Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
1.
Chemphyschem ; 23(8): e202200074, 2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35312211

ABSTRACT

Heterogeneous catalysts are often complex materials containing different compounds. While this can lead to highly beneficial interfaces, it is difficult to identify the role of single components. In methanol steam reforming (MSR), the interplay between intermetallic compounds, supporting oxides and redox reactions leads to highly active and CO2 -selective materials. Herein, the intrinsic catalytic properties of unsupported In3 Pt2 , In2 Pt, and In7 Pt3 as model systems for Pt/In2 O3 -based catalytic materials in MSR are addressed. In2 Pt was identified as the essential compound responsible for the reported excellent CO2 -selectivity of 99.5 % at 300 °C in supported systems, showing a CO2 -selectivity above 99 % even at 400 °C. Additionally, the partial oxidation of In7 Pt3 revealed that too much In2 O3 is detrimental for the catalytic properties. The study highlights the crucial role of intermetallic In-Pt compounds in Pt/In2 O3 materials with excellent CO2 -selectivity.

2.
Angew Chem Int Ed Engl ; 61(50): e202213249, 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36379010

ABSTRACT

Graphitic deposits anti-segregate into Ni0 nanoparticles to provide restored CH4 adsorption sites and near-surface/dissolved C atoms, which migrate to the Ni0 /ZrO2 interface and induce local Zrx Cy formation. The resulting oxygen-deficient carbidic phase boundary sites assist in the kinetically enhanced CO2 activation toward CO(g). This interface carbide mechanism allows for enhanced spillover of carbon to the ZrO2 support, and represents an alternative catalyst regeneration pathway with respect to the reverse oxygen spillover on Ni-CeZrx Oy catalysts. It is therefore rather likely on supports with limited oxygen storage/exchange kinetics but significant carbothermal reducibility.

3.
Acc Chem Res ; 53(9): 1811-1821, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32786330

ABSTRACT

ConspectusIn this Account, we demonstrate an increasing complexity approach to gain insight into the principal aspects of the surface and interface chemistry and catalysis of solid oxide fuel cell (SOFC) anode and electrolyte materials based on selected oxide, intermetallic, and metal-oxide systems at different levels of material complexity, as well as into the fundamental microkinetic reaction steps and intermediates at catalytically active surface and interface sites. To dismantle the complexity, we highlight our deconstructing step-by-step approach, which allows one to deduce synergistic properties of complex composite materials from the individual surface catalytic properties of the single constituents, representing the lowest complexity level: pure oxides and pure metallic materials. Upon mixing and doping the latter, directly leading to formation of intermetallic compounds/alloys in the case of metals and oxygen ion conductors/mixed ionic and electronic conductors for oxides, a second complexity level is reached. Finally, the introduction of an (inter)metall(ic)-(mixed) oxide interface leads to the third complexity level. A shell-like model featuring three levels of complexity with the unveiled surface and interface chemistry at its core evolves. As the shift to increased complexity decreases the number of different materials, the interconnections between the studied materials become more convoluted, but the resulting picture of surface chemistry becomes clearer. The materials featured in our investigations are all either already used technologically important or prospective components of SOFCs (such as yttria-stabilized zirconia, perovskites, or Ni-Cu alloys) or their basic constituents (e.g., ZrO2), or they are formed by reactions of other compounds (for instance, pyrochlores are thought to be formed at the YSZ/perovskite phase boundary). We elaborate three representative case studies based on ZrO2, Y2O3, and Y-doped ZrO2 in detail from all three complexity levels. By interconnection of results, we are able to derive common principles of the influence of surface and interface chemistry on the catalytic operation of SOFC anode materials. In situ measurements of the reactivity of water and carbon surface species on ZrO2- and Y2O3-based materials represent levels 1 and 2. The highest degree of complexity at level 3 is exemplified by combined surface science and catalytic studies of metal-oxide systems, oxidatively derived from intermetallic Cu-Zr and Pd-Zr compounds and featuring a large number of phases and interfaces. We show that only by appreciating insight into the basic building blocks of the catalyst materials at lower levels, a full understanding of the catalytic operation of the most complex materials at the highest level is possible.

4.
CrystEngComm ; 23(37): 6470-6480, 2021 Sep 27.
Article in English | MEDLINE | ID: mdl-34602861

ABSTRACT

The present Highlight article shows the importance of the in situ monitoring of bulk crystalline compounds for a more thorough understanding of heterogeneous catalysts at the intersection of catalysis, materials science, crystallography and inorganic chemistry. Although catalytic action is widely regarded as a purely surface-bound phenomenon, there is increasing evidence that bulk processes can detrimentally or beneficially influence the catalytic properties of various material classes. Such bulk processes include polymorphic transformations, formation of oxygen-deficient structures, transient phases and the formation of a metal-oxide composite. The monitoring of these processes and the subsequent establishment of structure-property relationships are most effective if carried out in situ under real operation conditions. By focusing on synchrotron-based in situ X-ray diffraction as the perfect tool to follow the evolution of crystalline species, we exemplify the strength of the concept with five examples from various areas of catalytic research. As catalyst activation studies are increasingly becoming a hot topic in heterogeneous catalysis, the (self-)activation of oxide- and intermetallic compound-based materials during methanol steam and methane dry reforming is highlighted. The perovskite LaNiO3 is selected as an example to show the complex structural dynamics before and during methane dry reforming, which is only revealed upon monitoring all intermediate crystalline species in the transformation from LaNiO3 into Ni/La2O3/La2O2CO3. ZrO2-based materials form the second group, indicating the in situ decomposition of the intermetallic compound Cu51Zr14 into an epitaxially stabilized Cu/tetragonal ZrO2 composite during methanol steam reforming, the stability of a ZrO0.31C0.69 oxycarbide and the gas-phase dependence of the tetragonal-to-monoclinic ZrO2 polymorphic transformation. The latter is the key parameter to the catalytic understanding of ZrO2 and is only appreciated in full detail once it is possible to follow the individual steps of the transformation between the crystalline polymorphic structures. A selected example is devoted to how the monitoring of crystalline reactive carbon during methane dry reforming operation aids in the mechanistic understanding of a Ni/MnO catalyst. The most important aspect is the strict use of in situ monitoring of the structural changes occurring during (self-)activation to establish meaningful structure-property relationships allowing conclusions beyond isolated surface chemical aspects.

5.
Chemphyschem ; 20(13): 1706-1718, 2019 07 02.
Article in English | MEDLINE | ID: mdl-31087748

ABSTRACT

The reactivity of H2 pre-reduced acceptor-doped ceria materials Gd0.10 Ce0.90 O2-δ (GDC10) and Sm0.15 Ce0.85 O2-δ (SDC15) was tested with respect to the reduction of CO2 to CO in the context of the reverse water-gas shift reaction. It was demonstrated that not only oxygen vacancies, but also dissolved hydrogen is a reactive species for the reduction of CO2 . Dissolved hydrogen must be considered upon discussion of the mechanism of the reverse water-gas shift reaction on ceria-derived materials apart from oxygen vacancies and formates. The reduction of CO2 is preceded by the formation of carbonate species of different thermal stability and reactivity. The stability of these carbonates was directly demonstrated by in situ infrared spectroscopy and revealed the largely reversible nature of CO2 ad- and desorption. In comparison to pre-reduced samples, decreased carbonate coverage is obtained after oxidative treatments of GDC10 and SDC15. No significant effect of the sample treatment (O2 oxidation or H2 reduction) on the surface carbonate stability was noticed. Mono-dentate carbonates and carboxylates appear to be more easily formed on pre-reduced (i. e. defective) samples. Ce4+ reduction to Ce3+ (by H2 ) and re-oxidation to Ce4+ (by CO2 ) on GDC10/SDC15 were directly monitored by infrared spectroscopic analysis of a distinct, IR-active electronic transition of Ce3+ . These results show the complex interplay of oxygen vacancy/dissolved hydrogen reactivity and surface chemical aspects in acceptor-doped ceria materials.

6.
Chemphyschem ; 20(22): 3067-3073, 2019 11 19.
Article in English | MEDLINE | ID: mdl-31247128

ABSTRACT

Metal carbides and oxycarbides have recently gained considerable interest due to their (electro)catalytic properties that differ from those of transition metals and that have potential to outperform them as well. The stability of zirconium oxycarbide nanopowders (ZrO0.31 C0.69 ), synthesized via a hybrid solid-liquid route, is investigated in different gas atmospheres from room temperature to 800 °C by using in-situ X-ray diffraction and in-situ electrical impedance spectroscopy. To feature the properties of a structurally stable Zr oxycarbide with high oxygen content, a stoichiometry of ZrO0.31 C0.69 has been selected. ZrO0.31 C0.69 is stable in reducing gases with only minor amounts of tetragonal ZrO2 being formed at high temperatures, whereas it decomposes in CO2 and O2 gas atmosphere. From online differential electrochemical mass spectrometry measurements, the hydrogen evolution reaction (HER) onset potential is determined at -0.4 VRHE . CO2 formation is detected at potentials as positive as 1.9 VRHE as ZrO0.31 C0.69 decomposition product, and oxygen is anodically formed at 2.5 VRHE , which shows the high electrochemical stability of this material in acidic electrolyte. This peopwery makes the material suited for electrocatalytic reactions at anodic potentials, such as CO and alcohol oxidation reactions, in general.

7.
Phys Chem Chem Phys ; 21(7): 3781-3794, 2019 Feb 13.
Article in English | MEDLINE | ID: mdl-30707216

ABSTRACT

We study the changes in the crystallographic phases and in the chemical states during the iron exsolution process of lanthanum strontium ferrite (LSF, La0.6Sr0.4FeO3-δ). By using thin films of orthorhombic LSF, grown epitaxially on NaCl(001) and rhombohedral LSF powder, the materials gap is bridged. The orthorhombic material transforms into a fluorite structure after the exsolution has begun, which further hinders this process. For the powder material, by a combination of in situ core level spectroscopy and ex situ neutron diffraction, we could directly highlight differences in the Fe chemical nature between surface and bulk: whereas the bulk contains Fe(iv) in the fully oxidized state, the surface spectra can be described perfectly by the sole presence of Fe(iii). We also present corresponding magnetic and oxygen vacancy concentration data of reduced rhombohedral LSF that did not undergo a phase transformation to the cubic perovskite system based on neutron diffraction data.

8.
CrystEngComm ; 21(1): 145-154, 2019 Jan 07.
Article in English | MEDLINE | ID: mdl-30930690

ABSTRACT

The reduction of pure and Sm-doped ceria in hydrogen has been studied by synchrotron-based in situ X-ray diffraction to eventually prove or disprove the presence of crystalline cerium hydride (CeH x ) phases and the succession of potential structural phase (trans)formations of reduced cerium oxide phases during heating-cooling cycles up to 1273 K. Despite a recent report on the existence of bulk and surface CeH x phases during reductive treatment of pure CeO2 in H2, structural analysis by Rietveld refinement as well as additional 1H-NMR spectroscopy did not reveal the presence of any crystalline CeH x phase. Rather, a sequence of phase transformations during the re-cooling process in H2 has been observed. In both samples, the reduced/defective fluorite lattice undergoes at first a transformation into a bixbyite-type lattice with a formal stoichiometry Ce0.58 3+Ce0.42 4+O1.71 and Sm0.15 3+Ce0.39 3+Ce0.46 4+O1.73, before a transformation into rhombohedral Ce7O12 takes place in pure CeO2. This phase is clearly absent for the Sm-doped material. Finally, a triclinic Ce11O20 phase appears for both materials, which can be recovered to room temperature, and on which a phase mixture of bixbyite Ce0.66 3+Ce0.34 4+O1.67, rh-Ce0.60 3+Ce0.40 4+O1.70 and tri-Ce0.48 3+Ce0.52 4+O1.76 (for pure CeO2) or bixbyite Sm0.15 3+Ce0.47 3+Ce0.38 4+O1.69 and tri-Sm0.15 3+Ce0.31 3+Ce0.54 4+O1.77 (for Sm-doped CeO2) prevails. The absence of the rhombohedral phase indicates that Sm doping leads to the stabilization of the bixbyite phase over the rhombohedral one at this particular oxygen vacancy concentration. It is worth noting that recent work proves that hydrogen is indeed incorporated within the structures during the heat treatments, but under the chosen experimental conditions it has apparently no effect on the salient structural principles during reduction.

9.
Sci Technol Adv Mater ; 20(1): 356-366, 2019.
Article in English | MEDLINE | ID: mdl-31068984

ABSTRACT

The reactive metal-support interaction in the Cu-In2O3 system and its implications on the CO2 selectivity in methanol steam reforming (MSR) have been assessed using nanosized Cu particles on a powdered cubic In2O3 support. Reduction in hydrogen at 300 °C resulted in the formation of metallic Cu particles on In2O3. This system already represents a highly CO2-selective MSR catalyst with ~93% selectivity, but only 56% methanol conversion and a maximum H2 formation rate of 1.3 µmol gCu -1 s-1. After reduction at 400 °C, the system enters an In2O3-supported intermetallic compound state with Cu2In as the majority phase. Cu2In exhibits markedly different self-activating properties at equally pronounced CO2 selectivities between 92% and 94%. A methanol conversion improvement from roughly 64% to 84% accompanied by an increase in the maximum hydrogen formation rate from 1.8 to 3.8 µmol gCu -1 s-1 has been observed from the first to the fourth consecutive runs. The presented results directly show the prospective properties of a new class of Cu-based intermetallic materials, beneficially combining the MSR properties of the catalyst's constituents Cu and In2O3. In essence, the results also open up the pathway to in-depth development of potentially CO2-selective bulk intermetallic Cu-In compounds with well-defined stoichiometry in MSR.

10.
J Environ Manage ; 238: 360-367, 2019 May 15.
Article in English | MEDLINE | ID: mdl-30856596

ABSTRACT

In the present study, two statistical methods including the response surface method (RSM) and artificial neural network (ANN), were employed for modeling and optimization of selective catalytic reduction of NOx with NH3 (NH3-SCR) over V2O5/TiO2 nanocatalysts. The relationship between catalyst preparation variables, such as metal loading, impregnation temperature, and calcination temperature on NO conversion were investigated. The R2 value of 0.9898 was obtained for quadratic a RSM model, which proves the high agreement of the model with the experimental data. The results of Pareto analysis revealed that three factors including calcination temperature, V loading, and impregnation temperature have a considerable impact on the response. Deduced from the established RSM model, the order of influence on the NO conversion was as follows: calcination followed by V loading and impregnation temperature. The optimum condition of catalyst preparation for maximum NO conversion over V2O5/TiO2 nanocatalysts was predicted to be at 0.0051 mol of V loading, an impregnation temperature of 50 °C and a calcination temperature of 491 °C. Moreover, an ANN model was created by a feed-forward back propagation network (with the topology 4, 12 and 1) to model the relation between the selected catalyst preparation variables and NH3-SCR process temperature. The R2 values for training, validation as well as test sets, were 0.99, 0.9810 and 0.9733. These high values proved the accuracy of the AAN model in modeling and estimating the NO conversion over V2O5/TiO2 nanocatalysts. According to the ANN model, the relative significance of each variable on NO conversion is calcination temperature, process temperature loading, and impregnation temperature from high to low importance, respectively, corroborating the obtained results from RSM.


Subject(s)
Ammonia , Titanium , Catalysis , Neural Networks, Computer , Temperature
11.
Chemphyschem ; 19(1): 93-107, 2018 Jan 05.
Article in English | MEDLINE | ID: mdl-28994237

ABSTRACT

The activity of the pre-reduced perovskites La0.6 Sr0.4 FeO3-δ (LSF64) and SrTi0.7 Fe0.3 O3-δ (STF73) for the CO2 reduction to CO was investigated with special focus on the reactivity of oxide-dissolved hydrogen. This is of particular interest in hydrogen solid-oxide electrolysis cell (H-SOEC) technology, where proton-conducting ceramics are used and the reaction 2e- +2H+ +CO2 →CO+H2 O is of central importance. To clarify if hydrogen dissolved in LSF64 and STF73 partakes in the CO2 reduction, temperature-programmed reduction (TPR) in H2 , followed by temperature-programmed reoxidation (TPO) in CO2 and, moreover, temperature-programmed desorption (TPD) of ad- and absorbed species were utilized. The experiments reveal that 50 mol % of the CO2 is converted by hydrogen dissolved in STF73 and reacts quantitatively. On the other hand, LSF64 converts less than 20 mol % of CO2 via dissolved hydrogen and a residual of bulk OH is still detectable after CO2 -TPO.

12.
Phys Chem Chem Phys ; 20(34): 22099-22113, 2018 Aug 29.
Article in English | MEDLINE | ID: mdl-30113047

ABSTRACT

The effect of Gd- and Sm-doping on pure CeO2 with respect to crystal structure, oxygen nonstoichiometry, hydrogen solubility and hydroxyl chemistry in a hydrogen atmosphere at elevated temperatures was studied using a combination of powder X-ray diffraction (XRD), temperature-programmed methods (such as reduction, desorption and oxidation), and Fourier-Transform Infrared Spectroscopy (FT-IR). In particular, Gd0.1Ce0.9O2-δ (GDC10) and Sm0.15Ce0.85O2-δ (SDC15) were compared to pure CeO2. After H2 reduction of GDC10/SDC15/CeO2 at 900 °C, two distinct phases form, which differ from each other in terms of oxygen nonstoichiometry. One phase is only slightly reduced and maintains a cubic fluorite unit cell. The other phase is strongly oxygen depleted and changes its lattice to triclinic. Enrichment or depletion of the dopants in the two phases upon reduction was not observed. No evidence for a long-range ordered cerium hydride could be found, despite the fact that all samples clearly incorporate hydrogen during the reduction procedure. Generally, the treatment of all three samples with flowing H2 at 700 °C, 800 °C and 900 °C causes the oxygen deficiency and the amount of bound hydrogen to increase with reduction temperature. Acceptor doping, thus, promotes hydrogen incorporation, but it at the same time decreases the amount of reactive oxygen. In conclusion, the study of hydroxyl chemistry shows that doping CeO2 with Gd or Sm creates binding sites for reactive hydroxyl groups that are not observed for pure CeO2. The distinct infrared absorption peak at ca. 2127 cm-1 - which originates from an electronic transition of Ce3+ (2F5/2 → 2F7/2) - is a viable indicator for the reduction degree of all three specimens.

13.
Angew Chem Int Ed Engl ; 57(44): 14613-14618, 2018 Oct 26.
Article in English | MEDLINE | ID: mdl-30179293

ABSTRACT

C-saturated Pd0 nanoparticles with an extended phase boundary to ZrO2 evolve from a Pd0 Zr0 precatalyst under CH4 dry reforming conditions. This highly active catalyst state fosters bifunctional action: CO2 is efficiently activated at oxidic phase boundary sites and Pdx C provides fast supply of C-atoms toward the latter.

14.
Phys Chem Chem Phys ; 19(29): 19407-19419, 2017 Jul 26.
Article in English | MEDLINE | ID: mdl-28715034

ABSTRACT

To account for the explanation of an eventual sensing and catalytic behavior of rhombohedral In2O3 (rh-In2O3) and the dependence of the metastability of the latter on gas atmospheres, in situ electrochemical impedance spectroscopic (EIS), Fourier-transform infrared spectroscopic (FT-IR), in situ X-ray diffraction and in situ thermogravimetric analyses in inert (helium) and reactive gases (hydrogen, carbon monoxide and carbon dioxide) have been conducted to link the gas-dependent electrical conductivity features and the surface chemical properties to its metastability towards cubic In2O3. In particular, for highly reducible oxides such as In2O3, for which not only the formation of oxygen vacancies, but deep reduction to the metallic state (i.e. metallic indium) also has to be taken into account, this approach is imperative. Temperature-dependent impedance features are strongly dependent on the respective gas composition and are assigned to distinct changes in either surface adsorbates or free charge carrier absorbance, allowing for differentiating and distinguishing between bulk reduction-related features from those directly arising from surface chemical alterations. For the measurements in an inert gas atmosphere, this analysis specifically also included monitoring the fate of differently bonded, and hence, differently reactive, hydroxyl groups. Reduction of rh-In2O3 proceeds to a large extent indirectly via rh-In2O3 → c-In2O3 → In metal. As deduced from the CO and CO2 adsorption experiments, rhombohedral In2O3 exhibits predominantly Lewis acidic surface sites. The basic character is less pronounced, directly explaining the previously observed high (inverse) water-gas shift activity and the low CO2 selectivity in methanol steam reforming.

15.
Phys Chem Chem Phys ; 18(21): 14333-49, 2016 05 25.
Article in English | MEDLINE | ID: mdl-27165763

ABSTRACT

Structural and chemical degradation mechanisms of metal-free yttria stabilized zirconia (YSZ-8, 8 mol% Y2O3 in ZrO2) in comparison to its pure oxidic components ZrO2 and Y2O3 have been studied in carbon-rich fuel gases with respect to coking/graphitization and (oxy)carbide formation. By combining operando electrochemical impedance spectroscopy (EIS), operando Fourier-transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS), the removal and suppression of CH4- and CO-induced carbon deposits and of those generated in more realistic fuel gas mixtures (syngas, mixtures of CH4 or CO with CO2 and H2O) was examined under SOFC-relevant conditions up to 1273 K and ambient pressures. Surface-near carbidization is a major problem already on the "isolated" (i.e. Nickel-free) cermet components, leading to irreversible changes of the conduction properties. Graphitic carbon deposition takes place already on the "isolated" oxides under sufficiently fuel-rich conditions, most pronounced in the pure gases CH4 and CO, but also significantly in fuel gas mixtures containing H2O and CO2. For YSZ, a comparative quantification of the total amount of deposited carbon in all gases and mixtures is provided and thus yields favorable and detrimental experimental approaches to suppress the carbon formation. In addition, the effectivity and reversibility of removal of the coke/graphite layers was comparably studied in the pure oxidants O2, CO2 and H2O and their effective contribution upon addition to the pure fuel gases CO and CH4 verified.

16.
Phys Chem Chem Phys ; 18(38): 26873-26884, 2016 Sep 29.
Article in English | MEDLINE | ID: mdl-27711582

ABSTRACT

Two mixed ionic-electronic conducting, Fe-containing perovskites were investigated regarding their reducibility in dry H2, namely lanthanum strontium ferrite (LSF4, La0.6Sr0.4FeO3-δ) and strontium titanium ferrite (STF3, SrTi0.7Fe0.3O3-δ). Upon treatment under comparable reduction conditions, LSF4 is by far more affected by reduction and is reduced more deeply than STF3. Thermal treatments of fully oxidized or slightly reduced LSF4/STF3 at decreased O2 partial pressure lead to spontaneous desorption of O2. Temperature-programmed desorption (TPD) spectra of H2 reveal distinct differences in H2 and H2O desorption. A simple mass balance of H2 reveals that oxygen vacancies formed on STF3 are more resilient towards O2 re-oxidation compared to those on LSF4. The results also imply that substantial amounts of hydrogen are dissolved in the bulk of LSF4 or STF3. 4.9 × 10-2 mol H2 per mol LSF4 and 1.6 × 10-2 mol H2 per mol STF3 are incorporated if the specimens are heated in flowing/dry H2 up to 550 °C and 612 °C, respectively. For LSF4 this equals about 13 hypothetical ML of H2 and for STF3 about 20 hypothetical ML of H2. This conclusion is also supported by Fourier-transform infrared spectroscopy (FT-IR). FT-IR reveals water formation during static H2 treatment of LSF4/STF3, which indicates perovskite reduction. Furthermore, both samples behave extraordinarily hydrophobic and no chemistry involving surface hydroxy groups was observed.

17.
Phys Chem Chem Phys ; 18(46): 31586-31599, 2016 Nov 23.
Article in English | MEDLINE | ID: mdl-27834976

ABSTRACT

An inverse Pd-Zr model catalyst was prepared by chemical vapor deposition (CVD) using zirconium-t-butoxide (ZTB) as an organometallic precursor. Pd-Zr interaction was then investigated with focus on the correlation of reforming performance with the oxidation state of Zr. As test reactions, dry reforming of methane (DRM) and methanol steam reforming (MSR) were chosen. Depending on treatments, either ZrOxHy or ZrO2 overlayers or Zr as sub-nanometer clusters could be obtained. Following the adsorption of ZTB on Pd(111), a partially hydroxylated Zr4+-containing layer was formed, which can be reduced to metallic Zr by thermal annealing in ultrahigh vacuum, leading to redox-active Zr0 sub-nanometer clusters. Complementary density functional theoretical (DFT) calculations showed that a single layer of ZrO2 on Pd(111) can be more easily reduced toward the metallic state than a double- and triple layer. Also, the initial and resulting layer compositions greatly depend on gas environment. The lower the water background partial pressure, the faster and more complete the reduction of Zr4+ species to Zr0 on Pd takes place. Under methanol steam reforming conditions, water activation by hydroxylation of Zr occurs. In excess of methanol, strong coking is induced by the Pd/ZrOxHy interface. In contrast, dry reforming of methane is effectively promoted if these initially metallic Zr species are present in the pre-catalyst, leading to a Pd/ZrOxHy phase boundary by oxidative activation under reaction conditions. These reaction-induced active sites for DRM are stable with respect to carbon blocking or coking. In essence, Zr doping of Pd opens specific CO2 activation channels, which are absent on pure metallic Pd.

18.
Inorg Chem ; 53(24): 13247-57, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25474310

ABSTRACT

The kinetic stability of pure and yttrium-doped tetragonal zirconia (ZrO2) polymorphs prepared via a pathway involving decomposition of pure zirconium and zirconium + yttrium isopropoxide is reported. Following this preparation routine, high surface area, pure, and structurally stable polymorphic modifications of pure and Y-doped tetragonal zirconia are obtained in a fast and reproducible way. Combined analytical high-resolution in situ transmission electron microscopy, high-temperature X-ray diffraction, and chemical and thermogravimetric analyses reveals that the thermal stability of the pure tetragonal ZrO2 structure is very much dominated by kinetic effects. Tetragonal ZrO2 crystallizes at 400 °C from an amorphous ZrO2 precursor state and persists in the further substantial transformation into the thermodynamically more stable monoclinic modification at higher temperatures at fast heating rates. Lower heating rates favor the formation of an increasing amount of monoclinic phase in the product mixture, especially in the temperature region near 600 °C and during/after recooling. If the heat treatment is restricted to 400 °C even under moist conditions, the tetragonal phase is permanently stable, regardless of the heating or cooling rate and, as such, can be used as pure catalyst support. In contrast, the corresponding Y-doped tetragonal ZrO2 phase retains its structure independent of the heating or cooling rate or reaction environment. Pure tetragonal ZrO2 can now be obtained in a structurally stable form, allowing its structural, chemical, or catalytic characterization without in-parallel triggering of unwanted phase transformations, at least if the annealing or reaction temperature is restricted to T ≤ 400 °C.

19.
ACS Catal ; 14(1): 324-329, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38205023

ABSTRACT

The compound material titanium oxycarbide (TiOC) is found to be an effective electrocatalyst for the electrochemical oxidation of ethanol to CO2. The complete course of this reaction is one of the main challenges in direct ethanol fuel cells (DEFCs). While TiOC has previously been investigated as catalyst support material only, in this study we show that TiOC alone is able to oxidize ethanol to acetaldehyde without the need of expensive noble metal catalysts like Pt. It is suggested that this behavior is attributed to the presence of both undercoordinated sites, which allow ethanol to adsorb, and oxygenated sites, which facilitate the activation of water. This is a milestone in DEFC research and development and opens up innovative possibilities for the design of catalyst materials for intermediate temperature fuel cells.

20.
Rev Sci Instrum ; 94(6)2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37862508

ABSTRACT

A versatile multifunctional laboratory-based near ambient pressure x-ray photoelectron spectroscopy (XPS) instrument is presented. The entire device is highly customized regarding geometry, exchangeable manipulators and sample stages for liquid- and solid-state electrochemistry, cryochemistry, and heterogeneous catalysis. It therefore delivers novel and unique access to a variety of experimental approaches toward a broad choice of functional materials and their specific surface processes. The high-temperature (electro)catalysis manipulator is designed for probing solid state/gas phase interactions for heterogeneous catalysts including solid electrolyzer/fuel cell electrocatalysts at pressures up to 15 mbar and temperatures from room temperature to 1000 °C. The liquid electrochemistry manipulator is specifically designed for in situ spectroscopic investigations of polarized solid/liquid interfaces using aqueous electrolytes and the third one for experiments for ice and ice-like materials at cryogenic temperatures to approximately -190 °C. The flexible and modular combination of these setups provides the opportunity to address a broad spectrum of in situ and operando XPS experiments on a laboratory-based system, circumventing the limited accessibility of experiments at synchrotron facilities.

SELECTION OF CITATIONS
SEARCH DETAIL