Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.679
Filter
Add more filters

Publication year range
1.
Nature ; 614(7947): 262-269, 2023 02.
Article in English | MEDLINE | ID: mdl-36755171

ABSTRACT

Carbon dioxide electroreduction facilitates the sustainable synthesis of fuels and chemicals1. Although Cu enables CO2-to-multicarbon product (C2+) conversion, the nature of the active sites under operating conditions remains elusive2. Importantly, identifying active sites of high-performance Cu nanocatalysts necessitates nanoscale, time-resolved operando techniques3-5. Here, we present a comprehensive investigation of the structural dynamics during the life cycle of Cu nanocatalysts. A 7 nm Cu nanoparticle ensemble evolves into metallic Cu nanograins during electrolysis before complete oxidation to single-crystal Cu2O nanocubes following post-electrolysis air exposure. Operando analytical and four-dimensional electrochemical liquid-cell scanning transmission electron microscopy shows the presence of metallic Cu nanograins under CO2 reduction conditions. Correlated high-energy-resolution time-resolved X-ray spectroscopy suggests that metallic Cu, rich in nanograin boundaries, supports undercoordinated active sites for C-C coupling. Quantitative structure-activity correlation shows that a higher fraction of metallic Cu nanograins leads to higher C2+ selectivity. A 7 nm Cu nanoparticle ensemble, with a unity fraction of active Cu nanograins, exhibits sixfold higher C2+ selectivity than the 18 nm counterpart with one-third of active Cu nanograins. The correlation of multimodal operando techniques serves as a powerful platform to advance our fundamental understanding of the complex structural evolution of nanocatalysts under electrochemical conditions.

2.
Nature ; 619(7971): 738-742, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37438533

ABSTRACT

Scalable generation of genuine multipartite entanglement with an increasing number of qubits is important for both fundamental interest and practical use in quantum-information technologies1,2. On the one hand, multipartite entanglement shows a strong contradiction between the prediction of quantum mechanics and local realization and can be used for the study of quantum-to-classical transition3,4. On the other hand, realizing large-scale entanglement is a benchmark for the quality and controllability of the quantum system and is essential for realizing universal quantum computing5-8. However, scalable generation of genuine multipartite entanglement on a state-of-the-art quantum device can be challenging, requiring accurate quantum gates and efficient verification protocols. Here we show a scalable approach for preparing and verifying intermediate-scale genuine entanglement on a 66-qubit superconducting quantum processor. We used high-fidelity parallel quantum gates and optimized the fidelitites of parallel single- and two-qubit gates to be 99.91% and 99.05%, respectively. With efficient randomized fidelity estimation9, we realized 51-qubit one-dimensional and 30-qubit two-dimensional cluster states and achieved fidelities of 0.637 ± 0.030 and 0.671 ± 0.006, respectively. On the basis of high-fidelity cluster states, we further show a proof-of-principle realization of measurement-based variational quantum eigensolver10 for perturbed planar codes. Our work provides a feasible approach for preparing and verifying entanglement with a few hundred qubits, enabling medium-scale quantum computing with superconducting quantum systems.

3.
Nature ; 610(7933): 661-666, 2022 10.
Article in English | MEDLINE | ID: mdl-36198794

ABSTRACT

Networks of optical clocks find applications in precise navigation1,2, in efforts to redefine the fundamental unit of the 'second'3-6 and in gravitational tests7. As the frequency instability for state-of-the-art optical clocks has reached the 10-19 level8,9, the vision of a global-scale optical network that achieves comparable performances requires the dissemination of time and frequency over a long-distance free-space link with a similar instability of 10-19. However, previous attempts at free-space dissemination of time and frequency at high precision did not extend beyond dozens of kilometres10,11. Here we report time-frequency dissemination with an offset of 6.3 × 10-20 ± 3.4 × 10-19 and an instability of less than 4 × 10-19 at 10,000 s through a free-space link of 113 km. Key technologies essential to this achievement include the deployment of high-power frequency combs, high-stability and high-efficiency optical transceiver systems and efficient linear optical sampling. We observe that the stability we have reached is retained for channel losses up to 89 dB. The technique we report can not only be directly used in ground-based applications, but could also lay the groundwork for future satellite time-frequency dissemination.

4.
Am J Hum Genet ; 111(10): 2150-2163, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39270649

ABSTRACT

The tumor immune microenvironment (TIME) plays key roles in tumor progression and response to immunotherapy. Previous studies have identified individual germline variants associated with differences in TIME. Here, we hypothesize that common variants associated with breast cancer risk or cancer-related traits, represented by polygenic risk scores (PRSs), may jointly influence immune features in TIME. We derived 154 immune traits from bulk gene expression profiles of 764 breast tumors and 598 adjacent normal tissue samples from 825 individuals with breast cancer in the Nurses' Health Study (NHS) and NHSII. Immunohistochemical staining of four immune cell markers were available for a subset of 205 individuals. Germline PRSs were calculated for 16 different traits including breast cancer, autoimmune diseases, type 2 diabetes, ages at menarche and menopause, body mass index (BMI), BMI-adjusted waist-to-hip ratio, alcohol intake, and tobacco smoking. Overall, we identified 44 associations between germline PRSs and immune traits at false discovery rate q < 0.25, including 3 associations with q < 0.05. We observed consistent inverse associations of inflammatory bowel disease (IBD) and Crohn disease (CD) PRSs with interferon signaling and STAT1 scores in breast tumor and adjacent normal tissue; these associations were replicated in a Norwegian cohort. Inverse associations were also consistently observed for IBD PRS and B cell abundance in normal tissue. We also observed positive associations between CD PRS and endothelial cell abundance in tumor. Our findings suggest that the genetic mechanisms that influence immune-related diseases are also associated with TIME in breast cancer.


Subject(s)
Breast Neoplasms , Genetic Predisposition to Disease , Multifactorial Inheritance , Humans , Female , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/immunology , Multifactorial Inheritance/genetics , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Risk Factors , Middle Aged , Transcriptome , Adult , Genetic Risk Score
5.
Nature ; 592(7853): 302-308, 2021 04.
Article in English | MEDLINE | ID: mdl-33762732

ABSTRACT

Our knowledge of copy number evolution during the expansion of primary breast tumours is limited1,2. Here, to investigate this process, we developed a single-cell, single-molecule DNA-sequencing method and performed copy number analysis of 16,178 single cells from 8 human triple-negative breast cancers and 4 cell lines. The results show that breast tumours and cell lines comprise a large milieu of subclones (7-22) that are organized into a few (3-5) major superclones. Evolutionary analysis suggests that after clonal TP53 mutations, multiple loss-of-heterozygosity events and genome doubling, there was a period of transient genomic instability followed by ongoing copy number evolution during the primary tumour expansion. By subcloning single daughter cells in culture, we show that tumour cells rediversify their genomes and do not retain isogenic properties. These data show that triple-negative breast cancers continue to evolve chromosome aberrations and maintain a reservoir of subclonal diversity during primary tumour growth.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Proliferation , Clone Cells/metabolism , Clone Cells/pathology , Evolution, Molecular , Base Sequence , Cell Line, Tumor , Cell Lineage , Chromosome Aberrations , DNA Copy Number Variations/genetics , DNA Mutational Analysis , Genomic Instability/genetics , Humans , Loss of Heterozygosity/genetics , Models, Genetic , Mutation Rate , Single Molecule Imaging , Single-Cell Analysis , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology
6.
Nature ; 589(7841): 214-219, 2021 01.
Article in English | MEDLINE | ID: mdl-33408416

ABSTRACT

Quantum key distribution (QKD)1,2 has the potential to enable secure communication and information transfer3. In the laboratory, the feasibility of point-to-point QKD is evident from the early proof-of-concept demonstration in the laboratory over 32 centimetres4; this distance was later extended to the 100-kilometre scale5,6 with decoy-state QKD and more recently to the 500-kilometre scale7-10 with measurement-device-independent QKD. Several small-scale QKD networks have also been tested outside the laboratory11-14. However, a global QKD network requires a practically (not just theoretically) secure and reliable QKD network that can be used by a large number of users distributed over a wide area15. Quantum repeaters16,17 could in principle provide a viable option for such a global network, but they cannot be deployed using current technology18. Here we demonstrate an integrated space-to-ground quantum communication network that combines a large-scale fibre network of more than 700 fibre QKD links and two high-speed satellite-to-ground free-space QKD links. Using a trusted relay structure, the fibre network on the ground covers more than 2,000 kilometres, provides practical security against the imperfections of realistic devices, and maintains long-term reliability and stability. The satellite-to-ground QKD achieves an average secret-key rate of 47.8 kilobits per second for a typical satellite pass-more than 40 times higher than achieved previously. Moreover, its channel loss is comparable to that between a geostationary satellite and the ground, making the construction of more versatile and ultralong quantum links via geosynchronous satellites feasible. Finally, by integrating the fibre and free-space QKD links, the QKD network is extended to a remote node more than 2,600 kilometres away, enabling any user in the network to communicate with any other, up to a total distance of 4,600 kilometres.

7.
Proc Natl Acad Sci U S A ; 121(25): e2400546121, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38857407

ABSTRACT

Reduction of carbon dioxide (CO2) by renewable electricity to produce multicarbon chemicals, such as ethylene (C2H4), continues to be a challenge because of insufficient Faradaic efficiency, low production rates, and complex mechanistic pathways. Here, we report that the rate-determining steps (RDS) on common copper (Cu) surfaces diverge in CO2 electroreduction, leading to distinct catalytic performances. Through a combination of experimental and computational studies, we reveal that C─C bond-making is the RDS on Cu(100), whereas the protonation of *CO with adsorbed water becomes rate-limiting on Cu(111) with a higher energy barrier. On an oxide-derived Cu(100)-dominant Cu catalyst, we reach a high C2H4 Faradaic efficiency of 72%, partial current density of 359 mA cm-2, and long-term stability exceeding 100 h at 500 mA cm-2, greatly outperforming its Cu(111)-rich counterpart. We further demonstrate constant C2H4 selectivity of >60% over 70 h in a membrane electrode assembly electrolyzer with a full-cell energy efficiency of 23.4%.

8.
Brief Bioinform ; 25(3)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38555474

ABSTRACT

As key oncogenic drivers in non-small-cell lung cancer (NSCLC), various mutations in the epidermal growth factor receptor (EGFR) with variable drug sensitivities have been a major obstacle for precision medicine. To achieve clinical-level drug recommendations, a platform for clinical patient case retrieval and reliable drug sensitivity prediction is highly expected. Therefore, we built a database, D3EGFRdb, with the clinicopathologic characteristics and drug responses of 1339 patients with EGFR mutations via literature mining. On the basis of D3EGFRdb, we developed a deep learning-based prediction model, D3EGFRAI, for drug sensitivity prediction of new EGFR mutation-driven NSCLC. Model validations of D3EGFRAI showed a prediction accuracy of 0.81 and 0.85 for patients from D3EGFRdb and our hospitals, respectively. Furthermore, mutation scanning of the crucial residues inside drug-binding pockets, which may occur in the future, was performed to explore their drug sensitivity changes. D3EGFR is the first platform to achieve clinical-level drug response prediction of all approved small molecule drugs for EGFR mutation-driven lung cancer and is freely accessible at https://www.d3pharma.com/D3EGFR/index.php.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Deep Learning , Lung Neoplasms , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , ErbB Receptors/genetics , Mutation , Information Storage and Retrieval
9.
PLoS Pathog ; 20(8): e1012444, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39173055

