Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
BMC Genomics ; 15: 816, 2014 Sep 26.
Article in English | MEDLINE | ID: mdl-25260959

ABSTRACT

BACKGROUND: The passion fruit (Passiflora edulis) is a tropical crop of economic importance both for juice production and consumption as fresh fruit. The juice is also used in concentrate blends that are consumed worldwide. However, very little is known about the genome of the species. Therefore, improving our understanding of passion fruit genomics is essential and to some degree a pre-requisite if its genetic resources are to be used more efficiently. In this study, we have constructed a large-insert BAC library and provided the first view on the structure and content of the passion fruit genome, using BAC-end sequence (BES) data as a major resource. RESULTS: The library consisted of 82,944 clones and its levels of organellar DNA were very low. The library represents six haploid genome equivalents, and the average insert size was 108 kb. To check its utility for gene isolation, successful macroarray screening experiments were carried out with probes complementary to eight Passiflora gene sequences available in public databases. BACs harbouring those genes were used in fluorescent in situ hybridizations and unique signals were detected for four BACs in three chromosomes (n=9). Then, we explored 10,000 BES and we identified reads likely to contain repetitive mobile elements (19.6% of all BES), simple sequence repeats and putative proteins, and to estimate the GC content (~42%) of the reads. Around 9.6% of all BES were found to have high levels of similarity to plant genes and ontological terms were assigned to more than half of the sequences analysed (940). The vast majority of the top-hits made by our sequences were to Populus trichocarpa (24.8% of the total occurrences), Theobroma cacao (21.6%), Ricinus communis (14.3%), Vitis vinifera (6.5%) and Prunus persica (3.8%). CONCLUSIONS: We generated the first large-insert library for a member of Passifloraceae. This BAC library provides a new resource for genetic and genomic studies, as well as it represents a valuable tool for future whole genome study. Remarkably, a number of BAC-end pair sequences could be mapped to intervals of the sequenced Arabidopsis thaliana, V. vinifera and P. trichocarpa chromosomes, and putative collinear microsyntenic regions were identified.


Subject(s)
Chromosomes, Artificial, Bacterial/genetics , Genomics/methods , Passiflora/genetics , Chromosome Mapping , DNA Transposable Elements/genetics , Genome, Plant/genetics , Microsatellite Repeats/genetics , Open Reading Frames/genetics , Retroelements/genetics
2.
Biomolecules ; 12(3)2022 03 09.
Article in English | MEDLINE | ID: mdl-35327611

ABSTRACT

The objective was to evaluate the efficacy of a single dose of exogenous galectin-1 in improving the pregnancy rate in inseminated cows, comparing the pregnancy rate of the two groups (treatment and control Groups) into 107 contemporary groups (YG) established. An ultrasound exam determined the pregnancy rate performed 25 to 35 days after the fixed-time artificial insemination (FTAI) of breeding beef cows (n = 3469). The pregnancy rate of cows that received a single dose of eGAL-1 (200 ± 10 µg), with an intrauterine administration (n = 1901), was compared with the pregnancy rate of cows inseminated using a conventional AI protocol (n = 1568), both comparing into the same YG. YGs were created considering the grouping of cows belonging to the same farm, with the same nutritional score and management, inseminated by the same inseminator and semen batch, and using the same estrus synchronization protocol). The statistical method used calculated the probability of obtaining pregnancy within each group. The administration of a single dose of eGAL-1 can increase the probability of obtaining pregnancy in beef cows by up to 8.68% (p < 0.0001), suggesting that a single dose of eGAL-1 during the FTAI procedure was reasonable in the beef cattle AI routine and can improve the pregnancy rate considerably.


Subject(s)
Galectin 1 , Progesterone , Animals , Cattle , Estrus Synchronization/methods , Female , Humans , Insemination, Artificial/methods , Insemination, Artificial/veterinary , Plant Breeding , Pregnancy , Pregnancy Rate
3.
PLoS One ; 11(10): e0165176, 2016.
Article in English | MEDLINE | ID: mdl-27764252

ABSTRACT

Lentibulariaceae is the richest family of carnivorous plants spanning three genera including Pinguicula, Genlisea, and Utricularia. Utricularia is globally distributed, and, unlike Pinguicula and Genlisea, has both aquatic and terrestrial forms. In this study we present the analysis of the chloroplast (cp) genome of the terrestrial Utricularia reniformis. U. reniformis has a standard cp genome of 139,725bp, encoding a gene repertoire similar to essentially all photosynthetic organisms. However, an exclusive combination of losses and pseudogenization of the plastid NAD(P)H-dehydrogenase (ndh) gene complex were observed. Comparisons among aquatic and terrestrial forms of Pinguicula, Genlisea, and Utricularia indicate that, whereas the aquatic forms retained functional copies of the eleven ndh genes, these have been lost or truncated in terrestrial forms, suggesting that the ndh function may be dispensable in terrestrial Lentibulariaceae. Phylogenetic scenarios of the ndh gene loss and recovery among Pinguicula, Genlisea, and Utricularia to the ancestral Lentibulariaceae cladeare proposed. Interestingly, RNAseq analysis evidenced that U. reniformis cp genes are transcribed, including the truncated ndh genes, suggesting that these are not completely inactivated. In addition, potential novel RNA-editing sites were identified in at least six U. reniformis cp genes, while none were identified in the truncated ndh genes. Moreover, phylogenomic analyses support that Lentibulariaceae is monophyletic, belonging to the higher core Lamiales clade, corroborating the hypothesis that the first Utricularia lineage emerged in terrestrial habitats and then evolved to epiphytic and aquatic forms. Furthermore, several truncated cp genes were found interspersed with U. reniformis mitochondrial and nuclear genome scaffolds, indicating that as observed in other smaller plant genomes, such as Arabidopsis thaliana, and the related and carnivorous Genlisea nigrocaulis and G. hispidula, the endosymbiotic gene transfer may also shape the U. reniformis genome in a similar fashion. Overall the comparative analysis of the U. reniformis cp genome provides new insight into the ndh genes and cp genome evolution of carnivorous plants from Lentibulariaceae family.


Subject(s)
Genome, Chloroplast , Lamiales/classification , Lamiales/genetics , NADH Dehydrogenase/genetics , Plant Proteins/genetics , Bayes Theorem , Codon , Evolution, Molecular , Likelihood Functions , Microsatellite Repeats/genetics , NADH Dehydrogenase/classification , NADH Dehydrogenase/metabolism , Phylogeny , Plant Proteins/metabolism , RNA Editing , RNA, Plant/chemistry , RNA, Plant/isolation & purification , RNA, Plant/metabolism , Sequence Analysis, RNA , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL