Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
J Cell Sci ; 134(2)2021 01 27.
Article in English | MEDLINE | ID: mdl-33335067

ABSTRACT

The adenomatous polyposis coli (Apc) protein regulates diverse effector pathways essential for tissue homeostasis. Truncating oncogenic mutations in Apc removing its Wnt pathway and microtubule regulatory domains drives intestinal epithelia tumorigenesis. Exuberant cell proliferation is one well-established consequence of oncogenic Wnt pathway activity; however, the contribution of other deregulated molecular circuits to tumorigenesis has not been fully examined. Using in vivo and organoid models of intestinal epithelial tumorigenesis we found that Wnt pathway activity controls intestinal epithelial villi and crypt structure, morphological features lost upon Apc inactivation. Although the Wnt pathway target gene c-Myc (also known as Myc) has critical roles in regulating cell proliferation and tumorigenesis, Apc specification of intestinal epithelial morphology is independent of the Wnt-responsive Myc-335 (also known as Rr21) regulatory element. We further demonstrate that Apc inactivation disrupts the microtubule cytoskeleton and consequently localisation of organelles without affecting the distribution of the actin cytoskeleton and associated components. Our data indicates the direct control over microtubule dynamics by Apc through an independent molecular circuit. Our study stratifies three independent Apc effector pathways in the intestinal epithelial controlling: (1) proliferation, (2) microtubule dynamics and (3) epithelial morphology.This article has an associated First Person interview with the first author of the paper.


Subject(s)
Adenomatous Polyposis Coli Protein , Wnt Signaling Pathway , Adenomatous Polyposis Coli Protein/genetics , Adenomatous Polyposis Coli Protein/metabolism , Carcinogenesis , Cell Proliferation/genetics , Humans , Intestinal Mucosa/metabolism , Mutation/genetics , Wnt Signaling Pathway/genetics
2.
Am J Physiol Cell Physiol ; 320(5): C669-C680, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33356942

ABSTRACT

Microphysiological systems (MPS), often referred to as "organ-on-chips," are microfluidic-based in vitro models that aim to recapitulate the dynamic chemical and mechanical microenvironment of living organs. MPS promise to bridge the gap between in vitro and in vivo models and ultimately improve the translation from preclinical animal studies to clinical trials. However, despite the explosion of interest in this area in recent years, and the obvious rewards for such models that could improve R&D efficiency and reduce drug attrition in the clinic, the pharmaceutical industry has been slow to fully adopt this technology. The ability to extract robust, quantitative information from MPS at scale is a key requirement if these models are to impact drug discovery and the subsequent drug development process. Microscopy imaging remains a core technology that enables the capture of information at the single-cell level and with subcellular resolution. Furthermore, such imaging techniques can be automated, increasing throughput and enabling compound screening. In this review, we discuss a range of imaging techniques that have been applied to MPS of varying focus, such as organoids and organ-chip-type models. We outline the opportunities these technologies can bring in terms of understanding mechanistic biology, but also how they could be used in higher-throughput screens, widening the scope of their impact in drug discovery. We discuss the associated challenges of imaging these complex models and the steps required to enable full exploitation. Finally, we discuss the requirements for MPS, if they are to be applied at a scale necessary to support drug discovery projects.


Subject(s)
Drug Discovery/instrumentation , Lab-On-A-Chip Devices , Microfluidic Analytical Techniques/instrumentation , Microscopy/instrumentation , Single-Cell Analysis/instrumentation , Animals , Automation, Laboratory , Cells, Cultured , High-Throughput Screening Assays/instrumentation , Humans
3.
Anal Chem ; 93(44): 14659-14666, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34694778

ABSTRACT

The cellular thermal shift assay (CETSA) has been used extensively since its introduction to study drug-target engagement within both live cells and cellular lysate. This has proven to be a useful tool in early stage drug discovery and is used to study a wide range of protein classes. We describe the application of a single-cell CETSA workflow within a microfluidic affinity capture (MAC) chip. This has enabled us to quantitatively determine the active FOXO1 single-molecule count and observe FOXO1 stabilization and destabilization in the presence of three small molecule inhibitors, including demonstrating the determination of EC50. The successful use of the MAC chip for single-cell CETSA paves the way for the study of precious clinical samples owing to the low number of cells needed by the chip. It also provides a useful tool for studying any underlying population heterogeneity that exists within a cellular system, a feature that is usually masked when conducting ensemble measurements.


Subject(s)
Drug Discovery , Microfluidics , Proteins
4.
J Microsc ; 284(1): 12-24, 2021 10.
Article in English | MEDLINE | ID: mdl-34081320

ABSTRACT

Identifying nuclei is a standard first step when analysing cells in microscopy images. The traditional approach relies on signal from a DNA stain, or fluorescent transgene expression localised to the nucleus. However, imaging techniques that do not use fluorescence can also carry useful information. Here, we used brightfield and fluorescence images of fixed cells with fluorescently labelled DNA, and confirmed that three convolutional neural network architectures can be adapted to segment nuclei from the brightfield channel, relying on fluorescence signal to extract the ground truth for training. We found that U-Net achieved the best overall performance, Mask R-CNN provided an additional benefit of instance segmentation, and that DeepCell proved too slow for practical application. We trained the U-Net architecture on over 200 dataset variations, established that accurate segmentation is possible using as few as 16 training images, and that models trained on images from similar cell lines can extrapolate well. Acquiring data from multiple focal planes further helps distinguish nuclei in the samples. Overall, our work helps to liberate a fluorescence channel reserved for nuclear staining, thus providing more information from the specimen, and reducing reagents and time required for preparing imaging experiments.


Subject(s)
Image Processing, Computer-Assisted , Neural Networks, Computer , Cell Nucleus
5.
Mol Ther ; 27(11): 1950-1962, 2019 11 06.
Article in English | MEDLINE | ID: mdl-31427168

ABSTRACT

Lipid nanoparticles have great potential for delivering nucleic-acid-based therapeutics, but low efficiency limits their broad clinical translation. Differences in transfection capacity between in vitro models used for nanoparticle pre-clinical testing are poorly understood. To address this, using a clinically relevant lipid nanoparticle (LNP) delivering mRNA, we highlight specific endosomal characteristics in in vitro tumor models that impact protein expression. A 30-cell line LNP-mRNA transfection screen identified three cell lines having low, medium, and high transfection that correlated with protein expression when they were analyzed in tumor models. Endocytic profiling of these cell lines identified major differences in endolysosomal morphology, localization, endocytic uptake, trafficking, recycling, and endolysosomal pH, identified using a novel pH probe. High-transfecting cells showed rapid LNP uptake and trafficking through an organized endocytic pathway to lysosomes or rapid exocytosis. Low-transfecting cells demonstrated slower endosomal LNP trafficking to lysosomes and defective endocytic organization and acidification. Our data establish that efficient LNP-mRNA transfection relies on an early and narrow endosomal escape window prior to lysosomal sequestration and/or exocytosis. Endocytic profiling should form an important pre-clinical evaluation step for nucleic acid delivery systems to inform model selection and guide delivery-system design for improved clinical translation.


Subject(s)
Gene Expression , Lipids/chemistry , Nanoparticles , RNA, Messenger/genetics , Transfection , Cell Line, Tumor , Endocytosis , Endosomes/metabolism , Flow Cytometry , Fluorescent Antibody Technique , Genes, Reporter , Humans , Hydrogen-Ion Concentration , Lysosomes/metabolism , Nanoparticles/chemistry , RNA, Messenger/administration & dosage , Transfection/methods
6.
J Allergy Clin Immunol ; 132(4): 933-41, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23810766

ABSTRACT

BACKGROUND: IL-25 and IL-33 belong to distinct cytokine families, but experimental mouse studies suggest their immunologic functions in type 2 immunity are almost entirely overlapping. However, only polymorphisms in the IL-33 pathway (IL1RL1 and IL33) have been significantly associated with asthma in large-cohort genome-wide association studies. OBJECTIVE: We sought to identify distinct pathways for IL-25 and IL-33 in the lung that might provide insight into their roles in asthma pathogenesis and potential for therapeutic intervention. METHODS: IL-25 receptor-deficient (Il17rb(-/-)), IL-33 receptor-deficient (ST2, Il1rl1(-/-)), and double-deficient (Il17rb(-/-)Il1rl1(-/-)) mice were analyzed in models of allergic asthma. Microarrays, an ex vivo lung slice airway contraction model, and Il13(+/eGFP) mice were then used to identify specific effects of IL-25 and IL-33 administration. RESULTS: Comparison of IL-25 and IL-33 pathway-deficient mice demonstrates that IL-33 signaling plays a more important in vivo role in airways hyperreactivity than IL-25. Furthermore, methacholine-induced airway contraction ex vivo increases after treatment with IL-33 but not IL-25. This is dependent on expression of the IL-33 receptor and type 2 cytokines. Confocal studies with Il13(+/eGFP) mice show that IL-33 more potently induces expansion of IL-13-producing type 2 innate lymphoid cells, correlating with airway contraction. This predominance of IL-33 activity is enforced in vivo because IL-33 is more rapidly expressed and released in comparison with IL-25. CONCLUSION: Our data demonstrate that IL-33 plays a critical role in the rapid induction of airway contraction by stimulating the prompt expansion of IL-13-producing type 2 innate lymphoid cells, whereas IL-25-induced responses are slower and less potent.


Subject(s)
Asthma/physiopathology , Bronchial Hyperreactivity/immunology , Interleukin-13/biosynthesis , Interleukins/immunology , Lymphocytes/immunology , Th2 Cells/immunology , Animals , Asthma/immunology , Bronchial Hyperreactivity/physiopathology , Humans , Interleukin-33 , Interleukins/metabolism , Lung/immunology , Lung/metabolism , Lymphocytes/metabolism , Mice , Mice, Inbred BALB C , Th2 Cells/cytology , Th2 Cells/metabolism
7.
Adv Sci (Weinh) ; 10(33): e2303131, 2023 11.
Article in English | MEDLINE | ID: mdl-37867234

ABSTRACT

The function of the glomerulus depends on the complex cell-cell/matrix interactions and replication of this in vitro would aid biological understanding in both health and disease. Previous models do not fully reflect all cell types and interactions present as they overlook mesangial cells within their 3D matrix. Herein, the development of a microphysiological system that contains all resident renal cell types in an anatomically relevant manner is presented. A detailed transcriptomic analysis of the contributing biology of each cell type, as well as functionally appropriate albumin retention in the system, is demonstrated. The important role of mesangial cells is shown in promoting the health and maturity of the other cell types. Additionally, a comparison of the incremental advances that each individual cell type brings to the phenotype of the others demonstrates that glomerular cells in simple 2D culture exhibit a state more reflective of the dysfunction observed in human disease than previously recognized. This in vitro model will expand the capability to investigate glomerular biology in a more translatable manner by the inclusion of the important mesangial cell compartment.


Subject(s)
Glomerular Mesangium , Microphysiological Systems , Humans , Glomerular Mesangium/metabolism , Kidney , Phenotype
8.
Small Methods ; 7(9): e2201695, 2023 09.
Article in English | MEDLINE | ID: mdl-37317010

ABSTRACT

Poor understanding of intracellular delivery and targeting hinders development of nucleic acid-based therapeutics transported by nanoparticles. Utilizing a siRNA-targeting and small molecule profiling approach with advanced imaging and machine learning biological insights is generated into the mechanism of lipid nanoparticle (MC3-LNP) delivery of mRNA. This workflow is termed Advanced Cellular and Endocytic profiling for Intracellular Delivery (ACE-ID). A cell-based imaging assay and perturbation of 178 targets relevant to intracellular trafficking is used to identify corresponding effects on functional mRNA delivery. Targets improving delivery are analyzed by extracting data-rich phenotypic fingerprints from images using advanced image analysis algorithms. Machine learning is used to determine key features correlating with enhanced delivery, identifying fluid-phase endocytosis as a productive cellular entry route. With this new knowledge, MC3-LNP is re-engineered to target macropinocytosis, and this significantly improves mRNA delivery in vitro and in vivo. The ACE-ID approach can be broadly applicable for optimizing nanomedicine-based intracellular delivery systems and has the potential to accelerate the development of delivery systems for nucleic acid-based therapeutics.


Subject(s)
Endocytosis , Nanoparticles , RNA, Messenger/genetics , Endocytosis/genetics , Biology
9.
J Biol Chem ; 286(15): 13033-40, 2011 Apr 15.
Article in English | MEDLINE | ID: mdl-21335554

ABSTRACT

Dendritic cells are professional antigen-presenting cells that are specialized in antigen uptake and presentation. Allergy to cat has increased substantially in recent years and has been shown to be positively associated with asthma. We have recently shown that the mannose receptor (MR), a C-type lectin expressed by dendritic cells, recognizes various glycoallergens from diverse sources and is involved in promoting allergic responses to a major house dust mite allergen in vitro. Here we investigated the potential role of MR in allergic responses to Fel d 1, a major cat allergen. Fel d 1 binding to MR was confirmed by ELISA. Using blocking, gene silencing (siRNA) experiments, and MR knock-out (MR(-/-)) cells, we have demonstrated that MR plays a major role in internalization of Fel d 1 by human and mouse antigen-presenting cells. Intriguingly, unlike other glycoallergens, recognition of Fel d 1 by MR is mediated by the cysteine-rich domain, which correlates with the presence of sulfated carbohydrates in natural Fel d 1. WT and MR(-/-) mice were used to study the role of MR in allergic sensitization to Fel d 1 in vivo. MR(-/-) mice sensitized with cat dander extract and Fel d 1 produced significantly lower levels of total IgE, Fel d 1-specific-IgE and IgG1, the hallmarks of allergic response, compared with WT mice. Our data show for the first time that Fel d 1 is a novel ligand of the cysteine-rich domain of MR and that MR is likely to play a pivotal role in allergic sensitization to airborne allergens in vivo.


Subject(s)
Asthma/immunology , Dendritic Cells/immunology , Glycoproteins/immunology , Lectins, C-Type/immunology , Mannose-Binding Lectins/immunology , Receptors, Cell Surface/immunology , Animals , Antibody Specificity/immunology , Asthma/genetics , Asthma/metabolism , Cats , Dendritic Cells/metabolism , Gene Silencing , Glycoproteins/metabolism , Glycoproteins/pharmacology , Humans , Immunoglobulin E/immunology , Immunoglobulin E/metabolism , Immunoglobulin G/immunology , Immunoglobulin G/metabolism , Lectins, C-Type/genetics , Lectins, C-Type/metabolism , Mannose Receptor , Mannose-Binding Lectins/genetics , Mannose-Binding Lectins/metabolism , Mice , Mice, Knockout , Protein Binding , Protein Structure, Tertiary , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism
10.
Elife ; 112022 08 30.
Article in English | MEDLINE | ID: mdl-36039640

ABSTRACT

Fascin is an important regulator of F-actin bundling leading to enhanced filopodia assembly. Fascin is also overexpressed in most solid tumours where it supports invasion through control of F-actin structures at the periphery and nuclear envelope. Recently, fascin has been identified in the nucleus of a broad range of cell types but the contributions of nuclear fascin to cancer cell behaviour remain unknown. Here, we demonstrate that fascin bundles F-actin within the nucleus to support chromatin organisation and efficient DDR. Fascin associates directly with phosphorylated Histone H3 leading to regulated levels of nuclear fascin to support these phenotypes. Forcing nuclear fascin accumulation through the expression of nuclear-targeted fascin-specific nanobodies or inhibition of Histone H3 kinases results in enhanced and sustained nuclear F-actin bundling leading to reduced invasion, viability, and nuclear fascin-specific/driven apoptosis. These findings represent an additional important route through which fascin can support tumourigenesis and provide insight into potential pathways for targeted fascin-dependent cancer cell killing.


Subject(s)
Actins , Neoplasms , Actins/metabolism , Carrier Proteins , Cell Survival , Histones , Humans , Microfilament Proteins , Neoplasms/pathology
11.
Commun Biol ; 4(1): 1080, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34526653

ABSTRACT

Non-alcoholic steatohepatitis (NASH) is a common form of chronic liver disease characterised by lipid accumulation, infiltration of immune cells, hepatocellular ballooning, collagen deposition and liver fibrosis. There is a high unmet need to develop treatments for NASH. We have investigated how liver fibrosis and features of advanced clinical disease can be modelled using an in vitro microphysiological system (MPS). The NASH MPS model comprises a co-culture of primary human liver cells, which were cultured in a variety of conditions including+/- excess sugar, fat, exogenous TGFß or LPS. The transcriptomic, inflammatory and fibrotic phenotype of the model was characterised and compared using a system biology approach to identify conditions that mimic more advanced clinical disease. The transcriptomic profile of the model was shown to closely correlate with the profile of patient samples and the model displayed a quantifiable fibrotic phenotype. The effects of Obeticholic acid and Elafibranor, were evaluated in the model, as wells as the effects of dietary intervention, with all able to significantly reduce inflammatory and fibrosis markers. Overall, we demonstrate how the MPS NASH model can be used to model different aspects of clinical NASH but importantly demonstrate its ability to model advanced disease with a quantifiable fibrosis phenotype.


Subject(s)
Liver Cirrhosis/physiopathology , Non-alcoholic Fatty Liver Disease/physiopathology , Animals , Disease Models, Animal , Humans , Mice
12.
Respir Res ; 11: 168, 2010 Dec 02.
Article in English | MEDLINE | ID: mdl-21126331

ABSTRACT

BACKGROUND: Agonist stimulation of airway smooth muscle (ASM) results in IP3 mediated Ca2+ release from the sarcoplasmic reticulum followed by the activation of store operated and receptor operated non-selective cation channels. Activation of these non-selective channels also results in a Na+ influx. This localised increase in Na+ levels can potentially switch the Na+/Ca2+ exchanger into reverse mode and so result in a further influx of Ca2+. The aim of this study was to characterise the expression and physiological function of the Na+/Ca2+ exchanger in cultured human bronchial smooth muscle cells and determine its contribution to agonist induced Ca2+ influx into these cells. METHODS: The expression profile of NCX (which encodes the Na+/Ca2+ exchanger) homologues in cultured human bronchial smooth muscle cells was determined by reverse transcriptase PCR. The functional activity of reverse mode NCX was investigated using a combination of whole cell patch clamp, intracellular Ca2+ measurements and porcine airway contractile analyses. KB-R7943 (an antagonist for reverse mode NCX) and target specific siRNA were utilised as tools to inhibit NCX function. RESULTS: NCX1 protein was detected in cultured human bronchial smooth muscle cells (HBSMC) cells and NCX1.3 was the only mRNA transcript variant detected. A combination of intracellular Na+ loading and addition of extracellular Ca2+ induced an outwardly rectifying current which was augmented following stimulation with histamine. This outwardly rectifying current was inhibited by 10 µM KB-R7943 (an antagonist of reverse mode NCX1) and was reduced in cells incubated with siRNA against NCX1. Interestingly, this outwardly rectifying current was also inhibited following knockdown of STIM1, suggesting for the first time a link between store operated cation entry and NCX1 activation. In addition, 10 µM KB-R7943 inhibited agonist induced changes in cytosolic Ca2+ and induced relaxation of porcine peripheral airways. CONCLUSIONS: Taken together, these data demonstrate a potentially important role for NCX1 in control of Ca2+ homeostasis and link store depletion via STIM1 directly with NCX activation.


Subject(s)
Bronchi/metabolism , Calcium/metabolism , Lung/metabolism , Membrane Proteins/metabolism , Muscle, Smooth/metabolism , Neoplasm Proteins/metabolism , Sodium-Calcium Exchanger/metabolism , Cells, Cultured , Humans , Sodium-Calcium Exchanger/agonists , Stromal Interaction Molecule 1 , Tissue Distribution
13.
SLAS Discov ; 25(6): 646-654, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32394775

ABSTRACT

Genome-wide arrayed CRISPR screening is a powerful method for drug target identification as it enables exploration of the effect of individual gene perturbations using diverse highly multiplexed functional and phenotypic assays. Using high-content imaging, we can measure changes in biomarker expression, intracellular localization, and cell morphology. Here we present the computational pipeline we have developed to support the analysis and interpretation of arrayed CRISPR screens. This includes evaluating the quality of guide RNA libraries, performing image analysis, evaluating assay results quality, data processing, hit identification, ranking, visualization, and biological interpretation.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Computational Biology , High-Throughput Screening Assays/trends , RNA, Guide, Kinetoplastida/genetics , Biomarkers/analysis , Drug Discovery , Gene Library , Genome, Human/genetics , Humans , Molecular Imaging/trends
14.
SLAS Discov ; 25(6): 605-617, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32441189

ABSTRACT

Modified messenger RNAs (mRNAs) hold great potential as therapeutics by using the body's own processes for protein production. However, a key challenge is efficient delivery of therapeutic mRNA to the cell cytosol and productive protein translation. Lipid nanoparticles (LNPs) are the most clinically advanced system for nucleic acid delivery; however, a relatively narrow therapeutic index makes them unsuitable for many therapeutic applications. A key obstacle to the development of more potent LNPs is a limited mechanistic understanding of the interaction of LNPs with cells. To address this gap, we performed an arrayed CRISPR screen to identify novel pathways important for the functional delivery of MC3 lipid-based LNP encapsulated mRNA (LNP-mRNA). Here, we have developed and validated a robust, high-throughput screening-friendly phenotypic assay to identify novel targets that modulate productive LNP-mRNA delivery. We screened the druggable genome (7795 genes) and validated 44 genes that either increased (37 genes) or inhibited (14 genes) the productive delivery of LNP-mRNA. Many of these genes clustered into families involved with host cell transcription, protein ubiquitination, and intracellular trafficking. We show that both UDP-glucose ceramide glucosyltransferase and V-type proton ATPase can significantly modulate the productive delivery of LNP-mRNA, increasing and decreasing, respectively, with both genetic perturbation and by small-molecule inhibition. Taken together, these findings shed new light into the molecular machinery regulating the delivery of LNPs into cells and improve our mechanistic understanding of the cellular processes modulating the interaction of LNPs with cells.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Genetic Therapy/trends , Nanoparticles/chemistry , RNA, Messenger/genetics , Gene Transfer Techniques/trends , Genome, Human/genetics , High-Throughput Screening Assays/methods , Humans , Lipids/chemistry , Lipids/genetics , Lipids/therapeutic use , Nanoparticles/therapeutic use , RNA, Messenger/therapeutic use
15.
Stem Cells Transl Med ; 9(1): 47-60, 2020 01.
Article in English | MEDLINE | ID: mdl-31508905

ABSTRACT

Identification of small molecules with the potential to selectively proliferate cardiac progenitor cells (CPCs) will aid our understanding of the signaling pathways and mechanisms involved and could ultimately provide tools for regenerative therapies for the treatment of post-MI cardiac dysfunction. We have used an in vitro human induced pluripotent stem cell-derived CPC model to screen a 10,000-compound library containing molecules representing different target classes and compounds reported to modulate the phenotype of stem or primary cells. The primary readout of this phenotypic screen was proliferation as measured by nuclear count. We identified retinoic acid receptor (RAR) agonists as potent proliferators of CPCs. The CPCs retained their progenitor phenotype following proliferation and the identified RAR agonists did not proliferate human cardiac fibroblasts, the major cell type in the heart. In addition, the RAR agonists were able to proliferate an independent source of CPCs, HuES6. The RAR agonists had a time-of-differentiation-dependent effect on the HuES6-derived CPCs. At 4 days of differentiation, treatment with retinoic acid induced differentiation of the CPCs to atrial cells. However, after 5 days of differentiation treatment with RAR agonists led to an inhibition of terminal differentiation to cardiomyocytes and enhanced the proliferation of the cells. RAR agonists, at least transiently, enhance the proliferation of human CPCs, at the expense of terminal cardiac differentiation. How this mechanism translates in vivo to activate endogenous CPCs and whether enhancing proliferation of these rare progenitor cells is sufficient to enhance cardiac repair remains to be investigated.


Subject(s)
Myocytes, Cardiac/metabolism , Receptors, Retinoic Acid/agonists , Stem Cells/metabolism , Humans , Phenotype
16.
Mol Cancer Ther ; 19(1): 13-25, 2020 01.
Article in English | MEDLINE | ID: mdl-31534013

ABSTRACT

AZD0156 is a potent and selective, bioavailable inhibitor of ataxia-telangiectasia mutated (ATM) protein, a signaling kinase involved in the DNA damage response. We present preclinical data demonstrating abrogation of irradiation-induced ATM signaling by low doses of AZD0156, as measured by phosphorylation of ATM substrates. AZD0156 is a strong radiosensitizer in vitro, and using a lung xenograft model, we show that systemic delivery of AZD0156 enhances the tumor growth inhibitory effects of radiation treatment in vivo Because ATM deficiency contributes to PARP inhibitor sensitivity, preclinically, we evaluated the effect of combining AZD0156 with the PARP inhibitor olaparib. Using ATM isogenic FaDu cells, we demonstrate that AZD0156 impedes the repair of olaparib-induced DNA damage, resulting in elevated DNA double-strand break signaling, cell-cycle arrest, and apoptosis. Preclinically, AZD0156 potentiated the effects of olaparib across a panel of lung, gastric, and breast cancer cell lines in vitro, and improved the efficacy of olaparib in two patient-derived triple-negative breast cancer xenograft models. AZD0156 is currently being evaluated in phase I studies (NCT02588105).


Subject(s)
Ataxia Telangiectasia Mutated Proteins/therapeutic use , Phthalazines/therapeutic use , Piperazines/therapeutic use , Pyridines/therapeutic use , Quinolines/therapeutic use , Radiation-Sensitizing Agents/therapeutic use , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/radiotherapy , Animals , Ataxia Telangiectasia Mutated Proteins/pharmacology , Cell Line, Tumor , Humans , Male , Mice , Mice, Nude , Phthalazines/pharmacology , Piperazines/pharmacology , Pyridines/pharmacology , Quinolines/pharmacology , Radiation-Sensitizing Agents/pharmacology , Triple Negative Breast Neoplasms/pathology
17.
Lab Chip ; 19(3): 410-421, 2019 01 29.
Article in English | MEDLINE | ID: mdl-30663729

ABSTRACT

Organ-Chips are micro-engineered systems that aim to recapitulate the organ microenvironment. Implementation of Organ-Chips within the pharmaceutical industry aims to improve the probability of success of drugs reaching late stage clinical trial by generating models for drug discovery that are of human origin and have disease relevance. We are adopting the use of Organ-Chips for enhancing pre-clinical efficacy and toxicity evaluation and prediction. Whilst capturing cellular phenotype via imaging in response to drug exposure is a useful readout in these models, application has been limited due to difficulties in imaging the chips at scale. Here we created an end-to-end, automated workflow to capture and analyse confocal images of multicellular Organ-Chips to assess detailed cellular phenotype across large batches of chips. By automating this process, we not only reduced acquisition time, but we also minimised process variability and user bias. This enabled us to establish, for the first time, a framework of statistical best practice for Organ-Chip imaging, creating the capability of using Organ-Chips and imaging for routine testing in drug discovery applications that rely on quantitative image data for decision making. We tested our approach using benzbromarone, whose mechanism of toxicity has been linked to mitochondrial damage with subsequent induction of apoptosis and necrosis, and staurosporine, a tool inducer of apoptosis. We also applied this workflow to assess the hepatotoxic effect of an active AstraZeneca drug candidate illustrating its applicability in drug safety assessment beyond testing tool compounds. Finally, we have demonstrated that this approach could be adapted to Organ-Chips of different shapes and sizes through application to a Kidney-Chip.


Subject(s)
Lab-On-A-Chip Devices , Optical Imaging/instrumentation , Animals , Automation , Drug Evaluation, Preclinical , Humans , Kidney/diagnostic imaging , Kidney/drug effects , Liver/diagnostic imaging , Liver/drug effects , Rats
18.
Am J Respir Cell Mol Biol ; 38(6): 744-9, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18239188

ABSTRACT

The initial bronchoconstrictor response of the asthmatic airway depends on airway smooth muscle (ASM) contraction. Intracellular calcium is a key signaling molecule, mediating a number of responses, including proliferation, gene expression, and contraction of ASM. Ca(2+) influx through receptor-operated calcium (ROC) or store-operated calcium (SOC) channels is believed to mediate longer term signals. The mechanisms of SOC activation in ASM remain to be elucidated. Recent literature has identified the STIM and ORAI proteins as key signaling players in the activation of the SOC subtype; calcium release-activated channel current (I(CRAC)) in a number of inflammatory cell types. However, the role for these proteins in activation of SOC in smooth muscle is unclear. We have previously demonstrated a role for STIM1 in SOC channel activation in human ASM. The aim of this study was to investigate the expression and define the potential roles of the ORAI proteins in SOC-associated Ca(2+) influx in human ASM cells. Here we show that knockdown of ORAI1 by siRNA resulted in reduced thapsigargin- or cyclopiazonic acid (CPA)-induced Ca(2+) influx, without affecting Ca(2+) release from stores or basal levels. CPA-induced inward currents were also reduced in the ORAI1 knockdown cells. We propose that ORAI1 together with STIM1 are important contributors to SOC entry in ASM cells. These data extend the major tissue types in which these proteins appear to be major determinants of SOC influx, and suggest that modulation of these pathways may prove useful in the treatment of bronchoconstriction.


Subject(s)
Calcium Channels/metabolism , Calcium Signaling/physiology , Calcium/metabolism , Myocytes, Smooth Muscle/metabolism , Respiratory System/anatomy & histology , Asthma/metabolism , Calcium Channels/genetics , Cells, Cultured , Enzyme Inhibitors/metabolism , Humans , Indoles/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Muscle Contraction/physiology , Myocytes, Smooth Muscle/cytology , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , ORAI1 Protein , Patch-Clamp Techniques , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Respiratory System/metabolism , Stromal Interaction Molecule 1 , Thapsigargin/metabolism
19.
Respir Res ; 8: 68, 2007 Sep 28.
Article in English | MEDLINE | ID: mdl-17903241

ABSTRACT

BACKGROUND: Airway hyper-responsiveness (AHR) is a key feature of asthma and a causal relationship between airway inflammation and AHR has been identified. The aim of the current study was to clarify the effect of proinflammatory cytokines and asthma medication on primary human airway smooth muscle (ASM) inositol phosphate (IPx) signalling and define the regulatory loci involved. METHODS: Primary Human ASM cells were isolated from explants of trachealis muscle from individuals with no history of respiratory disease. The effect of cytokine or asthma medication on histamine or bradykinin induced IPx signalling was assessed by [3H] inositol incorporation. Quantitative Real Time PCR was used to measure mRNA levels of receptors and downstream signalling components. Transcriptional mechanisms were explored using a combination of 5'Rapid Amplification of cDNA Ends (5'RACE) and promoter-reporter techniques. RESULTS: Treatment of Human ASM cells with IL-13, IFN gamma or salmeterol for 24 hours lead to a modest augmentation of histamine induced IPx responses (144.3 +/- 9.3, 126.4 +/- 7.5 and 117.7 +/- 5.2%, p < 0.05). Similarly, TNFalpha, IFN gamma or salmeterol treatment augmented bradykinin induced IPx responses (127.4 +/- 8.3, 128.0 +/- 8.4 and 111.7 +/- 5.0%, P < 0.05). No treatment significantly influenced sodium fluoride induced IPx responses suggesting regulation occurs at the receptor locus. Analyses of mRNA expression of components of the IPx pathway i.e. H1 Histamine Receptor (HRH1), B2 Bradykinin Receptor (BDKRB2), G alpha q/11 and PLC-beta1 identified that a significant induction of receptor mRNA (>2 fold) was a feature of these responses explaining the cytokine and spasmogen specificity. The HRH1 and BDKRB2 promoter regions were mapped in ASM and promoter-reporter analyses identified that salmeterol can induce HRH1 (>2 fold) and BDKRB2 (2-5 fold) transcription. The effect of cytokines on HRH1 and BDKRB2 promoter-reporter expression suggested a more complex regulation of mRNA expression involving additional loci to the core promoter. CONCLUSION: Our results indicate that the spasmogen specific receptor locus may be a key site of regulation determining the magnitude of spasmogen mediated ASM IPx responses during airway inflammation or following asthma medication. These data provide further insight into the molecular basis of AHR and extend our understanding of potentially detrimental effects associated with existing therapies used in the treatment of asthma.


Subject(s)
Albuterol/analogs & derivatives , Bronchodilator Agents/pharmacology , Cytokines/pharmacology , Inositol Phosphates/physiology , Muscle, Smooth/physiology , Receptors, Cytokine/physiology , Trachea/physiology , Albuterol/pharmacology , Gene Expression Regulation/drug effects , Humans , Muscle, Smooth/drug effects , Polymerase Chain Reaction , RNA, Messenger/drug effects , RNA, Messenger/genetics , Receptors, Cytokine/drug effects , Receptors, Cytokine/genetics , Salmeterol Xinafoate , Signal Transduction/drug effects , Signal Transduction/physiology , Trachea/drug effects , Transcription, Genetic
20.
Respir Res ; 7: 119, 2006 Sep 20.
Article in English | MEDLINE | ID: mdl-16987424

ABSTRACT

BACKGROUND: Control of cytosolic calcium plays a key role in airway myocyte function. Changes in intracellular Ca2+ stores can modulate contractile responses, modulate proliferation and regulate synthetic activity. Influx of Ca2+ in non excitable smooth muscle is believed to be predominantly through store operated channels (SOC) or receptor operated channels (ROC). Whereas agonists can activate both SOC and ROC in a range of smooth muscle types, the specific trigger for SOC activation is depletion of the sarcoplasmic reticulum Ca2+ stores. The mechanism underlying SOC activation following depletion of intracellular Ca2+ stores in smooth muscle has not been identified. METHODS: To investigate the roles of the STIM homologues in SOC activation in airway myocytes, specific siRNA sequences were utilised to target and selectively suppress both STIM1 and STIM2. Quantitative real time PCR was employed to assess the efficiency and the specificity of the siRNA mediated knockdown of mRNA. Activation of SOC was investigated by both whole cell patch clamp electrophysiology and a fluorescence based calcium assay. RESULTS: Transfection of 20 nM siRNA specific for STIM1 or 2 resulted in robust decreases (>70%) of the relevant mRNA. siRNA targeted at STIM1 resulted in a reduction of SOC associated Ca2+ influx in response to store depletion by cyclopiazonic acid (60%) or histamine but not bradykinin. siRNA to STIM2 had no effect on these responses. In addition STIM1 suppression resulted in a more or less complete abrogation of SOC associated inward currents assessed by whole cell patch clamp. CONCLUSION: Here we show that STIM1 acts as a key signal for SOC activation following intracellular Ca2+ store depletion or following agonist stimulation with histamine in human airway myocytes. These are the first data demonstrating a role for STIM1 in a physiologically relevant, non-transformed endogenous expression cell model.


Subject(s)
Calcium Channels/metabolism , Membrane Proteins/physiology , Muscle, Smooth/metabolism , Neoplasm Proteins/physiology , Respiratory Mucosa/metabolism , Bronchi/metabolism , Calcium Channels/genetics , Cell Adhesion Molecules , Cells, Cultured , Humans , Membrane Proteins/genetics , Neoplasm Proteins/genetics , RNA, Small Interfering/biosynthesis , RNA, Small Interfering/genetics , Stromal Cells/metabolism , Stromal Interaction Molecule 1 , Stromal Interaction Molecule 2
SELECTION OF CITATIONS
SEARCH DETAIL