Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 265
Filter
Add more filters

Publication year range
1.
J Clin Microbiol ; 62(2): e0121123, 2024 02 14.
Article in English | MEDLINE | ID: mdl-38284762

ABSTRACT

The reliability of Fourier-transform infrared (FT-IR) spectroscopy for Klebsiella pneumoniae typing and outbreak control has been previously assessed, but issues remain in standardization and reproducibility. We developed and validated a reproducible FT-IR with attenuated total reflectance (ATR) workflow for the identification of K. pneumoniae lineages. We used 293 isolates representing multidrug-resistant K. pneumoniae lineages causing outbreaks worldwide (2002-2021) to train a random forest classification (RF) model based on capsular (KL)-type discrimination. This model was validated with 280 contemporaneous isolates (2021-2022), using wzi sequencing and whole-genome sequencing as references. Repeatability and reproducibility were tested in different culture media and instruments throughout time. Our RF model allowed the classification of 33 capsular (KL)-types and up to 36 clinically relevant K. pneumoniae lineages based on the discrimination of specific KL- and O-type combinations. We obtained high rates of accuracy (89%), sensitivity (88%), and specificity (92%), including from cultures obtained directly from the clinical sample, allowing to obtain typing information the same day bacteria are identified. The workflow was reproducible in different instruments throughout time (>98% correct predictions). Direct colony application, spectral acquisition, and automated KL prediction through Clover MS Data analysis software allow a short time-to-result (5 min/isolate). We demonstrated that FT-IR ATR spectroscopy provides meaningful, reproducible, and accurate information at a very early stage (as soon as bacterial identification) to support infection control and public health surveillance. The high robustness together with automated and flexible workflows for data analysis provide opportunities to consolidate real-time applications at a global level. IMPORTANCE We created and validated an automated and simple workflow for the identification of clinically relevant Klebsiella pneumoniae lineages by FT-IR spectroscopy and machine-learning, a method that can be extremely useful to provide quick and reliable typing information to support real-time decisions of outbreak management and infection control. This method and workflow is of interest to support clinical microbiology diagnostics and to aid public health surveillance.


Subject(s)
Bacteria , Klebsiella pneumoniae , Humans , Klebsiella pneumoniae/genetics , Reproducibility of Results , Spectroscopy, Fourier Transform Infrared/methods , Whole Genome Sequencing , Ataxia Telangiectasia Mutated Proteins
2.
Appl Environ Microbiol ; 90(10): e0137624, 2024 Oct 23.
Article in English | MEDLINE | ID: mdl-39283104

ABSTRACT

Multidrug-resistant Enterococcus faecium strains represent a major concern due to their ability to thrive in diverse environments and cause life-threatening infections. While antimicrobial resistance and virulence mechanisms have been extensively studied, the contribution of bacteriocins to E. faecium's adaptability remains poorly explored. E. faecium, within the Bacillota phylum, is a prominent bacteriocin producer. Here, we developed a tailored database of 76 Bacillota bacteriocins (217 sequences, including 40 novel bacteriocins) and applied it to uncover bacteriocin distribution patterns in 997 quality-filtered E. faecium and Enterococcus lactis (former E. faecium clade B) genomes. Curated using computational pipelines and literature mining, our database demonstrates superior precision versus leading public tools in identifying diverse bacteriocins. Distinct bacteriocin profiles emerged between E. faecium and E. lactis, highlighting species-specific adaptations. E. faecium strains from hospitalized patients were significantly enriched in bacteriocins as enterocin A and bacteriocins 43 (or T8), AS5, and AS11. These bacteriocin genes were strongly associated with antibiotic resistance, particularly vancomycin and ampicillin, and Inc18 rep2_pRE25-derivative plasmids, classically associated with vancomycin resistance transposons. Such bacteriocin arsenal likely enhances the adaptability and competitive fitness of E. faecium in the nosocomial environment. By combining a novel tailored database, whole-genome sequencing, and epidemiological data, our work elucidates meaningful connections between bacteriocin determinants, antimicrobial resistance, mobile genetic elements, and ecological origins in E. faecium and provides a framework for elucidating bacteriocin landscapes in other organisms. Characterizing species- and strain-level differences in bacteriocin profiles may reveal determinants of ecological adaptation, and translating these discoveries could further inform strategies to exploit bacteriocins against high-risk clones. IMPORTANCE: This work significantly expands the knowledge on the understudied bacteriocin diversity in opportunistic enterococci, revealing their contribution in the adaptation to different environments. It underscores the importance of placing increased emphasis on genetic platforms carrying bacteriocins as well as on cryptic plasmids that often exclusively harbor bacteriocins since bacteriocin production can significantly contribute to plasmid maintenance, potentially facilitating their stable transmission across generations. Further characterization of strain-level bacteriocin landscapes could inform strategies to combat high-risk clones. Overall, these insights provide a framework for unraveling the therapeutic and biotechnological potential of bacteriocins.


Subject(s)
Bacteriocins , Computational Biology , Enterococcus faecium , Genomics , Bacteriocins/genetics , Bacteriocins/metabolism , Enterococcus faecium/genetics , Enterococcus faecium/metabolism , Enterococcus faecium/drug effects , Genome, Bacterial , Anti-Bacterial Agents/pharmacology , Enterococcus/genetics , Enterococcus/metabolism , Enterococcus/drug effects
3.
Euro Surveill ; 29(18)2024 May.
Article in English | MEDLINE | ID: mdl-38699902

ABSTRACT

BackgroundThe pet industry is expanding worldwide, particularly raw meat-based diets (RMBDs). There are concerns regarding the safety of RMBDs, especially their potential to spread clinically relevant antibiotic-resistant bacteria or zoonotic pathogens.AimWe aimed to investigate whether dog food, including RMBD, commercially available in Portugal can be a source of Salmonella and/or other Enterobacteriaceae strains resistant to last-line antibiotics such as colistin.MethodsFifty-five samples from 25 brands (21 international ones) of various dog food types from 12 suppliers were screened by standard cultural methods between September 2019 and January 2020. Isolates were characterised by phenotypic and genotypic methods, including whole genome sequencing and comparative genomics.ResultsOnly RMBD batches were contaminated, with 10 of 14 containing polyclonal multidrug-resistant (MDR) Escherichia coli and one MDR Salmonella. One turkey-based sample contained MDR Salmonella serotype 1,4,[5],12:i:- ST34/cgST142761 with similarity to human clinical isolates occurring worldwide. This Salmonella exhibited typical antibiotic resistance (bla TEM + strA-strB + sul2 + tet(B)) and metal tolerance profiles (pco + sil + ars) associated with the European epidemic clone. Two samples (turkey/veal) carried globally dispersed MDR E. coli (ST3997-complexST10/cgST95899 and ST297/cgST138377) with colistin resistance (minimum inhibitory concentration: 4 mg/L) and mcr-1 gene on IncX4 plasmids, which were identical to other IncX4 circulating worldwide.ConclusionSome RMBDs from European brands available in Portugal can be a vehicle for clinically relevant MDR Salmonella and pathogenic E. coli clones carrying genes encoding resistance to the last-line antibiotic colistin. Proactive actions within the One Health context, spanning regulatory, pet-food industry and consumer levels, are needed to mitigate these public health risks.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Meat , Salmonella , Animals , Salmonella/isolation & purification , Salmonella/genetics , Salmonella/drug effects , Humans , Portugal , Escherichia coli/isolation & purification , Escherichia coli/genetics , Escherichia coli/drug effects , Dogs , Anti-Bacterial Agents/pharmacology , Meat/microbiology , Drug Resistance, Multiple, Bacterial/genetics , Pets/microbiology , Whole Genome Sequencing , Food Microbiology , Microbial Sensitivity Tests , Escherichia coli Proteins/genetics , Colistin/pharmacology , Animal Feed/microbiology , Escherichia coli Infections/microbiology , Escherichia coli Infections/epidemiology
4.
Int J Mol Sci ; 25(14)2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39063130

ABSTRACT

Carbapenemase-producing Enterobacterales are increasingly being recognized in nosocomial infections. The performance of a flow cytometry-based rapid assay for their detection and differentiation was evaluated. This is a disruptive phenotypic technology, phenotypic and growth-independent, that searches for the lesions produced by drugs acting on cells after a short incubation time. Overall, 180 Gram-negative bacteria were studied, and results were compared with those obtained molecularly by PCR and phenotypically by 'KPC, MBL and OXA-48 Confirm Kit'. This phenotypic method was used as reference for comparison purposes. Susceptibility to carbapenems (imipenem, meropenem, and ertapenem) was determined by standard broth microdilution. Overall, 112 isolates (62.2%) were carbapenemase producers, 41 KPCs, 36 MßLs, and 31 OXA-48, and 4 strains were KPC + MßL co-producers. Sixty-eight isolates were carbapenemase-negative. The percentage of agreement, sensitivity, and specificity were calculated according to ISO 20776-2:2021. The FASTinov assay showed 97.7% agreement with the reference method for carbapenemase detection. Discrepant flow cytometry results were obtained in four isolates compared with both reference and PCR results. The sensitivity and specificity of this new technology were 95.3% and 98.5%, respectively, for KPCs, 97.6% and 99.3% for MßLs, and 96.9% and 98% for OXA-48 detection. In conclusion, we describe a rapid flow cytometry assay with high accuracy for carbapenemase detection and the differentiation of various carbapenemases, which should impact clinical microbiology laboratories and patient management.


Subject(s)
Bacterial Proteins , Flow Cytometry , Microbial Sensitivity Tests , beta-Lactamases , beta-Lactamases/metabolism , Flow Cytometry/methods , Bacterial Proteins/metabolism , Humans , Microbial Sensitivity Tests/methods , Enterobacteriaceae/drug effects , Enterobacteriaceae/enzymology , Anti-Bacterial Agents/pharmacology , Sensitivity and Specificity , Carbapenems/pharmacology
5.
Article in English | MEDLINE | ID: mdl-36943338

ABSTRACT

A Gram-stain-negative strain, designated BR102T, isolated from a soil sample in Brazil was characterized by a polyphasic approach. Comparative 16S rRNA gene sequences indicated that strain BR102T belonged to the genus Citrobacter. The recN- and whole-genome-based phylogeny, and multilocus sequence analysis based on concatenated partial fusA, leuS, pyrG and rpoB sequences strongly supported a clade encompassing strain BR102T and a strain from public database that was distinct from currently recognized species of the genus Citrobacter. Average nucleotide identity and digital DNA-DNA hybridization values between strain BR102T and the closest relative Citrobacter freundii ATCC 8090T were 91.8 and 48.8 %, respectively. The ability to metabolize different compounds further discriminated strain BR102T from other closely related species of the genus Citrobacter. The novel variants bla CMY-179 and qnrB97, which encoded a CMY-2-like ß-lactamase and a QnrB-type protein, respectively, were identified in strain BR102T. BR102T was resistant to ampicillin, amoxicillin/clavulanate and cefoxitin. The DNA G+C content of strain BR102T is 51.3 mol%. Based on these results, strain BR102T represents a novel species of the genus Citrobacter, for which the name Citrobacter meridianamericanus sp. nov. is proposed. The type strain is BR102T (=MUM 22.55T=IMI 507229T).


Subject(s)
Citrobacter , Genes, Bacterial , Sequence Analysis, DNA , RNA, Ribosomal, 16S/genetics , Fatty Acids/chemistry , DNA, Bacterial/genetics , Phylogeny , Base Composition , Bacterial Typing Techniques , Soil
6.
Int J Syst Evol Microbiol ; 73(11)2023 Nov.
Article in English | MEDLINE | ID: mdl-37921436

ABSTRACT

During an ongoing female urinary microbiome research study, strains c17Ua_112T and c31Ua_26T isolated from urine samples of a patient diagnosed with overactive bladder and a healthy postmenopausal woman, respectively, could not be allocated to any Gardnerella species with valid names. In this work, we aimed to characterize these strains. The 16S rRNA gene sequences confirmed that these strains are members of the genus Gardnerella. Phylogenetic analysis based on cpn60 strongly supported two clades, one encompassing c17Ua_112T and nine other strains from the public database, and the other including c31Ua_26T and three other strains, which were distinct from currently recognized species of the genus Gardnerella. Likewise, the phylogenomic tree also showed that strains c17Ua_112T and c31Ua_26T formed independent and robust clusters. Average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between c17Ua_112T and c31Ua_26T were 79.27 and 27.4 %, respectively. Strain c17Ua_112T showed the highest ANI (94.8 %) and dDDH values (59.8 %) with Gardnerella piotii UGent 18.01T, and strain c31Ua_26T revealed highest ANI (84.2 %) and dDDH (29.1 %) values with Gardnerella swidsinskii GS 9838-1T. Based on the data presented here, the two strains c17Ua_112T and c31Ua_26T represent two novel species of the genus Gardnerella, for which the names Gardnerella pickettii (c17Ua_112T=DSM 113414T=CCP 71T) and Gardnerella greenwoodii (c31Ua_26T=DSM 113415T=CCP 72T) are proposed.


Subject(s)
Fatty Acids , Microbiota , Female , Humans , Gardnerella/genetics , Fatty Acids/chemistry , Sequence Analysis, DNA , Phylogeny , RNA, Ribosomal, 16S/genetics , Base Composition , DNA, Bacterial/genetics , Bacterial Typing Techniques , Genomics , Nucleic Acid Hybridization
7.
Environ Microbiol ; 24(10): 4702-4713, 2022 10.
Article in English | MEDLINE | ID: mdl-35726894

ABSTRACT

The expansion of mcr-carrying bacteria is a well-recognized public health problem. Measures to contain mcr spread have mainly been focused on the food-animal production sector. Nevertheless, the spread of MCR producers at the environmental interface particularly driven by the increasing population of gulls in coastal cities has been less explored. Occurrence of mcr-carrying Escherichia coli in gull's colonies faeces on a Portuguese beach was screened over 7 months. Cultural, molecular and genomic approaches were used to characterize their diversity, mcr plasmids and adaptive features. Multidrug-resistant mcr-1-carrying E. coli were detected for 3 consecutive months. Over time, multiple strains were recovered, including zoonotic-related pathogenic E. coli clones (e.g. B2-ST131-H22, A-ST10 and B1-ST162). Diverse mcr-1 genetic environments were mainly associated with ST2/ST4-HI2 (ST10, ST131, ST162, ST354 and ST4204) but also IncI2 (ST12990) plasmids or in the chromosome (ST656). Whole-genome sequencing revealed enrichment of these strains on antibiotic resistance, virulence and metal tolerance genes. Our results underscore gulls as important spreaders of high-priority bacteria and genes that may affect the environment, food-animals and/or humans, potentially undermining One-Health strategies to reduce colistin resistance.


Subject(s)
Charadriiformes , Escherichia coli Infections , Escherichia coli Proteins , Animals , Anti-Bacterial Agents/pharmacology , Clone Cells , Colistin , Drug Resistance, Bacterial/genetics , Escherichia coli , Escherichia coli Infections/microbiology , Escherichia coli Proteins/genetics , Humans , Interleukin-1 Receptor-Like 1 Protein/genetics , Livestock , Microbial Sensitivity Tests , Plasmids/genetics
8.
Emerg Infect Dis ; 27(8): 2221-2224, 2021 08.
Article in English | MEDLINE | ID: mdl-34287135

ABSTRACT

We describe enterococci in raw-frozen dog food commercialized in Europe as a source of genes encoding resistance to the antibiotic drug linezolid and of strains and plasmids enriched in antibiotic-resistance and virulence genes in hospitalized patients. Whole-genome sequencing was fundamental to linking isolates from dog food to human cases across Europe.


Subject(s)
Enterococcus , Gram-Positive Bacterial Infections , Animal Feed , Animals , Anti-Bacterial Agents/pharmacology , Dogs , Drug Resistance, Bacterial , Europe , Gram-Positive Bacterial Infections/epidemiology , Gram-Positive Bacterial Infections/veterinary , Humans , Linezolid/pharmacology , Microbial Sensitivity Tests
9.
Environ Microbiol ; 23(12): 7563-7577, 2021 12.
Article in English | MEDLINE | ID: mdl-34327794

ABSTRACT

Expansion of mcr-carrying Enterobacteriaceae (MCR-E) is a well-recognized problem affecting animals, humans and the environment. Ongoing global control actions involve colistin restrictions among food-animal production, but their impact on poultry-derived products is largely unknown, justifying comprehensive farm-to-fork studies. Occurrence of MCR-E among 53 chicken-meat batches supplied from 29 Portuguese farms shortly after colistin withdrawal was evaluated. Strains (FT-IR/MLST/WGS), mcr plasmids and their adaptive features were characterized by cultural, molecular and genomic approaches. We found high rates of chicken-meat batches (80%-100% - 4 months; 12% - the last month) with multiple MDR + mcr-1-carrying Escherichia coli (Ec-including ST117 and ST648-Cplx) and Klebsiella pneumoniae (Kp-ST147-O5:K35) clones, some of them persisting over time. The mcr-1 was located in the chromosome (Ec-ST297/16-farms) or dispersed IncX4 (Ec-ST602/ST6469/5-farms), IncHI2-ST2/ST4 (Ec-ST533/ST6469/5 farms and Kp-ST147/6-farms) or IncI2 (Ec-ST117/1-farm) plasmids. WGS revealed high load and diversity in virulence, antibiotic resistance and metal tolerance genes. This study supports colistin withdrawal potential efficacy in poultry production and highlights both poultry-production chain as a source of mcr-1 and the risk of foodborne transmission to poultry-meat consumers. Finally, in the antibiotic reduction/replacement context, other potential co-selective pressures (e.g., metals-Cu as feed additives) need to be further understood to guide concerted, effective and durable actions under 'One Health' perspective.


Subject(s)
Colistin , Escherichia coli Proteins , Animals , Anti-Bacterial Agents/pharmacology , Chickens , Colistin/pharmacology , Drug Resistance, Bacterial/genetics , Enterobacteriaceae/genetics , Escherichia coli Proteins/genetics , Farms , Microbial Sensitivity Tests , Multilocus Sequence Typing , Plasmids/genetics , Portugal , Poultry , Spectroscopy, Fourier Transform Infrared
10.
J Antimicrob Chemother ; 76(2): 305-311, 2021 01 19.
Article in English | MEDLINE | ID: mdl-33150386

ABSTRACT

BACKGROUND: In Portugal, carbapenem-resistant Acinetobacter baumannii (CRAB) has been associated with ST98, ST103 and ST208 (Oxford Scheme, Oxf) and a clone has usually been associated with a particular period of time. These clonal shifts were primarily explained by an increased antimicrobial resistance profile. Here we explore genomic and biochemical differences among these and more recent clones, which could further explain the diversity and evolution of this species. METHODS: A total of 116 CRAB isolates (2010-15), together with representatives of a previously described CRAB collection (4 isolates, 2001-06) were characterized by attenuated total reflection Fourier transform infrared spectroscopy (FTIR-ATR) and MLST. Representatives of different FTIR-ATR/MLST clusters were selected for WGS (n = 13), which allowed the in silico extraction of resistance and virulence genes, capsule locus and SNP analysis. RESULTS: A. baumannii clonal shifts of OXA-58-producing ST103Oxf (2001-04), OXA-40-producing ST98Oxf (2002-06), OXA-23-producing ST208Oxf (2006-10) and OXA-23-producing ST218Oxf (2010-15) were accompanied by an increase in AMR genes and virulence factors. FTIR-ATR clustering was congruent with sugar composition predicted from the capsular locus: a fucosamine cluster comprising ST98Oxf, ST103Oxf and a single ST218Oxf isolate; a pseudaminic acid cluster of ST208Oxf and ST1557Oxf isolates; and legionaminic acid, resembling the sialic acid from mammalian cells, in a cluster comprising ST218Oxf isolates. The whole-genome phylogenetic tree was congruent with MLST, with isolates presenting 5-28 938 SNPs. ST208Oxf and ST218Oxf presented ∼1900 SNPs while ST103Oxf and ST1557Oxf showed a greater number of SNPs (∼28 000). CONCLUSIONS: Clonal shifts of CRAB were promoted, in our country, by consecutive virulence and AMR gene pool enlargement, together with features increasing pathogen-host adaptation. Worldwide dominance of ST218Oxf is supported by the combination of high AMR and virulence levels.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Acinetobacter baumannii/genetics , Anti-Bacterial Agents/pharmacology , Carbapenems/pharmacology , Clone Cells , Humans , Microbial Sensitivity Tests , Multilocus Sequence Typing , Phylogeny , Portugal , Sugars , Virulence , beta-Lactamases/genetics
11.
J Antimicrob Chemother ; 76(11): 2757-2764, 2021 10 11.
Article in English | MEDLINE | ID: mdl-34450635

ABSTRACT

BACKGROUND: Vancomycin resistance is mostly associated with Enterococcus faecium due to Tn1546-vanA located on narrow- and broad-host plasmids of various families. This study's aim was to analyse the effects of acquiring Tn1546-carrying plasmids with proven epidemicity in different bacterial host backgrounds. METHODS: Widespread Tn1546-carrying plasmids of different families RepA_N (n = 5), Inc18 (n = 4) and/or pHTß (n = 1), and prototype plasmids RepA_N (pRUM) and Inc18 (pRE25, pIP501) were analysed. Plasmid transferability and fitness cost were assessed using E. faecium (GE1, 64/3) and Enterococcus faecalis (JH2-2/FA202/UV202) recipient strains. Growth curves (Bioscreen C) and Relative Growth Rates were obtained in the presence/absence of vancomycin. Plasmid stability was analysed (300 generations). WGS (Illumina-MiSeq) of non-evolved and evolved strains (GE1/64/3 transconjugants, n = 49) was performed. SNP calling (Breseq software) of non-evolved strains was used for comparison. RESULTS: All plasmids were successfully transferred to different E. faecium clonal backgrounds. Most Tn1546-carrying plasmids and Inc18 and RepA_N prototypes reduced host fitness (-2% to 18%) while the cost of Tn1546 expression varied according to the Tn1546-variant and the recipient strain (9%-49%). Stability of Tn1546-carrying plasmids was documented in all cases, often with loss of phenotypic resistance and/or partial plasmid deletions. SNPs and/or indels associated with essential bacterial functions were observed on the chromosome of evolved strains, some of them linked to increased fitness. CONCLUSIONS: The stability of E. faecium Tn1546-carrying plasmids in the absence of selective pressure and the high intra-species conjugation rates might explain the persistence of vancomycin resistance in E. faecium populations despite the significant burden they might impose on bacterial host strains.


Subject(s)
Cross Infection , Enterococcus faecium , Gram-Positive Bacterial Infections , Bacterial Proteins/genetics , Cross Infection/epidemiology , DNA Transposable Elements , Disease Outbreaks , Enterococcus faecium/genetics , Gram-Positive Bacterial Infections/epidemiology , Humans , Plasmids , Vancomycin/pharmacology
12.
BMC Microbiol ; 21(1): 64, 2021 02 25.
Article in English | MEDLINE | ID: mdl-33632119

ABSTRACT

BACKGROUND: To date, information on healthy female urinary microbiota is available mostly at genus level and at one time point. However, profound species-level characterization of healthy urinary microbiome and its stability over time are essential for further correct interpretation of its role in healthy urogenital tract. In this study, we investigated female urogenital microbiome (FUM) at two timepoints (within 2.5-year interval) in young asymptomatic European women. We used culturomics with accurate isolates' identification (MALDI-TOF MS and gene markers sequencing) to understand species stability within healthy FUM. RESULTS: Extended culturomics of voided midstream urine sample pairs revealed a mean Shannon diversity index of 1.25 and mean of 19 species/sample (range 5-39 species; total of 115 species; 1830 isolates). High overall species variability between individuals was captured by beta diversity and a variety of community structure types, with the largest cluster characterized by Lactobacillus crispatus, often in combination with Gardnerella vaginalis or Gardnerella genomospecies 3. Significant FUM composition differences, related to Finegoldia magna and Streptococcus anginosus, according to smoking status were found. A high species variability within individuals (Shannon index SD > 0.5 in 7 out of 10 sample pairs) with a mean of 29% of shared species (range 9.1-41.7%) was observed. Moreover, 4 out of 10 sample pairs clustered in the same community structure type. The stable FUM sample pairs presented high abundance of Lactobacillus crispatus, Streptococcus agalactiae or Lactobacillus paragasseri and Bifidobacterium spp.. Moreover, Gardnerella vaginalis, Gardnerella genomospecies 3 or Gardnerella swidsinskii were often maintained within individuals in high abundance. CONCLUSIONS: Shift in species composition at two distant timepoints was frequently observed among urogenital microbiome of European asymptomatic women. This suggests possible interchange of particular species in healthy FUM and the existence of multiple health-associated FUM compositions in certain individuals. Additionally, we provided additional evidence on resilience of particular bacterial communities and identified certain species more prone to persist in urogenital tract. This study revealed important details on the FUM composition complexity relevant for studies aiming to understand microbiota role in the urogenital tract health and for identification of eubiotic and dysbiotic FUM.


Subject(s)
Bacteria/genetics , Carrier State/microbiology , Carrier State/urine , Microbiota/genetics , Vagina/microbiology , Adult , Bacteria/classification , Bacteria/metabolism , Bacterial Physiological Phenomena , Dysbiosis , Europe , Female , Humans , Microbiota/physiology , RNA, Ribosomal, 16S/genetics , Time Factors
13.
Microb Pathog ; 155: 104920, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33930418

ABSTRACT

The presence of specific virulence features conditions severe forms of urinary tract disease, but the frequency and distribution of these highly virulent extraintestinal pathogenic Escherichia coli strains in animals and humans is unclear. We used whole genome sequencing, comparative genomics, histological and clinical data to characterize the genetic basis for pathogenesis and origin of E. coli Ec_151217, a strain (B2, ST83, O83:H5:K5) that caused an extremely aggressive upper urinary tract infection (UTI) in a cat. We show that Ec_151217 and 52% of other highly related ST83 genomes (O6 and O83) identified from different animal species and human infections carry two copies of the hemolysin A operon, though this duplication is infrequent (~1%) among closed ExPEC genomes from multiple sources. Our data enlarges the list of E. coli genetic backgrounds carrying hlyA operon duplication which is potentially involved in severity of UTI, and demonstrates that it seems to occur infrequently amongst ExPEC. Its identification in E. coli lineages (diverse ST83 serotypes) of potential animal-human transmission is of concern and anticipates the need to screen larger collections.


Subject(s)
Escherichia coli Infections , Extraintestinal Pathogenic Escherichia coli , Urinary Tract Infections , Animals , Cats , Escherichia coli/genetics , Escherichia coli Infections/veterinary , Extraintestinal Pathogenic Escherichia coli/genetics , Humans , Phylogeny
14.
Eur J Clin Microbiol Infect Dis ; 40(1): 123-131, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32808110

ABSTRACT

Strains 6105T and 6106, recovered from colonized patients in a hospital in Tel-Aviv, Israel, were compared with currently known species of the genus Citrobacter by a polyphasic taxonomic approach. Strains were characterized by whole-genome sequencing, 16S rRNA and recN gene sequencing, multilocus sequence analysis (MLSA), average nucleotide identity (ANI), Genome-to-Genome Distance Calculator (GGDC), and biochemical tests. The location and genetic surrounding of antibiotic resistance genes were investigated, and antibiotic susceptibility profiles were determined by broth microdilution or agar dilution methods. Phylogenetic analysis based on recN and MLSA revealed that both strains formed a distinct cluster from all currently recognized species. The ANI and GGDC were 90.7% and 54.3% with Citrobacter farmeri, respectively. The ability to metabolize various compounds also differentiated both strains from closely related Citrobacter species. Chromosomes of the isolates contained locus encoding a novel class A ß-lactamase (TEL-1; 90.5% amino acid identity with CdiA of Citrobacter koseri) plus a LysR-like transcriptional regulator (TEL-R) and an ~ 25.5-kb mcr-9 mosaic region. The direct mcr-9 context matched with those previously identified in several plasmids and chromosomes of diverse Enterobacteriaceae, yet similarity with the plasmidic loci extended further. Untypeable plasmids, pCTEL-2 (~ 235 kb) and pCTEL-1 (~ 114 kb), devoid of resistance genes, were identified in the strains. The isolates were non-susceptible to ß-lactams. The name Citrobacter telavivum sp. nov. is proposed, with 6105T (CECT 9989T or DSM 110286T) as the type strain. C. telavivum may represent a bacterial species adapting to hospital settings, able to disseminate and acquire antimicrobial resistance genes.


Subject(s)
Citrobacter/genetics , Drug Resistance, Bacterial , Enterobacteriaceae Infections/diagnosis , Hospitalization , Aged, 80 and over , Citrobacter/classification , Diagnosis, Differential , Enterobacteriaceae Infections/microbiology , Female , Humans , Israel , Male , RNA, Ribosomal, 16S/analysis
15.
Environ Microbiol ; 22(7): 2829-2842, 2020 07.
Article in English | MEDLINE | ID: mdl-32281716

ABSTRACT

Emergence and expansion of frequent multidrug-resistant (MDR) major Salmonella clones/serotypes has been a significant threat in the last years. Metal compounds, such as copper, commonly used in animal-production settings, have been pointed out as possible contributors for the selection of such strains/clones. However, the scarcity of studies limits our understanding of the impact of other metal environmental contaminants as arsenic (used in insecticides/herbicides/coccidiostats). We analysed arsenic tolerance (AsT) dispersion by phenotypic and genotypic (PCR/sequencing/I-CeuI/S1/XbaI-PFGE/hybridization) assays among Salmonella with diverse epidemiological and genetic backgrounds. Then, to better understand ars operon genetic contexts, the whole genome of five representative strains was sequenced. We found a high dispersion of ars operons conferring AsT, especially among copper-tolerant and relevant serotypes/clones related to pig-production setting. The acr3-type was found dispersed in the chromosome of diverse serotypes, including the emergent S. Rissen. Conversely, arsBII was almost confined to the MDR ST34 European clone of S. Typhimurium/S. 4,[5],12:i:-, always along with copper/silver tolerance sil + pco clusters in an integrative conjugative element. These data suggest that AsT is an essential adaptive feature for the ecological success of these epidemic clones/serotypes and alerts for global strategies to reduce arsenic-based compounds' impact thus preventing environmental/food contamination with frequent MDR foodborne pathogens.


Subject(s)
Drug Resistance, Multiple, Bacterial/genetics , Operon/genetics , Salmonella/drug effects , Salmonella/genetics , Animals , Arsenic/toxicity , Clone Cells , Copper/toxicity , Environmental Pollutants/toxicity , Genotype , Phenotype , Polymerase Chain Reaction , Salmonella Infections/microbiology , Serogroup , Swine
16.
J Antimicrob Chemother ; 75(1): 30-35, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31605129

ABSTRACT

OBJECTIVES: Increasing numbers of linezolid-resistant Enterococcus carrying optrA are being reported across different niches worldwide. We aimed to characterize the first optrA-carrying Enterococcus faecalis obtained from food-producing animals and retail meat samples in Tunisia. METHODS: Seven optrA-carrying E. faecalis obtained from chicken faeces (n=3, August 2017) and retail chicken meat (n=4, August 2017) in Tunisia were analysed. Antimicrobial susceptibility was determined by disc diffusion, broth microdilution and Etest against 13 antibiotics, linezolid and tedizolid, respectively (EUCAST/CLSI). optrA stability (∼600 bacterial generations), transfer (filter mating) and location (S1-PFGE/hybridization) were characterized. WGS (Illumina-HiSeq) was done for four representatives that were analysed through in silico and genomic mapping tools. RESULTS: Four MDR clones carrying different virulence genes were identified in chicken faeces (ST476) and retail meat (the same ST476 clone plus ST21 and ST859) samples. MICs of linezolid and tedizolid were stably maintained at 8 and 1-2 mg/L, respectively. optrA was located in the same transferable chromosomal Tn6674-like element in ST476 and ST21 clones, similar to isolates from pigs in Malaysia and humans in China. ST859 carried a non-conjugative plasmid of ∼40 kb with an impB-fexA-optrA segment, similar to plasmids from pigs and humans in China. CONCLUSIONS: The same chromosomal and transferable Tn6674-like element was identified in different E. faecalis clones from humans and animals. The finding of retail meat contaminated with the same linezolid-resistant E. faecalis strain obtained from a food-producing animal highlights the potential role of the food chain in the worrisome dissemination of optrA that can be stably maintained without selective pressure over generations.


Subject(s)
Animals, Domestic/microbiology , Anti-Bacterial Agents/pharmacology , Enterococcus faecalis/drug effects , Enterococcus faecalis/genetics , Gram-Positive Bacterial Infections/veterinary , Linezolid/pharmacology , Poultry/microbiology , Animals , Chickens , DNA, Bacterial/genetics , Drug Resistance, Bacterial/genetics , Enterococcus faecalis/classification , Food Microbiology , Microbial Sensitivity Tests , Multilocus Sequence Typing , Tunisia , Whole Genome Sequencing
17.
J Antimicrob Chemother ; 75(9): 2416-2423, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32607549

ABSTRACT

OBJECTIVES: poxtA is the most recently described gene conferring acquired resistance to linezolid, a relevant antibiotic for treating enterococcal infections. We retrospectively screened for poxtA in diverse enterococci and aimed to characterize its genetic/genomic contexts. METHODS: poxtA was screened by PCR in 812 enterococci from 458 samples (hospitals/healthy humans/wastewater/animals/retail food) obtained in Portugal/Angola/Tunisia (1996-2019). Antimicrobial susceptibility testing was performed for 13 antibiotics (EUCAST/CLSI). poxtA stability (∼500 generations), transfer (filter mating), clonality (SmaI-PFGE) and location (S1-PFGE/hybridization) were tested. WGS (Illumina-HiSeq) was performed for clonal representatives. RESULTS: poxtA was detected in Enterococcus faecium from six samples (1.3%): a healthy human (rectal swab) in Porto, Portugal (ST32/2001); four farm cows (milk) in Mateur, Tunisia (ST1058/2015); and a hospitalized patient (faeces) in Matosinhos, Portugal (ST1058/2015). All expressed resistance to linezolid (MIC = 8 mg/L), chloramphenicol, tetracycline and erythromycin, with variable resistance to ciprofloxacin and streptomycin. ST1058-poxtA-carrying isolates from Tunisia and Portugal differed by two SNPs and had similar plasmid content. poxtA, located in an IS1216-flanked Tn6246-like element, co-hybridized with fexB on one or more plasmids per isolate (one to three plasmids of 30-100 kb), was stable after several generations and transferred only from ST1058. ST1058 strains carried resistance/virulence genes (Efmqnr/acm) possibly induced under selective quinolone treatment. CONCLUSIONS: poxtA has been circulating in Portugal since at least 2001, corresponding to the oldest description worldwide to date. We also extend the reservoir of poxtA to bovines. The similar linezolid-resistant poxtA-carrying strains colonizing humans and livestock on different continents, and without a noticeable relationship, suggests a recent transmission event or convergent evolution of E. faecium populations in different hosts and geographic regions.


Subject(s)
Enterococcus faecium , Gram-Positive Bacterial Infections , Angola , Animals , Anti-Bacterial Agents/pharmacology , Cattle , Drug Resistance, Bacterial , Enterococcus faecalis , Enterococcus faecium/genetics , Gram-Positive Bacterial Infections/epidemiology , Gram-Positive Bacterial Infections/veterinary , Humans , Linezolid/pharmacology , Microbial Sensitivity Tests , Portugal/epidemiology , Retrospective Studies , Tunisia
18.
Int J Syst Evol Microbiol ; 70(6): 3953-3954, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32515725

ABSTRACT

During a recent study on members of the genus Lactobacillus we realized that cultures of Lactobacillus fornicalis TV 1018T (=DSM 13171T=ATCC 700934T) are no longer available from the online catalogue of the German Collection of Microorganisms and Cell Cultures GmbH, being displayed as Lactobacillus plantarum at the American Type Culture Collection. Based on data currently available, the organism deposited as ATCC 700934T is a member of the species Lactobacillus plantarum subs. plantarum. Therefore, the type strain of Lactobacillus fornicalis cannot be included in any further scientific comparative study. This matter is referred to the Judicial Commission, asking for an opinion on the status of the species.


Subject(s)
Lactobacillus plantarum/classification , Lactobacillus/classification , Phylogeny
19.
Int J Syst Evol Microbiol ; 70(3): 1522-1527, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31951193

ABSTRACT

One Gram-stain-positive, non-motile, non-spore-forming, catalase-negative, and coccobacilli-shaped strain, designated c10Ua161MT, was isolated from a urine sample from a reproductive-age healthy woman. Comparative 16S rRNA gene sequence analysis indicated that strain c10Ua161MT belonged to the genus Lactobacillus. Phylogenetic analysis based on pheS and rpoA gene sequences strongly supported a clade encompassing strains c10Ua161MT and eight other strains from public databases, distinct from currently recognized species of the genus Lactobacillus. In silico Average Nucleotide Identity (ANI) and Genome-to-Genome Distance Calculator (GGDC), showed 87.9 and 34.3 % identity to the closest relative Lactobacillus jensenii, respectively. The major fatty acids of strain c10Ua161MT were C18 : 1ω9c (65.0%), C16 : 0 (17.8%), and summed feature 8 (10.2 %; comprising C18 : 1ω7c, and/or C18 : 1ω6c). The DNA G+C content of the strains is 34.2 mol%. On the basis of data presented here, strain c10Ua161MT represents a novel species of the genus Lactobacillus, for which the name Lactobacillus mulieris sp. nov. is proposed. The type strain is c10Ua161MT (=CECT 9755T=DSM 108704T).


Subject(s)
Lactobacillus/classification , Phylogeny , Urine/microbiology , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Female , Genes, Bacterial , Humans , Lactobacillus/isolation & purification , Lactobacillus delbrueckii , Nucleic Acid Hybridization , Portugal , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
20.
Eur J Clin Microbiol Infect Dis ; 39(12): 2471-2475, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32643025

ABSTRACT

The spread of multidrug-resistant (MDR) Klebsiella pneumoniae in the nosocomial setting represents a big challenge to infection control teams. We have recently developed a simple spectroscopic-based method with excellent accuracy, turnaround time and cost-effectiveness (Rodrigues et al. mSystems 2020) for bacterial typing. Here, we applied our method in a real clinical context to support early identification of an outbreak involving KPC-3-producing K. pneumoniae ST147 isolates. Our results further support that attenuated total reflectance Fourier transform infrared (FT-IR) spectroscopy can provide enough information to support early and adequate infection control measures and therapeutic choices in the context of nosocomial outbreaks and hospital surveillance.


Subject(s)
Bacterial Proteins/genetics , Klebsiella Infections/drug therapy , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , beta-Lactamases/genetics , beta-Lactamases/metabolism , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism , Bacterial Typing Techniques , Carbapenems/pharmacology , Disease Outbreaks , Drug Resistance, Multiple, Bacterial/genetics , Humans , Klebsiella Infections/epidemiology , Klebsiella Infections/microbiology , Klebsiella pneumoniae/metabolism , Microbial Sensitivity Tests , Multilocus Sequence Typing , Portugal/epidemiology , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL