Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Glycobiology ; 34(2)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38048640

ABSTRACT

The emergence of SARS-CoV-2 variants alters the efficacy of existing immunity towards the viral spike protein, whether acquired from infection or vaccination. Mutations that impact N-glycosylation of spike may be particularly important in influencing antigenicity, but their consequences are difficult to predict. Here, we compare the glycosylation profiles and antigenicity of recombinant viral spike of ancestral Wu-1 and the Gamma strain, which has two additional N-glycosylation sites due to amino acid substitutions in the N-terminal domain (NTD). We found that a mutation at residue 20 from threonine to asparagine within the NTD caused the loss of NTD-specific antibody COVA2-17 binding. Glycan site-occupancy analyses revealed that the mutation resulted in N-glycosylation switching to the new sequon at N20 from the native N17 site. Site-specific glycosylation profiles demonstrated distinct glycoform differences between Wu-1, Gamma, and selected NTD variant spike proteins, but these did not affect antibody binding. Finally, we evaluated the specificity of spike proteins against convalescent COVID-19 sera and found reduced cross-reactivity against some mutants, but not Gamma spike compared to Wuhan spike. Our results illustrate the impact of viral divergence on spike glycosylation and SARS-CoV-2 antibody binding profiles.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Glycosylation , Spike Glycoprotein, Coronavirus , Antibodies, Viral
2.
Anal Chem ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38935274

ABSTRACT

Tandem mass spectrometry coupled with liquid chromatography (LC-MS/MS) has proven a versatile tool for the identification and quantification of proteins and their post-translational modifications (PTMs). Protein glycosylation is a critical PTM for the stability and biological function of many proteins, but full characterization of site-specific glycosylation of proteins remains analytically challenging. Collision-induced dissociation (CID) is the most common fragmentation method used in LC-MS/MS workflows, but the loss of labile modifications renders CID inappropriate for detailed characterization of site-specific glycosylation. Electron-based dissociation methods provide alternatives that retain intact glycopeptide fragments for unambiguous site localization, but these methods often underperform CID due to increased reaction times and reduced efficiency. Electron-activated dissociation (EAD) is another strategy for glycopeptide fragmentation. Here, we use a ZenoTOF 7600 SCIEX instrument to compare the performance of various fragmentation techniques for the analysis of a complex mixture of mammalian O- and N-glycopeptides. We found CID fragmentation identified the most glycopeptides and generally produced higher quality spectra, but EAD provided improved confidence in glycosylation site localization. Supplementing EAD with CID fragmentation (EAciD) further increased the number and quality of glycopeptide identifications, while retaining localization confidence. These methods will be useful for glycoproteomics workflows for either optimal glycopeptide identification or characterization.

3.
Nat Methods ; 18(11): 1304-1316, 2021 11.
Article in English | MEDLINE | ID: mdl-34725484

ABSTRACT

Glycoproteomics is a powerful yet analytically challenging research tool. Software packages aiding the interpretation of complex glycopeptide tandem mass spectra have appeared, but their relative performance remains untested. Conducted through the HUPO Human Glycoproteomics Initiative, this community study, comprising both developers and users of glycoproteomics software, evaluates solutions for system-wide glycopeptide analysis. The same mass spectrometrybased glycoproteomics datasets from human serum were shared with participants and the relative team performance for N- and O-glycopeptide data analysis was comprehensively established by orthogonal performance tests. Although the results were variable, several high-performance glycoproteomics informatics strategies were identified. Deep analysis of the data revealed key performance-associated search parameters and led to recommendations for improved 'high-coverage' and 'high-accuracy' glycoproteomics search solutions. This study concludes that diverse software packages for comprehensive glycopeptide data analysis exist, points to several high-performance search strategies and specifies key variables that will guide future software developments and assist informatics decision-making in glycoproteomics.


Subject(s)
Glycopeptides/blood , Glycoproteins/blood , Informatics/methods , Proteome/analysis , Proteomics/methods , Research Personnel/statistics & numerical data , Software , Glycosylation , Humans , Proteome/metabolism , Tandem Mass Spectrometry
4.
Crit Rev Microbiol ; : 1-19, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37934111

ABSTRACT

Acute respiratory infections (ARIs) are amongst the leading causes of death and disability, and the greatest burden of disease impacts children, pregnant women, and the elderly. Respiratory viruses account for the majority of ARIs. The unfolded protein response (UPR) is a host homeostatic defence mechanism primarily activated in response to aberrant endoplasmic reticulum (ER) resident protein accumulation in cell stresses including viral infection. The UPR has been implicated in the pathogenesis of several respiratory diseases, as the respiratory system is particularly vulnerable to chronic and acute activation of the ER stress response pathway. Many respiratory viruses therefore employ strategies to modulate the UPR during infection, with varying effects on the host and the pathogens. Here, we review the specific means by which respiratory viruses affect the host UPR, particularly in association with the high production of viral glycoproteins, and the impact of UPR activation and subversion on viral replication and disease pathogenesis. We further review the activation of UPR in common co-morbidities of ARIs and discuss the therapeutic potential of modulating the UPR in virally induced respiratory diseases.

5.
Mol Ecol ; 32(1): 37-44, 2023 01.
Article in English | MEDLINE | ID: mdl-36217579

ABSTRACT

The sugars that coat the outsides of viruses and host cells are key to successful disease transmission, but they remain understudied compared to other molecular features. Understanding the comparative zoology of glycosylation - and harnessing it for predictive science - could help close the molecular gap in zoonotic risk assessment.


Subject(s)
Virome , Viruses , Glycosylation , Viruses/genetics
6.
Crit Rev Biotechnol ; 43(3): 484-502, 2023 May.
Article in English | MEDLINE | ID: mdl-35430942

ABSTRACT

Appropriate treatment of Hemophilia B is vital for patients' quality of life. Historically, the treatment used was the administration of coagulation Factor IX derived from human plasma. Advancements in recombinant technologies allowed Factor IX to be produced recombinantly. Successful recombinant production has triggered a gradual shift from the plasma derived origins of Factor IX, as it provides extended half-life and expanded production capacity. However, the complex post-translational modifications of Factor IX have made recombinant production at scale difficult. Considerable research has therefore been invested into understanding and optimizing the recombinant production of Factor IX. Here, we review the evolution of recombinant Factor IX production, focusing on recent developments in bioprocessing and cell engineering to control its post-translational modifications in its expression from Chinese Hamster Ovary (CHO) cells.


Subject(s)
Factor IX , Quality of Life , Cricetinae , Animals , Humans , Factor IX/metabolism , Cricetulus , Recombinant Proteins/metabolism , CHO Cells , Cell Engineering
7.
Mol Cell Proteomics ; 20: 100020, 2021.
Article in English | MEDLINE | ID: mdl-32938748

ABSTRACT

Sparkling wine is an alcoholic beverage enjoyed around the world. The sensory properties of sparkling wine depend on a complex interplay between the chemical and biochemical components in the final product. Glycoproteins have been linked to positive and negative qualities in sparkling wine, but the glycosylation profiles of sparkling wine have not been previously investigated in detail. We analyzed the glycoproteome of sparkling wines using protein- and glycopeptide-centric approaches. We developed an automated workflow that created ion libraries to analyze sequential window acquisition of all theoretical mass spectra data-independent acquisition mass spectrometry data based on glycopeptides identified by Byonic (Protein Metrics; version 2.13.17). We applied our workflow to three pairs of experimental sparkling wines to assess the effects of aging on lees and of different yeast strains used in the liqueur de tirage for secondary fermentation. We found that aging a cuvée on lees for 24 months compared with 8 months led to a dramatic decrease in overall protein abundance and an enrichment in large glycans at specific sites in some proteins. Secondary fermentation of a Riesling wine with Saccharomyces cerevisiae yeast strain Siha4 produced more yeast proteins and glycoproteins than with S. cerevisiae yeast strain DV10. The abundance and glycosylation profiles of grape glycoproteins were also different between grape varieties. To our knowledge, this work represents the first in-depth study into protein- and peptide-specific glycosylation in sparkling wines and describes a quantitative glycoproteomic sequential window acquisition of all theoretical mass spectra/data-independent acquisition workflow that is broadly applicable to other sample types.


Subject(s)
Fungal Proteins/analysis , Glycopeptides/analysis , Glycoproteins/analysis , Plant Proteins/analysis , Saccharomyces cerevisiae , Vitis/chemistry , Wine/analysis , Fermentation , Fungal Proteins/metabolism , Glycopeptides/metabolism , Glycoproteins/metabolism , Glycosylation , Plant Proteins/metabolism , Polysaccharides/metabolism , Proteomics , Saccharomyces cerevisiae/metabolism
8.
Proteomics ; 22(15-16): e2100329, 2022 08.
Article in English | MEDLINE | ID: mdl-35716130

ABSTRACT

Beer and wine are fermented beverages that contain abundant proteins released from barley or grapes, and secreted from yeast. These proteins are associated with many quality attributes including turbidity, foamability, effervescence, flavour and colour. Many grape proteins and secreted yeast proteins are glycosylated, and barley proteins can be glycated under the high temperatures in the beer making process. The emergence of high-resolution mass spectrometry has allowed proteomic and glycoproteomic analyses of these complex mixtures of proteins towards understanding their role in determining beer and wine attributes. In this review, we summarise recent studies of proteomic and glycoproteomic analyses of beer and wine including their strategies for mass spectrometry (MS)-based identification, quantification and characterisation of the glyco/proteomes of fermented beverages to control product quality.


Subject(s)
Hordeum , Vitis , Wine , Beer/analysis , Fungal Proteins/analysis , Proteomics/methods , Saccharomyces cerevisiae , Wine/analysis
9.
J Cell Sci ; 133(6)2020 03 26.
Article in English | MEDLINE | ID: mdl-32005703

ABSTRACT

The endoplasmic reticulum (ER)-resident intramembrane rhomboid protease RHBDL4 generates metastable protein fragments and together with the ER-associated degradation (ERAD) machinery provides a clearance mechanism for aberrant and surplus proteins. However, the endogenous substrate spectrum and with that the role of RHBDL4 in physiological ERAD is mainly unknown. Here, we use a substrate trapping approach in combination with quantitative proteomics to identify physiological RHBDL4 substrates. This revealed oligosaccharyltransferase (OST) complex subunits such as the catalytic active subunit STT3A as substrates for the RHBDL4-dependent ERAD pathway. RHBDL4-catalysed cleavage inactivates OST subunits by triggering dislocation into the cytoplasm and subsequent proteasomal degradation. RHBDL4 thereby controls the abundance and activity of OST, suggesting a novel link between the ERAD machinery and glycosylation tuning.


Subject(s)
Endoplasmic Reticulum-Associated Degradation , Hexosyltransferases , Membrane Proteins , Hexosyltransferases/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Peptide Hydrolases/metabolism
10.
Biochem Biophys Res Commun ; 553: 72-77, 2021 05 14.
Article in English | MEDLINE | ID: mdl-33756348

ABSTRACT

Germin and germin-like proteins (GLPs) are a broad family of extracellular glycoproteins ubiquitously distributed in plants. Overexpression of Oryza sativa root germin like protein 1 (OsRGLP1) enhances superoxide dismutase (SOD) activity in transgenic plants. Here, we report bioinformatic analysis and heterologous expression of OsRGLP1 to study the role of glycosylation on OsRGLP1 protein stability and activity. Sequence analysis of OsRGLP1 homologs identified diverse N-glycosylation sequons, one of which was highly conserved. We therefore expressed OsRGLP1 in glycosylation-competent Saccharomyces cerevisiae as a Maltose Binding Protein (MBP) fusion. Mass spectrometry analysis of purified OsRGLP1 showed it was expressed by S. cerevisiae in both N-glycosylated and unmodified forms. Glycoprotein thermal profiling showed little difference in the thermal stability of the glycosylated and unmodified protein forms. Circular Dichroism spectroscopy of MBP-OsRGLP1 and a N-Q glycosylation-deficient variant showed that both glycosylated and unmodified MBP-OsRGLP1 had similar secondary structure, and both forms had equivalent SOD activity. Together, we concluded that glycosylation was not critical for OsRGLP1 protein stability or activity, and it could therefore likely be produced in Escherichia coli without glycosylation. Indeed, we found that OsRGLP1 could be efficiently expressed and purified from K12 shuffle E. coli with a specific activity of 1251 ± 70 Units/mg. In conclusion, we find that some highly conserved N-glycosylation sites are not necessarily required for protein stability or activity, and describe a suitable method for production of OsRGLP1 which paves the way for further characterization and use of this protein.


Subject(s)
Conserved Sequence , Glycoproteins/chemistry , Glycoproteins/metabolism , Oryza/metabolism , Plant Proteins/chemistry , Plant Proteins/metabolism , Plant Roots/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Glycoproteins/genetics , Glycoproteins/isolation & purification , Glycosylation , Oryza/chemistry , Plant Proteins/genetics , Plant Proteins/isolation & purification , Plant Roots/chemistry , Protein Stability , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/isolation & purification , Recombinant Fusion Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Superoxide Dismutase/chemistry , Superoxide Dismutase/genetics , Superoxide Dismutase/isolation & purification , Superoxide Dismutase/metabolism
11.
Biochem Biophys Res Commun ; 524(3): 555-560, 2020 04 09.
Article in English | MEDLINE | ID: mdl-32014252

ABSTRACT

The New Delhi metallo-ß-lactamase (NDM-1) mediates resistance to ß-lactam antibiotics. NDM-1 was likely formed as the result of a gene fusion between sequences encoding the first six amino acids of cytoplasm-localised aminoglycosidase, AphA6, and a periplasmic metallo-ß -lactamase. We show that NDM-1 has an atypical signal peptide and is inefficiently secreted. Two new blaNDM-1 alleles that have polymorphisms in the signal peptide; NDM-1(P9R), a proline to arginine substitution, and NDM-2, a proline to alanine substitution (P28A) were studied. Here, we show that both the P9R and P28A substitutions improve secretion compared to NDM-1 and display higher resistance to some ß-lactam antibiotics. Mass spectrometry analysis of these purified NDM proteins showed that the P28A mutation in NDM-2 creates new signal peptide cleavage sites at positions 27 and 28. For NDM-1, we detected a signal peptide cleavage site between L21/M22 of the precursor protein. We find no evidence that NDM-1 is a lipoprotein, as has been reported elsewhere. In addition, expression of NDM-2 improves the fitness of E. coli, compared to NDM-1, in the absence of antibiotic selection. This study shows how optimization of the secretion efficiency of NDM-1 leads to increased resistance and increased fitness.


Subject(s)
Alleles , Evolution, Molecular , Genetic Fitness , Klebsiella/enzymology , Klebsiella/genetics , Selection, Genetic , beta-Lactamases/genetics , Amino Acid Sequence , Animals , Drug Resistance, Microbial/genetics , Mice , Microbial Sensitivity Tests , Protein Sorting Signals , beta-Lactamases/chemistry
13.
Anal Biochem ; 596: 113625, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32088200

ABSTRACT

Polysialylation is the enzymatic addition of a highly negatively charged sialic acid polymer to the non-reducing termini of glycans. Polysialylation plays an important role in development, and is involved in neurological diseases, neural tissue regeneration, and cancer. Polysialic acid (PSA) is also a biodegradable and non-immunogenic conjugate to therapeutic drugs to improve their pharmacokinetics. PSA chains vary in length, composition, and linkages, while the specific sites of polysialylation are important determinants of protein function. However, PSA is difficult to analyse by mass spectrometry (MS) due to its high negative charge and size. Most analytical approaches for analysis of PSA measure its degree of polymerization and monosaccharide composition, but do not address the key questions of site specificity and occupancy. Here, we developed a high-throughput LC-ESI-MS/MS glycoproteomics method to measure site-specific polysialylation of glycoproteins. This method measures site-specific PSA modification by using mild acid hydrolysis to eliminate PSA and sialic acids while leaving the glycan backbone intact, together with protease digestion followed by LC-ESI-MS/MS glycopeptide detection. PSA-modified glycopeptides are not detectable by LC-ESI-MS/MS, but become detectable after desialylation, allowing measurement of site-specific PSA occupancy. This method is an efficient analytical workflow for the study of glycoprotein polysialylation in biological and therapeutic settings.


Subject(s)
Glycoproteins/analysis , Proteomics , Sialic Acids/analysis , Glycoproteins/metabolism , Humans , Mass Spectrometry , Polysaccharides/metabolism , Sialic Acids/metabolism , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry
14.
Glycoconj J ; 37(4): 471-483, 2020 08.
Article in English | MEDLINE | ID: mdl-32378017

ABSTRACT

Human Factor IX is a highly post-translationally modified protein that is an important clotting factor in the blood coagulation cascade. Functional deficiencies in Factor IX result in the bleeding disorder haemophilia B, which is treated with plasma-derived or recombinant Factor IX concentrates. Here, we investigated the post-translational modifications of human serum-derived Factor IX and report previously undescribed O-linked monosaccharide compositions at serine 141 and a novel site of glycosylation. At serine 141 we observed two monosaccharide compositions, with HexNAc1Hex1NeuAc2 dominant and a low level of HexNAc1Hex1NeuAc1. This O-linked site lies N-terminal to the first cleavage site for the activation peptide, an important region of the protein that is removed to activate Factor IX. The novel site is an N-linked site in the serine protease domain with low occupancy in a non-canonical consensus motif at asparagine 258, observed with a HexNAc4Hex5NeuAc2 monosaccharide composition attached. This is the first reported instance of a site of modification in the serine protease domain. The description of these glycosylation events provides a basis for future functional studies and contributes to structural characterisation of native Factor IX for the production of effective therapeutic biosimilars and biobetters.


Subject(s)
Factor IX/metabolism , Factor IX/analysis , Factor IX/isolation & purification , Glycosylation , Humans , Mass Spectrometry , Monosaccharides/analysis , Protein Processing, Post-Translational , Proteomics/methods , Serine/metabolism
15.
Beilstein J Org Chem ; 16: 2127-2135, 2020.
Article in English | MEDLINE | ID: mdl-32952729

ABSTRACT

Mass spectrometry glycoproteomics is rapidly maturing, allowing unprecedented insights into the diversity and functions of protein glycosylation. However, quantitative glycoproteomics remains challenging. We developed GlypNirO, an automated software pipeline which integrates the complementary outputs of Byonic and Proteome Discoverer to allow high-throughput automated quantitative glycoproteomic data analysis. The output of GlypNirO is clearly structured, allowing manual interrogation, and is also appropriate for input into diverse statistical workflows. We used GlypNirO to analyse a published plasma glycoproteome dataset and identified changes in site-specific N- and O-glycosylation occupancy and structure associated with hepatocellular carcinoma as putative biomarkers of disease.

16.
Glycoconj J ; 34(2): 181-197, 2017 04.
Article in English | MEDLINE | ID: mdl-27928741

ABSTRACT

Members of the Avulavirus, Respirovirus and Rubulavirus genera of the Paramyxoviridae family of viruses utilise haemagglutinin-neuraminidase glycoproteins as their attachment proteins. These glycoproteins are oligomeric type II integral membrane proteins, which possess haemagglutination and sialidase activity. Previous studies have shown that the N-linked glycans present on these proteins can modulate the ability of the virus to infect host cells and stimulate the host immune system. However, site-specific heterogeneity of these glycans has not been defined. This study concerns characterisation of the glycan compositions attached to haemagglutinin-neuraminidase of the Avulavirus Newcastle disease virus, which causes Newcastle disease in a range of avian species. Haemagglutinin-neuraminidase was derived from egg propagated virions of V4-VAR, an isolate of the avirulent strain QLD/66. Reverse-phase liquid chromatography tandem mass spectrometry strategies including collision induced dissociation, higher-energy collision dissociation and electron-transfer dissociation were implemented to characterise glycopeptides from the haemagglutinin-neuraminidase protein. Overall 63, 58, and 37 glycan compositions were identified at asparagine residues 341, 433 and 481, respectively. N-linked sites 433 and 481 were observed to contain high mannose glycans with paucimannose glycans also observed at site 481. Asparagine residues 341, 433 and 481 contained complex or hybrid glycans with many of the compositions containing variations of fucose and sulfate or phosphate. Sialyation of complex or hybrid N-linked glycans was additionally observed at sites 341 and 433. In addition, a previously undocumented O-linked glycopeptide was identified from the stalk domain of the haemagglutinin-neuraminidase protein. These finding will form the basis for future quantitative glycomic studies of the distribution of glycan structures across N-linked glycosylation sites of Newcastle disease virus haemagglutinin-neuraminidase and assessment of the functional significance of the O-linked glycan in the stalk domain of this protein.


Subject(s)
HN Protein/metabolism , Newcastle disease virus/metabolism , Polysaccharides/metabolism , Animals , Chick Embryo , Chickens , Glycosylation , HN Protein/chemistry , Newcastle disease virus/chemistry , Polysaccharides/chemistry
17.
Biochem Pharmacol ; 219: 115932, 2024 01.
Article in English | MEDLINE | ID: mdl-37989413

ABSTRACT

Bitter taste receptors (T2R) are a subfamily of G protein-coupled receptors that enable humans to detect aversive and toxic substances. The ability to discern bitter compounds varies between individuals and is attributed mainly to naturally occurring T2R polymorphisms. T2Rs are also expressed in numerous non-gustatory tissues, including the heart, indicating potential contributions to cardiovascular physiology. In this study. T2Rs that have previously been identified in human cardiac tissues (T2Rs - 10, 14, 30, 31, 46 and 50) and their naturally occurring polymorphisms were functionally characterised. The ligand-dependent signaling responses of some T2R variants were completely abolished (T2R30 Leu252 and T2R46 Met228), whereas other receptor variants had moderate changes in their maximal response, but not potency, relative to wild type. Using a cAMP fluorescent biosensor, we reveal the productive coupling of T2R14, but not the T2R14 Phe201 variant, to endogenous Gαi. Modeling revealed that these variants resulted in altered interactions that generally affected ligand binding (T2R30 Leu252) or Gα protein interactions (T2R46 Met228 and T2R14 Phe201), rather than receptor structural stability. Interestingly, this study is the first to show a difference in signaling for T2R50 Tyr203 (rs1376251) which has been associated with cardiovascular disease. The observation of naturally occurring functional variation in the T2Rs with the greatest expression in the heart is important, as their discovery should prove useful in deciphering the role of T2Rs within the cardiovascular system.


Subject(s)
Receptors, G-Protein-Coupled , Taste , Humans , Taste/physiology , Ligands , Receptors, G-Protein-Coupled/metabolism , Signal Transduction
18.
IUCrJ ; 11(Pt 3): 299-308, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38512773

ABSTRACT

Bacterial ABC toxin complexes (Tcs) comprise three core proteins: TcA, TcB and TcC. The TcA protein forms a pentameric assembly that attaches to the surface of target cells and penetrates the cell membrane. The TcB and TcC proteins assemble as a heterodimeric TcB-TcC subcomplex that makes a hollow shell. This TcB-TcC subcomplex self-cleaves and encapsulates within the shell a cytotoxic `cargo' encoded by the C-terminal region of the TcC protein. Here, we describe the structure of a previously uncharacterized TcC protein from Yersinia entomophaga, encoded by a gene at a distant genomic location from the genes encoding the rest of the toxin complex, in complex with the TcB protein. When encapsulated within the TcB-TcC shell, the C-terminal toxin adopts an unfolded and disordered state, with limited areas of local order stabilized by the chaperone-like inner surface of the shell. We also determined the structure of the toxin cargo alone and show that when not encapsulated within the shell, it adopts an ADP-ribosyltransferase fold most similar to the catalytic domain of the SpvB toxin from Salmonella typhimurium. Our structural analysis points to a likely mechanism whereby the toxin acts directly on actin, modifying it in a way that prevents normal polymerization.


Subject(s)
Bacterial Proteins , Bacterial Toxins , Yersinia , Yersinia/genetics , Bacterial Toxins/chemistry , Bacterial Toxins/genetics , Bacterial Toxins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/chemistry , ATP-Binding Cassette Transporters/metabolism , Models, Molecular , Crystallography, X-Ray
19.
Nat Commun ; 14(1): 3577, 2023 06 16.
Article in English | MEDLINE | ID: mdl-37328468

ABSTRACT

In August 2022, a novel henipavirus (HNV) named Langya virus (LayV) was isolated from patients with severe pneumonic disease in China. This virus is closely related to Mòjiang virus (MojV), and both are divergent from the bat-borne HNV members, Nipah (NiV) and Hendra (HeV) viruses. The spillover of LayV is the first instance of a HNV zoonosis to humans outside of NiV and HeV, highlighting the continuing threat this genus poses to human health. In this work, we determine the prefusion structures of MojV and LayV F proteins via cryogenic electron microscopy to 2.66 and 3.37 Å, respectively. We show that despite sequence divergence from NiV, the F proteins adopt an overall similar structure but are antigenically distinct as they do not react to known antibodies or sera. Glycoproteomic analysis revealed that while LayV F is less glycosylated than NiV F, it contains a glycan that shields a site of vulnerability previously identified for NiV. These findings explain the distinct antigenic profile of LayV and MojV F, despite the extent to which they are otherwise structurally similar to NiV. Our results carry implications for broad-spectrum HNV vaccines and therapeutics, and indicate an antigenic, yet not structural, divergence from prototypical HNVs.


Subject(s)
Henipavirus Infections , Henipavirus , Nipah Virus , Humans , Glycoproteins/metabolism , Viral Proteins/metabolism , Nipah Virus/metabolism
20.
Parasit Vectors ; 15(1): 59, 2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35180893

ABSTRACT

BACKGROUND: A subset of Australians who have been bitten by ticks experience a complex of chronic and debilitating symptoms which cannot be attributed to the known pathogenic species of bacteria present in Australia. As a result, there has been a renewed effort to identify and characterise viruses in Australian terrestrial ticks. Recent transcriptome sequencing of Ixodes and Amblyomma ticks has revealed the presence of multiple virus sequences. However, without virus isolates our ability to understand the host range and pathogenesis of newly identified viruses is limited. We have established a successful method for high-throughput virus discovery and isolation in mosquitoes using antibodies to double-stranded RNA. In this study we sought to characterise five archival tick-borne viruses to adapt our virus discovery protocol for Australian ticks. METHODS: We performed virus characterisation using a combination of bioinformatic sequence analysis and in vitro techniques including replication kinetics, antigenic profiling, virus purification and mass spectrometry. RESULTS: Our sequence analysis of Nugget virus, Catch-me-Cave virus and Finch Creek virus revealed marked genetic stability in isolates collected from the same location approximately 30 years apart. We demonstrate that the Ixodes scapularis-derived ISE6 cell line supports replication of Australian members of the Flaviviridae, Nairoviridae, Phenuiviridae and Reoviridae families, including Saumarez Reef virus (SREV), a flavivirus isolated from the soft tick Ornithodoros capensis. While antibodies against double-stranded RNA could be used to detect replication of a tick-borne reovirus and mosquito-borne flavivirus, the tick-borne flaviviruses Gadgets Gully virus and SREV could not be detected using this method. Finally, four novel virus-like sequences were identified in transcriptome sequencing of the Australian native tick Ixodes holocyclus. CONCLUSIONS: Genetic and antigenic characterisations of archival viruses in this study confirm that three viruses described in 2002 represent contemporary isolates of virus species first identified 30 years prior. Our findings with antibodies to double-stranded RNA highlight an unusual characteristic shared by two Australian tick-borne flaviviruses. Finally, comparative growth kinetics analyses of Australian tick-borne members of the Flaviviridae, Nairoviridae, Phenuiviridae and Reoviridae families in ISE6 and BSR cells will provide a useful resource for isolation of Australian tick-borne viruses using existing cell lines.


Subject(s)
Flavivirus , Ixodes , RNA Viruses , Animals , Australia , DNA Viruses , Humans , Ixodes/genetics
SELECTION OF CITATIONS
SEARCH DETAIL