ABSTRACT

The Ebola virus (EBOV) has emerged as a significant global health concern, notably during the 2013-2016 outbreak in West Africa. Despite the clinical approval of two EBOV antibody drugs, there is an urgent need for more diverse and effective antiviral drugs, along with comprehensive understanding of viral-host interactions. In this study, we harnessed a biologically contained EBOVΔVP30-EGFP cell culture model which could recapitulate the entire viral life cycle, to conduct a genome-wide CRISPR/Cas9 screen. Through this, we identified PIK3C3 (phosphatidylinositide 3-kinase) and SLC39A9 (zinc transporter) as crucial host factors for EBOV infection. Genetic depletion of SLC39A9 and PIK3C3 lead to reduction of EBOV entry, but not impact viral genome replication, suggesting that SLC39A9 and PIK3C3 act as entry factors, facilitating viral entry into host cells. Moreover, PIK3C3 kinase activity is indispensable for the internalization of EBOV virions, presumably through the regulation of endocytic and autophagic membrane traffic, which has been previously recognized as essential for EBOV internalization. Notably, our study demonstrated that PIK3C3 kinase inhibitor could effectively block EBOV infection, underscoring PIK3C3 as a promising drug target. Furthermore, biochemical analysis showed that recombinant SLC39A9 protein could directly bind viral GP protein, which further promotes the interaction of viral GP protein with cellular receptor NPC1. These findings suggests that SLC39A9 plays dual roles in EBOV entry. Initially, it serves as an attachment factor during the early entry phase by engaging with the viral GP protein. Subsequently, SLC39A9 functions an adaptor protein, facilitating the interaction between virions and the NPC1 receptor during the late entry phase, prior to cathepsin cleavage on the viral GP. In summary, this study offers novel insights into virus-host interactions, contributing valuable information for the development of new therapies against EBOV infection.


Subject(s)
CRISPR-Cas Systems , Ebolavirus , Hemorrhagic Fever, Ebola , Virus Internalization , Animals , Humans , Cation Transport Proteins/metabolism , Cation Transport Proteins/genetics , Class III Phosphatidylinositol 3-Kinases/metabolism , Class III Phosphatidylinositol 3-Kinases/genetics , Ebolavirus/genetics , Ebolavirus/physiology , Ebolavirus/metabolism , HEK293 Cells , Hemorrhagic Fever, Ebola/virology , Hemorrhagic Fever, Ebola/metabolism , Hemorrhagic Fever, Ebola/genetics , Virus Replication
10.
EMBO Rep ; 25(2): 770-795, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38182816

ABSTRACT

DExD/H-box helicases are crucial regulators of RNA metabolism and antiviral innate immune responses; however, their role in bacteria-induced inflammation remains unclear. Here, we report that DDX5 interacts with METTL3 and METTL14 to form an m6A writing complex, which adds N6-methyladenosine to transcripts of toll-like receptor (TLR) 2 and TLR4, promoting their decay via YTHDF2-mediated RNA degradation, resulting in reduced expression of TLR2/4. Upon bacterial infection, DDX5 is recruited to Hrd1 at the endoplasmic reticulum in an MyD88-dependent manner and is degraded by the ubiquitin-proteasome pathway. This process disrupts the DDX5 m6A writing complex and halts m6A modification as well as degradation of TLR2/4 mRNAs, thereby promoting the expression of TLR2 and TLR4 and downstream NF-κB activation. The role of DDX5 in regulating inflammation is also validated in vivo, as DDX5- and METTL3-KO mice exhibit enhanced expression of inflammatory cytokines. Our findings show that DDX5 acts as a molecular switch to regulate inflammation during bacterial infection and shed light on mechanisms of quiescent inflammation during homeostasis.


Subject(s)
Adenine , Bacterial Infections , Toll-Like Receptor 2 , Animals , Mice , Adenine/analogs & derivatives , Inflammation/genetics , Methyltransferases/genetics , Toll-Like Receptor 2/genetics , Toll-Like Receptor 4/genetics
11.
Nature ; 577(7792): 682-688, 2020 01.
Article in English | MEDLINE | ID: mdl-31942069

ABSTRACT

Mycobacterium tuberculosis is an intracellular pathogen that uses several strategies to interfere with the signalling functions of host immune molecules. Many other bacterial pathogens exploit the host ubiquitination system to promote pathogenesis1,2, but whether this same system modulates the ubiquitination of M. tuberculosis proteins is unknown. Here we report that the host E3 ubiquitin ligase ANAPC2-a core subunit of the anaphase-promoting complex/cyclosome-interacts with the mycobacterial protein Rv0222 and promotes the attachment of lysine-11-linked ubiquitin chains to lysine 76 of Rv0222 in order to suppress the expression of proinflammatory cytokines. Inhibition of ANAPC2 by specific short hairpin RNA abolishes the inhibitory effect of Rv0222 on proinflammatory responses. Moreover, mutation of the ubiquitination site on Rv0222 impairs the inhibition of proinflammatory cytokines by Rv0222 and reduces virulence during infection in mice. Mechanistically, lysine-11-linked ubiquitination of Rv0222 by ANAPC2 facilitates the recruitment of the protein tyrosine phosphatase SHP1 to the adaptor protein TRAF6, preventing the lysine-63-linked ubiquitination and activation of TRAF6. Our findings identify a previously unrecognized mechanism that M. tuberculosis uses to suppress host immunity, and provide insights relevant to the development of effective immunomodulators that target M. tuberculosis.


Subject(s)
Bacterial Proteins/immunology , Bacterial Proteins/metabolism , Host-Pathogen Interactions/immunology , Mycobacterium tuberculosis/immunology , Tuberculosis/immunology , Ubiquitination , Anaphase-Promoting Complex-Cyclosome/chemistry , Animals , Apc2 Subunit, Anaphase-Promoting Complex-Cyclosome/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Cells, Cultured , Cytokines/antagonists & inhibitors , Cytokines/immunology , Cytokines/metabolism , Female , Inflammation Mediators/antagonists & inhibitors , Inflammation Mediators/immunology , Inflammation Mediators/metabolism , Lysine/metabolism , Macrophages/immunology , Macrophages/metabolism , Macrophages/microbiology , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 6/metabolism , Signal Transduction , TNF Receptor-Associated Factor 6/antagonists & inhibitors , TNF Receptor-Associated Factor 6/metabolism , Transcription Factor AP-1/metabolism , Tuberculosis/microbiology , Virulence/immunology
12.
Nature ; 582(7813): 501-505, 2020 06.
Article in English | MEDLINE | ID: mdl-32541968

ABSTRACT

Quantum key distribution (QKD)1-3 is a theoretically secure way of sharing secret keys between remote users. It has been demonstrated in a laboratory over a coiled optical fibre up to 404 kilometres long4-7. In the field, point-to-point QKD has been achieved from a satellite to a ground station up to 1,200 kilometres away8-10. However, real-world QKD-based cryptography targets physically separated users on the Earth, for which the maximum distance has been about 100 kilometres11,12. The use of trusted relays can extend these distances from across a typical metropolitan area13-16 to intercity17 and even intercontinental distances18. However, relays pose security risks, which can be avoided by using entanglement-based QKD, which has inherent source-independent security19,20. Long-distance entanglement distribution can be realized using quantum repeaters21, but the related technology is still immature for practical implementations22. The obvious alternative for extending the range of quantum communication without compromising its security is satellite-based QKD, but so far satellite-based entanglement distribution has not been efficient23 enough to support QKD. Here we demonstrate entanglement-based QKD between two ground stations separated by 1,120 kilometres at a finite secret-key rate of 0.12 bits per second, without the need for trusted relays. Entangled photon pairs were distributed via two bidirectional downlinks from the Micius satellite to two ground observatories in Delingha and Nanshan in China. The development of a high-efficiency telescope and follow-up optics crucially improved the link efficiency. The generated keys are secure for realistic devices, because our ground receivers were carefully designed to guarantee fair sampling and immunity to all known side channels24,25. Our method not only increases the secure distance on the ground tenfold but also increases the practical security of QKD to an unprecedented level.

13.
Proc Natl Acad Sci U S A ; 120(18): e2213332120, 2023 05 02.
Article in English | MEDLINE | ID: mdl-37094167

ABSTRACT

Among the current five Variants of Concern, infections caused by SARS-CoV-2 B.1.617.2 (Delta) variant are often associated with the greatest severity. Despite recent advances on the molecular basis of elevated pathogenicity using recombinant proteins, the architecture of intact Delta virions remains veiled. Moreover, pieces of molecular evidence for the detailed mechanism of S-mediated membrane fusion are missing. Here, we showed the pleomorphic nature of Delta virions from electron beam inactivated samples and reported the in situ structure and distribution of S on the authentic Delta variant. We also captured the virus-virus fusion events, which provided pieces of structural evidence for Delta's attenuated dependency on cellular factors for fusion activation, and proposed a model of S-mediated membrane fusion. Besides, site-specific glycan analysis revealed increased oligomannose-type glycosylation of native Delta S than that of the WT S. Together, these results disclose distinctive factors of Delta being the most virulent SARS-CoV-2 variant.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Membrane Fusion , Glycosylation , Spike Glycoprotein, Coronavirus
14.
Proc Natl Acad Sci U S A ; 120(42): e2306710120, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37824525

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic and the measures taken by authorities to control its spread have altered human behavior and mobility patterns in an unprecedented way. However, it remains unclear whether the population response to a COVID-19 outbreak varies within a city or among demographic groups. Here, we utilized passively recorded cellular signaling data at a spatial resolution of 1 km × 1 km for over 5 million users and epidemiological surveillance data collected during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron BA.2 outbreak from February to June 2022 in Shanghai, China, to investigate the heterogeneous response of different segments of the population at the within-city level and examine its relationship with the actual risk of infection. Changes in behavior were spatially heterogenous within the city and population groups and associated with both the infection incidence and adopted interventions. We also found that males and individuals aged 30 to 59 y old traveled more frequently, traveled longer distances, and their communities were more connected; the same groups were also associated with the highest SARS-CoV-2 incidence. Our results highlight the heterogeneous behavioral change of the Shanghai population to the SARS-CoV-2 Omicron BA.2 outbreak and the effect of heterogenous behavior on the spread of COVID-19, both spatially and demographically. These findings could be instrumental for the design of targeted interventions for the control and mitigation of future outbreaks of COVID-19, and, more broadly, of respiratory pathogens.


Subject(s)
COVID-19 , Male , Humans , COVID-19/epidemiology , China/epidemiology , SARS-CoV-2 , Disease Outbreaks , Group Processes
15.
Proc Natl Acad Sci U S A ; 120(51): e2312876120, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38085783

ABSTRACT

Electrochemical synthesis of valuable chemicals and feedstocks through carbon dioxide (CO2) reduction in acidic electrolytes can surmount the considerable CO2 loss in alkaline and neutral conditions. However, achieving high productivity, while operating steadily in acidic electrolytes, remains a big challenge owing to the severe competing hydrogen evolution reaction. Here, we show that vertically grown bismuth nanosheets on a gas-diffusion layer can create numerous cavities as electrolyte reservoirs, which confine in situ-generated hydroxide and potassium ions and limit inward proton diffusion, producing locally alkaline environments. Based on this design, we achieve formic acid Faradaic efficiency of 96.3% and partial current density of 471 mA cm-2 at pH 2. When operated in a slim continuous-flow electrolyzer, the system exhibits a full-cell formic acid energy efficiency of 40% and a single pass carbon efficiency of 79% and performs steadily over 50 h. We further demonstrate the production of pure formic acid aqueous solution with a concentration of 4.2 weight %.

16.
Mol Biol Evol ; 41(9)2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39271164

ABSTRACT

Extremely aggressive behavior, as the special pattern, is rare in most species and characteristic as contestants severely injured or killed ending the combat. Current studies of extreme aggression are mainly from the perspectives of behavioral ecology and evolution, while lacked the aspects of molecular evolutionary biology. Here, a high-quality chromosome-level genome of the parasitoid Anastatus disparis was provided, in which the males exhibit extreme mate-competition aggression. The integrated multiomics analysis highlighted that neurotransmitter dopamine overexpression, energy metabolism (especially from lipid), and antibacterial activity are likely major aspects of evolutionary formation and adaptation for extreme aggression in A. disparis. Conclusively, our study provided new perspectives for molecular evolutionary studies of extreme aggression as well as a valuable genomic resource in Hymenoptera.


Subject(s)
Aggression , Animals , Male , Genome, Insect , Evolution, Molecular , Wasps/genetics , Adaptation, Physiological/genetics , Biological Evolution , Adaptation, Biological/genetics , Chromosomes, Insect/genetics
17.
Brief Bioinform ; 24(6)2023 09 22.
Article in English | MEDLINE | ID: mdl-37965809

ABSTRACT

MOTIVATION: Bacteriophages (phages for short), which prey on and replicate within bacterial cells, have a significant role in modulating microbial communities and hold potential applications in treating antibiotic resistance. The advancement of high-throughput sequencing technology contributes to the discovery of phages tremendously. However, the taxonomic classification of assembled phage contigs still faces several challenges, including high genetic diversity, lack of a stable taxonomy system and limited knowledge of phage annotations. Despite extensive efforts, existing tools have not yet achieved an optimal balance between prediction rate and accuracy. RESULTS: In this work, we develop a learning-based model named PhaGenus, which conducts genus-level taxonomic classification for phage contigs. PhaGenus utilizes a powerful Transformer model to learn the association between protein clusters and support the classification of up to 508 genera. We tested PhaGenus on four datasets in different scenarios. The experimental results show that PhaGenus outperforms state-of-the-art methods in predicting low-similarity datasets, achieving an improvement of at least 13.7%. Additionally, PhaGenus is highly effective at identifying previously uncharacterized genera that are not represented in reference databases, with an improvement of 8.52%. The analysis of the infants' gut and GOV2.0 dataset demonstrates that PhaGenus can be used to classify more contigs with higher accuracy.


Subject(s)
Bacteriophages , Microbiota , Humans , Bacteriophages/genetics , High-Throughput Nucleotide Sequencing
18.
Bioinformatics ; 40(9)2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39316715

ABSTRACT

MOTIVATION: Protein embedding, which represents proteins as numerical vectors, is a crucial step in various learning-based protein annotation/classification problems, including gene ontology prediction, protein-protein interaction prediction, and protein structure prediction. However, existing protein embedding methods are often computationally expensive due to their large number of parameters, which can reach millions or even billions. The growing availability of large-scale protein datasets and the need for efficient analysis tools have created a pressing demand for efficient protein embedding methods. RESULTS: We propose a novel protein embedding approach based on multi-teacher distillation learning, which leverages the knowledge of multiple pre-trained protein embedding models to learn a compact and informative representation of proteins. Our method achieves comparable performance to state-of-the-art methods while significantly reducing computational costs and resource requirements. Specifically, our approach reduces computational time by ∼70% and maintains ±1.5% accuracy as the original large models. This makes our method well-suited for large-scale protein analysis and enables the bioinformatics community to perform protein embedding tasks more efficiently. AVAILABILITY AND IMPLEMENTATION: The source code of MTDP is available via https://github.com/KennthShang/MTDP.


Subject(s)
Computational Biology , Proteins , Proteins/chemistry , Computational Biology/methods , Databases, Protein , Machine Learning , Algorithms
19.
Hepatology ; 80(2): 428-439, 2024 08 01.
Article in English | MEDLINE | ID: mdl-38436992

ABSTRACT

BACKGROUND AND AIMS: A single-nation study reported that pretreatment HBV viral load is associated with on-treatment risk of HCC in patients who are HBeAg-positive without cirrhosis and with chronic hepatitis B initiating antiviral treatment. We aimed to validate the association between baseline HBV viral load and on-treatment HCC risk in a larger, multinational cohort. APPROACH AND RESULTS: Using a multinational cohort from Korea, Hong Kong, and Taiwan involving 7545 adult patients with HBeAg-positive, without cirrhosis and with chronic hepatitis B who started entecavir or tenofovir treatment with baseline HBV viral load ≥5.00 log 10 IU/mL, HCC risk was estimated by baseline viral load. HBV viral load was analyzed as a categorical variable. During continuous antiviral treatment (median, 4.28 y), HCC developed in 200 patients (incidence rate, 0.61 per 100 person-years). Baseline HBV DNA level was independently associated with on-treatment HCC risk in a nonlinear pattern. HCC risk was lowest with the highest baseline viral load (≥8.00 log 10 IU/mL; incidence rate, 0.10 per 100 person-years), but increased sharply as baseline viral load decreased. The adjusted HCC risk was 8.05 times higher (95% CI, 3.34-19.35) with baseline viral load ≥6.00 and <7.00 log 10 IU/mL (incidence rate, 1.38 per 100 person-years) compared with high (≥8.00 log 10 IU/mL) baseline viral load ( p <0.001). CONCLUSIONS: In a multinational cohort of adult patients with HBeAg-positive without cirrhosis and with chronic hepatitis B, baseline HBV viral load was significantly associated with HCC risk despite antiviral treatment. Patients with the highest viral load who initiated treatment had the lowest long-term risk of HCC development.


Subject(s)
Antiviral Agents , Carcinoma, Hepatocellular , Hepatitis B e Antigens , Hepatitis B, Chronic , Liver Neoplasms , Viral Load , Humans , Hepatitis B, Chronic/drug therapy , Hepatitis B, Chronic/complications , Hepatitis B, Chronic/virology , Male , Liver Neoplasms/virology , Liver Neoplasms/epidemiology , Liver Neoplasms/etiology , Female , Middle Aged , Hepatitis B e Antigens/blood , Antiviral Agents/therapeutic use , Carcinoma, Hepatocellular/virology , Carcinoma, Hepatocellular/epidemiology , Carcinoma, Hepatocellular/etiology , Adult , Taiwan/epidemiology , Hepatitis B virus , Hong Kong/epidemiology , Republic of Korea/epidemiology , Cohort Studies , Tenofovir/therapeutic use , Guanine/analogs & derivatives , Guanine/therapeutic use , DNA, Viral/blood , Incidence , Risk Factors
20.
Blood ; 142(10): 903-917, 2023 09 07.
Article in English | MEDLINE | ID: mdl-37319434

ABSTRACT

The bone marrow microenvironment (BMM) can regulate leukemia stem cells (LSCs) via secreted factors. Increasing evidence suggests that dissecting the mechanisms by which the BMM maintains LSCs may lead to the development of effective therapies for the eradication of leukemia. Inhibitor of DNA binding 1 (ID1), a key transcriptional regulator in LSCs, previously identified by us, controls cytokine production in the BMM, but the role of ID1 in acute myeloid leukemia (AML) BMM remains obscure. Here, we report that ID1 is highly expressed in the BMM of patients with AML, especially in BM mesenchymal stem cells, and that the high expression of ID1 in the AML BMM is induced by BMP6, secreted from AML cells. Knocking out ID1 in mesenchymal cells significantly suppresses the proliferation of cocultured AML cells. Loss of Id1 in the BMM results in impaired AML progression in AML mouse models. Mechanistically, we found that Id1 deficiency significantly reduces SP1 protein levels in mesenchymal cells cocultured with AML cells. Using ID1-interactome analysis, we found that ID1 interacts with RNF4, an E3 ubiquitin ligase, and causes a decrease in SP1 ubiquitination. Disrupting the ID1-RNF4 interaction via truncation in mesenchymal cells significantly reduces SP1 protein levels and delays AML cell proliferation. We identify that the target of Sp1, Angptl7, is the primary differentially expression protein factor in Id1-deficient BM supernatant fluid to regulate AML progression in mice. Our study highlights the critical role of ID1 in the AML BMM and aids the development of therapeutic strategies for AML.


Subject(s)
Angiopoietin-Like Protein 7 , Inhibitor of Differentiation Protein 1 , Leukemia, Myeloid, Acute , Animals , Mice , Angiopoietin-Like Protein 7/genetics , Angiopoietin-Like Protein 7/metabolism , Bone Marrow/metabolism , Disease Models, Animal , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Tumor Microenvironment , Humans , Inhibitor of Differentiation Protein 1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL