces impairment in Ca2+ homeostasis, already evident after a single administration, and affects Cx43 expression and localization. Our data suggest that DOXO-induced alterations in Ca2+ homeostasis causes in the cells the induction of compensatory mechanisms until a certain threshold, above which cardiac injury is triggered.


Subject(s)
Antibiotics, Antineoplastic/adverse effects , Calcium/metabolism , Cardiomyopathies/chemically induced , Connexin 43/metabolism , Doxorubicin/adverse effects , Myocytes, Cardiac/drug effects , Animals , Antibiotics, Antineoplastic/administration & dosage , Calcium/analysis , Calcium-Binding Proteins/metabolism , Cardiomyopathies/metabolism , Cardiotoxicity/etiology , Disease Models, Animal , Doxorubicin/administration & dosage , Female , Mice , Mice, Inbred C57BL , Myocytes, Cardiac/metabolism , Primary Cell Culture , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Time Factors
14.
Molecules ; 22(4)2017 Apr 11.
Article in English | MEDLINE | ID: mdl-28398240

ABSTRACT

N-Palmitoyl-ethanolamine (PEA) is an anti-inflammatory component of egg yolk that is usually employed for the prevention of respiratory apparatus virus infection and then frequently used for its efficient anti-inflammatory and analgesic effects in experimental models of visceral, neuropathic, and inflammatory diseases. Nevertheless, data of its use in animal or human therapy are still scarce and further studies are needed. Herein, we report the biological evaluation of a small library of N-palmitoyl-ethanolamine analogues or derivatives, characterized by a protected acid function (either as palmitoyl amides or hexadecyl esters), useful to decrease their hydrolysis rate in vitro and prolong their biological activity. Two of these compounds-namely phenyl-carbamic acid hexadecyl ester (4) and 2-methyl-pentadecanoic acid (4-nitro-phenyl)-amide (5)-have shown good anti-inflammatory and antioxidant properties, without affecting the viability of J774A.1 macrophages. Finally, crystals suitable for X-ray analysis of compound 4 have been obtained, and its solved crystal structure is here reported. Our outcomes may be helpful for a rational drug design based on new PEA analogues/derivatives with improved biological properties.


Subject(s)
Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Ethanolamines/chemistry , Ethanolamines/pharmacology , Models, Molecular , Palmitic Acids/chemistry , Palmitic Acids/pharmacology , Amides , Animals , Cell Line , Cell Survival/drug effects , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Mice , Molecular Structure , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects , Structure-Activity Relationship
15.
Am J Pathol ; 185(11): 3115-24, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26506473

ABSTRACT

Plasmacytoid dendritic cells (pDCs) highly populate lung tumor masses and are strictly correlated to bad prognosis, yet their role in lung cancer is controversial. To understand their role in lung cancer, we isolated pDCs from human samples of lung obtained from non-small cell lung cancer patients undergoing thoracic surgery. Tumor masses presented a higher percentage of pDCs than healthy tissues; pDCs were in the immunosuppressive phenotype, as determined by higher levels of CD33 and PD-L1. Despite higher HLA-A and HLA-D expression, cancerous pDCs did not exert cytotoxic activity against tumor cells but instead promoted their proliferation. In this scenario, cancerous pDCs were able to produce high levels of IL-1α. This effect was observed on the specific activation of the inflammasome absent in melanoma 2 (AIM2), which led to higher cytoplasmic calcium release responsible for calpain activation underlying IL-1α release. The blockade of type I interferon receptor and of AIM2 via the addition of LL-37 significantly reduced the release of IL-1α, which was still high after Nod-like receptor P3 inhibition via glibenclamide. More important, mitochondrial-derived reactive oxygen species sequester diminished AIM2-dependent IL-1α release. Our data demonstrate that lung tumor-associated pDCs are responsive to the activation of AIM2 that promotes calcium efflux and reactive oxygen species from mitochondria, leading to calpain activation and high levels of IL-1α, which facilitate tumor cell proliferation in the lung.


Subject(s)
Carcinoma, Non-Small-Cell Lung/immunology , DNA-Binding Proteins/metabolism , Dendritic Cells/immunology , Interleukin-1alpha/metabolism , Lung Neoplasms/immunology , Melanoma/immunology , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/surgery , DNA-Binding Proteins/genetics , Humans , Immunosuppressive Agents/immunology , Inflammasomes/immunology , Interleukin-1alpha/genetics , Lung Neoplasms/pathology , Lung Neoplasms/surgery , Melanoma/pathology , Oxidative Stress , Reactive Oxygen Species/metabolism , Receptor, Interferon alpha-beta/genetics , Receptor, Interferon alpha-beta/metabolism
16.
Toxicol Appl Pharmacol ; 293: 44-52, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26780402

ABSTRACT

Doxorubicin (DOXO) is commonly used to treat a wide range of malignant tumors, but its clinical use is limited by acute and chronic cardiotoxicity. The precise mechanism underlying DOXO-induced cardiotoxicity is still not completely elucidated, but cardiac inflammation seems to be involved. Effects of DOXO on proinflammatory cytokines, inflammatory cell infiltration, and necrosis have been proven only when a functional impairment has already occurred, so this study aimed to investigate the acute effect of DOXO administration in mouse heart. The results of our study demonstrated alterations in cardiac function parameters assessed by ultrasound within 24h after a single injection of DOXO, with a cumulative effect along the increase of the dose and the number of DOXO administrations. At the same time, DOXO causes a significant production of proinflammatory cytokines (such as TNF-α and IL-6) with a concomitant reduction of IL-10, a well-known antiinflammatory cytokine. Furthermore, overexpression of inducible nitric oxide synthase (iNOS) in heart tissue and increased levels of serum nitrite in DOXO-treated mice were detected. Notably, DOXO administration significantly increased nitrotyrosine expression in mouse heart. Our data support the hypothesis that these early events, could be responsible for the later onset of more severe deleterious remodeling leading to DOXO induced cardiomyopathy.


Subject(s)
Antibiotics, Antineoplastic/adverse effects , Cardiotoxicity/metabolism , Doxorubicin/adverse effects , Animals , Cardiotoxicity/etiology , Cardiotoxicity/pathology , Disease Models, Animal , Echocardiography , Female , Interleukin-10/metabolism , Interleukin-6/metabolism , Mice, Inbred C57BL , Myocardium/metabolism , Myocardium/pathology , Nitric Oxide Synthase Type II/metabolism , Nitrites/metabolism , Tumor Necrosis Factor-alpha/metabolism , Tyrosine/analogs & derivatives , Tyrosine/metabolism
17.
Antioxidants (Basel) ; 13(1)2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38247535

ABSTRACT

Hyoseris radiata L. (Asteraceae), known as "wild chicory", is a perennial herbaceous plant native to the Mediterranean region, North Africa, and West Asia. Collected from the wild, the plant is largely used in Italy for culinary purposes and in popular medicine, so that it can be included in the list of phytoalimurgic plants. The present study aimed to investigate for the first time the plant's chemical profile, through a combined UHPLC-HR-ESI-Orbitrap/MS and NMR approach, and its potential healthy properties, focusing on antioxidant and anti-inflammatory activities. The LC-MS/MS analysis and the isolation through chromatographic techniques of the plant's hydroalcoholic extract allowed the authors to identify 48 compounds, including hydroxycinnamic acids, flavonoids, megastigmane glucosides, coumarins, and lignans, together with several unsaturated fatty acids. The quantitative analysis highlighted a relevant amount of flavonoids and hydroxycinnamic acids, with a total of 12.9 ± 0.4 mg/g DW. NMR-based chemical profiling revealed the presence of a good amount of amino acids and monosaccharides, and chicoric and chlorogenic acids as the most representative polyphenols. Finally, the antioxidant and anti-inflammatory activities of H. radiata were investigated through cell-free and cell-based assays, showing a good antioxidant potential for the plant extract and a significant reduction in COX-2 expression.

18.
Pharmaceutics ; 15(1)2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36678923

ABSTRACT

(1) Background: Eudraguard® Natural (EN) and Protect (EP) are polymers regulated for use in dietary supplements in the European Union and the United States to carry natural products, mask unpleasant smells and tastes, ameliorate product handling, and protect products from moisture, light, and oxidation. Moreover, EN and EP can control the release of encapsulated compounds. The aim of this work was the development, preparation, and control of Eudraguard® spray-drying microparticles to obtain powders with easy handling and a stable dietary supplement containing a polar functional extract (SOE) from Sorbus domestica L. leaves. (2) Methods: SOE was characterized using HPLC, NMR, FTIR, DSC, and SEM methods. Furthermore, the SOE's antioxidant/free radical scavenging activity, α-glucosidase inhibition, MTT assay effect on viability in normal cells, and shelf life were evaluated in both the extract and final formulations. (3) Results: The data suggested that SOE, rich in flavonoids, is a bioactive and safe extract; however, from a technological point of view, it was sticky, difficult to handle, and had low aqueous solubility. Despite the fact that EN and EP may undergo changes with spray-drying, they effectively produced easy-to-handle micro-powders with a controlled release profile. Although EN had a weaker capability to coat SOE than EP, EN acted as a substrate that was able to swell, drawing in water and improving the extract solubility and dissolution/release; however, EP was also able to carry the extract and provide SOE with controlled release. (4) Conclusion: Both Eudraguard® products were capable of carrying SOE and improving its antioxidant and α-glucosidase inhibition activities, as well as the extract stability and handling.

19.
J Pharmacol Toxicol Methods ; 123: 107298, 2023.
Article in English | MEDLINE | ID: mdl-37480964

ABSTRACT

Microsampling, a reduced volume sampling method, has successfully gained attention at the International Conference on Harmonization (ICH) level and established benefits support its use in Toxicokinetic (TK) studies. These improved sampling techniques are less invasive and in large animal species improve animal welfare (refinement). To evaluate if the plasma concentrations of drugs were influenced by the blood sampling method, the traditional method from femoral vein and microsampling from tail vein in Cynomolgus monkeys were compared. The pharmacokinetic parameters (Cmax, Tmax and AUC) of four drugs (selected based on acid-base and volume of distribution properties) in non-human primate were correlated. The plasma samples were quantified using standard LC-MS/MS methods, qualified to evaluate the precision and accuracy before the analysis of real samples. The results reported in this work demonstrated the suitability of microsampling in supporting PK/TK studies in non-human primates. The data show that the exposure of drugs tested after blood collection using standard procedure from femoral vein and microsampling from tail vein is correlated and is not influenced by acid-base characteristics and volume of distribution.


Subject(s)
Blood Specimen Collection , Tandem Mass Spectrometry , Animals , Macaca fascicularis , Chromatography, Liquid , Blood Specimen Collection/methods , Capillaries
20.
Biomolecules ; 11(3)2021 03 13.
Article in English | MEDLINE | ID: mdl-33805605

ABSTRACT

Cystic fibrosis is a monogenic, autosomal, recessive disease characterized by an alteration of chloride transport caused by mutations in the CFTR (Cystic Fibrosis Transmembrane Conductance Regulator) gene. The loss of Phe residue in position 508 (ΔF508-CFTR) causes an incorrect folding of the protein causing its degradation and electrolyte imbalance. CF patients are extremely predisposed to the development of a chronic inflammatory process of the bronchopulmonary system. When the cells of a tissue are damaged, the immune cells are activated and trigger the production of free radicals, provoking an inflammatory process. In addition to routine therapies, today drugs called correctors are available for mutations such as ΔF508-CFTR as well as for others less frequent ones. These active molecules are supposed to facilitate the maturation of the mutant CFTR protein, allowing it to reach the apical membrane of the epithelial cell. Matrine induces ΔF508-CFTR release from the endoplasmic reticulum to cell cytosol and its localization on the cell membrane. We now have evidence that Matrine and Lumacaftor not only restore the transport of mutant CFTR protein, but probably also counteract the inflammatory process by improving the course of the disease.


Subject(s)
Alkaloids/therapeutic use , Aminopyridines/therapeutic use , Benzodioxoles/therapeutic use , Cystic Fibrosis/drug therapy , Inflammation/pathology , Quinolizines/therapeutic use , A549 Cells , Alkaloids/pharmacology , Aminopyridines/pharmacology , Benzodioxoles/pharmacology , Cell Death/drug effects , Cell Membrane/drug effects , Cell Membrane/metabolism , Cystic Fibrosis/pathology , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Drug Synergism , Drug Therapy, Combination , Humans , Models, Biological , Oxidative Stress/drug effects , Quinolizidines/pharmacology , Quinolizines/pharmacology , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Matrines
SELECTION OF CITATIONS
SEARCH DETAIL