Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
PLoS Pathog ; 17(8): e1009825, 2021 08.
Article in English | MEDLINE | ID: mdl-34449812

ABSTRACT

Clinical outcomes are inferior for individuals with HIV having suboptimal CD4 T-cell recovery during antiretroviral therapy (ART). We investigated if the levels of infection and the response to homeostatic cytokines of CD4 T-cell subsets contributed to divergent CD4 T-cell recovery and HIV reservoir during ART by studying virologically-suppressed immunologic responders (IR, achieving a CD4 cell count >500 cells/µL on or before two years after ART initiation), and virologically-suppressed suboptimal responders (ISR, did not achieve a CD4 cell count >500 cells/µL in the first two years after ART initiation). Compared to IR, ISR demonstrated higher levels of HIV-DNA in naïve, central (CM), transitional (TM), and effector (EM) memory CD4 T-cells in blood, both pre- and on-ART, and specifically in CM CD4 T-cells in LN on-ART. Furthermore, ISR had higher pre-ART plasma levels of IL-7 and IL-15, cytokines regulating T-cell homeostasis. Notably, pre-ART PD-1 and TIGIT expression levels were higher in blood CM and TM CD4 T-cells for ISR; this was associated with a significantly lower fold-changes in HIV-DNA levels between pre- and on-ART time points exclusively on CM and TM T-cell subsets, but not naïve or EM T-cells. Finally, the frequency of CM CD4 T-cells expressing PD-1 or TIGIT pre-ART as well as plasma levels of IL-7 and IL-15 predicted HIV-DNA content on-ART. Our results establish the association between infection, T-cell homeostasis, and expression of PD-1 and TIGIT in long-lived CD4 T-cell subsets prior to ART with CD4 T-cell recovery and HIV persistence on-ART.


Subject(s)
Anti-Retroviral Agents/pharmacology , CD4-Positive T-Lymphocytes/immunology , Cytokines/metabolism , HIV Infections/virology , Homeostasis , T-Lymphocyte Subsets/immunology , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/virology , DNA, Viral , Female , HIV Infections/drug therapy , HIV Infections/immunology , HIV-1/immunology , Humans , Immunologic Memory/immunology , Male , Middle Aged , T-Lymphocyte Subsets/drug effects , T-Lymphocyte Subsets/virology , Viral Load
2.
Front Immunol ; 13: 1033672, 2022.
Article in English | MEDLINE | ID: mdl-36569952

ABSTRACT

B cell lymphoma 2 (BCL-2) family proteins are involved in the mitochondrial apoptotic pathway and are key modulators of cellular lifespan, which is dysregulated during human immunodeficiency virus type 1 (HIV-1) and other viral infections, thereby increasing the lifespan of cells harboring virus, including the latent HIV-1 reservoir. Long-lived cells harboring integrated HIV-1 DNA is a major barrier to eradication. Strategies reducing the lifespan of reservoir cells could significantly impact the field of cure research, while also providing insight into immunomodulatory strategies that can crosstalk to other viral infections. Venetoclax is a first-in-class orally bioavailable BCL-2 homology 3 (BH3) mimetic that recently received Food and Drug Administration (FDA) approval for treatment in myeloid and lymphocytic leukemia. Venetoclax has been recently investigated in HIV-1 and demonstrated anti-HIV-1 effects including a reduction in reservoir size. Another immunomodulatory strategy towards reduction in the lifespan of the reservoir is Jak 1/2 inhibition. The Jak STAT pathway has been implicated in BCL-2 and interleukin 10 (IL-10) expression, leading to a downstream effect of cellular senescence. Ruxolitinib and baricitinib are FDA-approved, orally bioavailable Jak 1/2 inhibitors that have been shown to indirectly decay the HIV-1 latent reservoir, and down-regulate markers of HIV-1 persistence, immune dysregulation and reservoir lifespan in vitro and ex vivo. Ruxolitinib recently demonstrated a significant decrease in BCL-2 expression in a human study of virally suppressed people living with HIV (PWH), and baricitinib recently received emergency use approval for the indication of coronavirus disease 2019 (COVID-19), underscoring their safety and efficacy in the viral infection setting. BCL-2 and Jak 1/2 inhibitors could be repurposed as immunomodulators for not only HIV-1 and COVID-19, but other viruses that upregulate BCL-2 anti-apoptotic proteins. This review examines potential routes for BCL-2 and Jak 1/2 inhibitors as immunomodulators for treatment and cure of HIV-1 and other viral infections.


Subject(s)
COVID-19 , HIV Infections , HIV-1 , United States , Humans , Virus Latency , Janus Kinases/metabolism , Drug Repositioning , Signal Transduction , STAT Transcription Factors/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism
3.
Sci Immunol ; 6(61)2021 07 15.
Article in English | MEDLINE | ID: mdl-34266981

ABSTRACT

Ongoing SARS-CoV-2 vaccine development is focused on identifying stable, cost-effective, and accessible candidates for global use, specifically in low and middle-income countries. Here, we report the efficacy of a rapidly scalable, novel yeast expressed SARS-CoV-2 specific receptor-binding domain (RBD) based vaccine in rhesus macaques. We formulated the RBD immunogen in alum, a licensed and an emerging alum adsorbed TLR-7/8 targeted, 3M-052-alum adjuvants. The RBD+3M-052-alum adjuvanted vaccine promoted better RBD binding and effector antibodies, higher CoV-2 neutralizing antibodies, improved Th1 biased CD4+T cell reactions, and increased CD8+ T cell responses when compared to the alum-alone adjuvanted vaccine. RBD+3M-052-alum induced a significant reduction of SARS-CoV-2 virus in respiratory tract upon challenge, accompanied by reduced lung inflammation when compared with unvaccinated controls. Anti-RBD antibody responses in vaccinated animals inversely correlated with viral load in nasal secretions and BAL. RBD+3M-052-alum blocked a post SARS-CoV-2 challenge increase in CD14+CD16++ intermediate blood monocytes, and Fractalkine, MCP-1, and TRAIL in the plasma. Decreased plasma analytes and intermediate monocyte frequencies correlated with reduced nasal and BAL viral loads. Lastly, RBD-specific plasma cells accumulated in the draining lymph nodes and not in the bone marrow, contrary to previous findings. Together, these data show that a yeast expressed, RBD-based vaccine+3M-052-alum provides robust immune responses and protection against SARS-CoV-2, making it a strong and scalable vaccine candidate.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Alum Compounds/administration & dosage , COVID-19 Vaccines , COVID-19/prevention & control , SARS-CoV-2 , Saccharomycetales/genetics , Spike Glycoprotein, Coronavirus/genetics , Administration, Inhalation , Administration, Intranasal , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , Cell Line , Cytokines/immunology , Humans , Immunoglobulin G/immunology , Lung/pathology , Macaca mulatta , Male , Protein Binding , Protein Domains , Spike Glycoprotein, Coronavirus/immunology , Viral Load
4.
J Clin Invest ; 128(11): 5083-5094, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30320604

ABSTRACT

Immune nonresponder (INR) HIV-1-infected subjects are characterized by their inability to reconstitute the CD4+ T cell pool after antiretroviral therapy. This is linked to poor clinical outcome. Mechanisms underlying immune reconstitution failure are poorly understood, although, counterintuitively, INRs often have increased frequencies of circulating CD4+ T cells in the cell cycle. While cycling CD4+ T cells from healthy controls and HIV+ patients with restored CD4+ T cell numbers complete cell division in vitro, cycling CD4+ T cells from INRs do not. Here, we show that cells with the phenotype and transcriptional profile of Tregs were enriched among cycling cells in health and in HIV infection. Yet there were diminished frequencies and numbers of Tregs among cycling CD4+ T cells in INRs, and cycling CD4+ T cells from INR subjects displayed transcriptional profiles associated with the impaired development and maintenance of functional Tregs. Flow cytometric assessment of TGF-ß activity confirmed the dysfunction of Tregs in INR subjects. Transcriptional profiling and flow cytometry revealed diminished mitochondrial fitness in Tregs among INRs, and cycling Tregs from INRs had low expression of the mitochondrial biogenesis regulators peroxisome proliferator-activated receptor γ coactivator 1-α (PGC1α) and transcription factor A for mitochondria (TFAM). In vitro exposure to IL-15 allowed cells to complete division, restored the expression of PGC1α and TFAM, and regenerated mitochondrial fitness in the cycling Tregs of INRs. Our data suggest that rescuing mitochondrial function could correct the immune dysfunction characteristic of Tregs in HIV-1-infected subjects who fail to restore CD4+ T cells during antiretroviral therapy.


Subject(s)
DNA-Binding Proteins/immunology , HIV Infections/immunology , HIV-1 , Interleukin-15/immunology , Mitochondria/immunology , Mitochondrial Proteins/immunology , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/immunology , T-Lymphocytes, Regulatory/immunology , Transcription Factors/immunology , Adult , Anti-Retroviral Agents/administration & dosage , CD4 Lymphocyte Count , Female , HIV Infections/drug therapy , HIV Infections/pathology , Humans , Male , Middle Aged , Mitochondria/pathology , T-Lymphocytes, Regulatory/pathology
SELECTION OF CITATIONS
SEARCH DETAIL