Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Microb Cell Fact ; 23(1): 151, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789996

ABSTRACT

BACKGROUND: Xylans are polysaccharides that are naturally abundant in agricultural by-products, such as cereal brans and straws. Microbial degradation of arabinoxylan is facilitated by extracellular esterases that remove acetyl, feruloyl, and p-coumaroyl decorations. The bacterium Ruminiclostridium cellulolyticum possesses the Xua (xylan utilization associated) system, which is responsible for importing and intracellularly degrading arabinoxylodextrins. This system includes an arabinoxylodextrins importer, four intracellular glycosyl hydrolases, and two intracellular esterases, XuaH and XuaJ which are encoded at the end of the gene cluster. RESULTS: Genetic studies demonstrate that the genes xuaH and xuaJ are part of the xua operon, which covers xuaABCDD'EFGHIJ. This operon forms a functional unit regulated by the two-component system XuaSR. The esterases encoded at the end of the cluster have been further characterized: XuaJ is an acetyl esterase active on model substrates, while XuaH is a xylan feruloyl- and p-coumaryl-esterase. This latter is active on oligosaccharides derived from wheat bran and wheat straw. Modelling studies indicate that XuaH has the potential to interact with arabinoxylobiose acylated with mono- or diferulate. The intracellular esterases XuaH and XuaJ are believed to allow the cell to fully utilize the complex acylated arabinoxylo-dextrins imported into the cytoplasm during growth on wheat bran or straw. CONCLUSIONS: This study reports for the first time that a cytosolic feruloyl esterase is part of an intracellular arabinoxylo-dextrin import and degradation system, completing its cytosolic enzymatic arsenal. This system represents a new pathway for processing highly-decorated arabinoxylo-dextrins, which could provide a competitive advantage to the cell and may have interesting biotechnological applications.


Subject(s)
Lignin , Xylans , Xylans/metabolism , Lignin/metabolism , Biomass , Coumaric Acids/metabolism , Oligosaccharides/metabolism , Clostridiales/metabolism , Operon , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Multigene Family , Acetylesterase/metabolism , Acetylesterase/genetics , Carboxylic Ester Hydrolases
2.
Appl Environ Microbiol ; 86(20)2020 10 01.
Article in English | MEDLINE | ID: mdl-32769189

ABSTRACT

Cellulolytic microorganisms play a key role in the global carbon cycle by decomposing structurally diverse plant biopolymers from dead plant matter. These microorganisms, in particular anaerobes such as Ruminiclostridium cellulolyticum that are capable of degrading and catabolizing several different polysaccharides, require a fine-tuned regulation of the biosynthesis of their polysaccharide-degrading enzymes. In this study, we present a bacterial regulatory system involved in the regulation of genes enabling the metabolism of the ubiquitous plant polysaccharide xyloglucan. The characterization of R. cellulolyticum knockout mutants suggests that the response regulator XygR and its cognate histidine kinase XygS are essential for growth on xyloglucan. Using in vitro and in vivo analyses, we show that XygR binds to the intergenic region and activates the expression of two polycistronic transcriptional units encoding an ABC transporter dedicated to the uptake of xyloglucan oligosaccharides and the two-component system itself together with three intracellular glycoside hydrolases responsible for the sequential intracellular degradation of the imported oligosaccharides into mono- and disaccharides. Interestingly, XygR also upregulates the expression of a distant gene coding for the most active extracellular cellulosomal xyloglucanase of R. cellulolyticum by binding to the upstream intergenic region.IMPORTANCERuminiclostridium cellulolyticum is a Gram-positive, mesophilic, anaerobic, cellulolytic, and hemicellulolytic bacterium. The last property qualifies this species as a model species for the study of hemicellulose degradation, import of degradation products, and overall regulation of these phenomena. In this study, we focus on the regulation of xyloglucan dextrin import and intracellular degradation and show that the two components of the two-component regulation system XygSR are essential for growth on xyloglucan and that the response regulator XygR regulates the transcription of genes involved in the extracellular degradation of the polysaccharide, the import of degradation products, and their intracellular degradation.


Subject(s)
Bacterial Proteins/genetics , Clostridium cellulolyticum/genetics , Glucans/metabolism , Xylans/metabolism , Bacterial Proteins/metabolism , Clostridium cellulolyticum/metabolism
3.
Microorganisms ; 11(7)2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37512904

ABSTRACT

In Ruminiclostridium cellulolyticum, cellobiose is imported by the CuaABC ATP-binding cassette transporter containing the solute-binding protein (SBP) CuaA and is further degraded in the cytosol by the cellobiose phosphorylase CbpA. The genes encoding these proteins have been shown to be essential for cellobiose and cellulose utilization. Here, we show that a second SBP (CuaD), whose gene is adjacent to two genes encoding a putative two-component regulation system (CuaSR), forms a three-component system with CuaS and CuaR. Studies of mutant and recombinant strains of R. cellulolyticum have indicated that cuaD is important for the growth of strains on cellobiose and cellulose. Furthermore, the results of our RT-qPCR experiments suggest that both the three (CuaDSR)- and the two (CuaSR)-component systems are able to perceive the cellobiose signal. However, the strain producing the three-component system is more efficient in its cellobiose and cellulose utilization. As CuaD binds to CuaS, we propose an in-silico model of the complex made up of two extracellular domains of CuaS and two of CuaD. CuaD allows microorganisms to detect very low concentrations of cellobiose due to its high affinity and specificity for this disaccharide, and together with CuaSR, it triggers the expression of the cuaABC-cbpA genes involved in cellodextrins uptake.

4.
Biotechnol Biofuels Bioprod ; 15(1): 127, 2022 Nov 19.
Article in English | MEDLINE | ID: mdl-36403068

ABSTRACT

BACKGROUND: Primary degraders of polysaccharides play a key role in anaerobic biotopes, where plant cell wall accumulates, providing extracellular enzymes to release fermentable carbohydrates to fuel themselves and other non-degrader species. Ruminiclostridium cellulolyticum is a model primary degrader growing amongst others on arabinoxylan. It produces large multi-enzymatic complexes called cellulosomes, which efficiently deconstruct arabinoxylan into fermentable monosaccharides. RESULTS: Complete extracellular arabinoxylan degradation was long thought to be required to fuel the bacterium during this plant cell wall deconstruction stage. We discovered and characterized a second system of "arabinoxylan" degradation in R. cellulolyticum, which challenged this paradigm. This "selfish" system is composed of an ABC transporter dedicated to the import of large and possibly acetylated arabinoxylodextrins, and a set of four glycoside hydrolases and two esterases. These enzymes show complementary action modes on arabinoxylo-dextrins. Two α-L-arabinofuranosidases target the diverse arabinosyl side chains, and two exo-xylanases target the xylo-oligosaccharides backbone either at the reducing or the non-reducing end. Together, with the help of two different esterases removing acetyl decorations, they achieve the depolymerization of arabinoxylo-dextrins in arabinose, xylose and xylobiose. The in vivo study showed that this new system is strongly beneficial for the fitness of the bacterium when grown on arabinoxylan, leading to the conclusion that a part of arabinoxylan degradation is achieved in the cytosol, even if monosaccharides are efficiently provided by the cellulosomes in the extracellular space. These results shed new light on the strategies used by anaerobic primary degrader bacteria to metabolize highly decorated arabinoxylan in competitive environments. CONCLUSION: The primary degrader model Ruminiclostridium cellulolyticum has developed a "selfish" strategy consisting of importing into the bacterium, large arabinoxylan-dextrin fractions released from a partial extracellular deconstruction of arabinoxylan, thus complementing its efficient extracellular arabinoxylan degradation system. Genetic studies suggest that this system is important to support fitness and survival in a competitive biotope. These results provide a better understanding of arabinoxylan catabolism in the primary degrader, with biotechnological application for synthetic microbial community engineering for the production of commodity chemicals from lignocellulosic biomass.

5.
Metab Eng Commun ; 12: e00157, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33457204

ABSTRACT

The necessity to decrease our fossil energy dependence requests bioprocesses based on biomass degradation. Cellobiose is the main product released by cellulases when acting on the major plant cell wall polysaccharide constituent, the cellulose. Escherichia coli, one of the most common model organisms for the academy and the industry, is unable to metabolize this disaccharide. In this context, the remodeling of E. coli to catabolize cellobiose should thus constitute an important progress for the design of such applications. Here, we developed a robust E. coli strain able to metabolize cellobiose by integration of a small set of modifications in its genome. Contrary to previous studies that use adaptative evolution to achieve some growth on this sugar by reactivating E. coli cryptic operons coding for cellobiose metabolism, we identified easily insertable modifications impacting the cellobiose import (expression of a gene coding a truncated variant of the maltoporin LamB, modification of the expression of lacY encoding the lactose permease) and its intracellular degradation (genomic insertion of a gene encoding either a cytosolic ß-glucosidase or a cellobiose phosphorylase). Taken together, our results provide an easily transferable set of mutations that confers to E. coli an efficient growth phenotype on cellobiose (doubling time of 2.2 â€‹h in aerobiosis) without any prior adaptation.

6.
Biochim Biophys Acta Gen Subj ; 1865(5): 129848, 2021 05.
Article in English | MEDLINE | ID: mdl-33460770

ABSTRACT

BACKGROUND: Environmental bacteria express a wide diversity of glycoside hydrolases (GH). Screening and characterization of GH from metagenomic sources provides an insight into biomass degradation strategies of non-cultivated prokaryotes. METHODS: In the present report, we screened a compost metagenome for lignocellulolytic activities and identified six genes encoding enzymes belonging to family GH9 (GH9a-f). Three of these enzymes (GH9b, GH9d and GH9e) were successfully expressed and characterized. RESULTS: A phylogenetic analysis of the catalytic domain of pro- and eukaryotic GH9 enzymes suggested the existence of two major subgroups. Bacterial GH9s displayed a wide variety of modular architectures and those harboring an N-terminal Ig-like domain, such as GH9b and GH9d, segregated from the remainder. We purified and characterized GH9 endoglucanases from both subgroups and examined their stabilities, substrate specificities and product profiles. GH9e exhibited an original hydrolysis pattern, liberating an elevated proportion of oligosaccharides longer than cellobiose. All of the enzymes exhibited processive behavior and a synergistic action on crystalline cellulose. Synergy was also evidenced between GH9d and a GH48 enzyme identified from the same metagenome. CONCLUSIONS: The characterized GH9 enzymes displayed different modular architectures and distinct substrate and product profiles. The presence of a cellulose binding domain was shown to be necessary for binding and digestion of insoluble cellulosic substrates, but not for processivity. GENERAL SIGNIFICANCE: The identification of six GH9 enzymes from a compost metagenome and the functional variety of three characterized members highlight the importance of this enzyme family in bacterial biomass deconstruction.


Subject(s)
Bacteria/genetics , Bacterial Proteins/genetics , Glycoside Hydrolases/genetics , Bacteria/metabolism , Bacterial Proteins/metabolism , Genome, Bacterial , Glycoside Hydrolases/metabolism , Hydrolysis , Lignin/metabolism , Metagenome , Phylogeny , Substrate Specificity
7.
mBio ; 12(6): e0220621, 2021 12 21.
Article in English | MEDLINE | ID: mdl-34749527

ABSTRACT

Xyloglucan utilization by Ruminiclostridium cellulolyticum was formerly shown to imply the uptake of large xylogluco-oligosaccharides, followed by cytosolic depolymerization into glucose, galactose, xylose, and cellobiose. This raises the question of how the anaerobic bacterium manages the simultaneous presence of multiple sugars. Using genetic and biochemical approaches targeting the corresponding metabolic pathways, we observed that, surprisingly, all sugars are catabolized, collectively, but glucose consumption is prioritized. Most selected enzymes display unusual features, especially the GTP-dependent hexokinase of glycolysis, which appeared reversible and crucial for xyloglucan utilization. In contrast, mutant strains lacking either galactokinase, cellobiose-phosphorylase, or xylulokinase still catabolize xyloglucan but display variably altered growth. Furthermore, the xylogluco-oligosaccharide depolymerization process appeared connected to the downstream pathways through an intricate network of competitive and noncompetitive inhibitions. Altogether, our data indicate that xyloglucan utilization by R. cellulolyticum relies on an energy-saving central carbon metabolism deviating from current bacterial models, which efficiently prevents carbon overflow. IMPORTANCE The study of the decomposition of recalcitrant plant biomass is of great interest as the limiting step of terrestrial carbon cycle and to produce plant-derived valuable chemicals and energy. While extracellular cellulose degradation and catabolism have been studied in detail, few publications describe the complete metabolism of hemicelluloses and, to date, the published models are limited to the extracellular degradation and sequential entry of simple sugars. Here, we describe how the model anaerobic bacterium Ruminiclostridium cellulolyticum deals with the synchronous intracellular release of glucose, galactose, xylose, and cellobiose upon cytosolic depolymerization of imported xyloglucan oligosaccharides. The described novel metabolic strategy involves the simultaneous activity of different metabolic pathways coupled to a network of inhibitions controlling the carbon flux and is distinct from the ubiquitously observed sequential uptake and metabolism of carbohydrates known as the diauxic shift. Our results highlight the diversity of cellular responses related to a complex environment.


Subject(s)
Firmicutes/metabolism , Glucans/metabolism , Xylans/metabolism , Anaerobiosis , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cellobiose/metabolism , Firmicutes/genetics , Firmicutes/growth & development , Glucose/metabolism , Hexokinase/genetics , Hexokinase/metabolism , Metabolic Networks and Pathways , Polysaccharides/metabolism
8.
FEBS J ; 286(17): 3359-3373, 2019 09.
Article in English | MEDLINE | ID: mdl-31004451

ABSTRACT

Ruminiclostridium cellulolyticum and Lachnoclostridium phytofermentans are cellulolytic clostridia either producing extracellular multienzymatic complexes termed cellulosomes or secreting free cellulases respectively. In the free state, the cellulase Cel9A secreted by L. phytofermentans is much more active on crystalline cellulose than any cellulosomal family-9 enzyme produced by R. cellulolyticum. Nevertheless, the incorporation of Cel9A in vitro in hybrid cellulosomes was formerly shown to generate artificial complexes with altered activity, whereas its incorporation in vivo in native R. cellulolyticum cellulosomes resulted in a strain displaying a weakened cellulolytic phenotype. In this study, we investigated why Cel9A is so potent in the free state but functions poorly as a cellulosomal component, in contrast to the most similar enzyme synthesized by R. cellulolyticum, Cel9G, weakly active in the free state but whose activity on crystalline cellulose is drastically increased in cellulosomes. We show that the removal of the C-terminal moiety of Cel9A encompassing the two X2 modules and the family-3b carbohydrate binding module (CBM3b), reduces its activity on crystalline cellulose. Grafting a dockerin module further diminishes the activity, but this truncated cellulosomal form of Cel9A displays important synergies in hybrid cellulosomes with the pivotal family-48 cellulosomal enzyme of R. cellulolyticum. The exact inverse approach was applied to the cellulosomal Cel9G. Grafting the two X2 modules and the CBM3b of Cel9A to Cel9G strongly increases its activity on crystalline cellulose, to reach Cel9A activity levels. Altogether these data emphasize the specific features required to generate an efficient free or cellulosomal family-9 cellulase.


Subject(s)
Bacterial Proteins/metabolism , Cellulases/metabolism , Cellulosomes/metabolism , Clostridiales/enzymology , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Binding Sites , Cellulases/chemistry , Cellulases/genetics , Cellulose/metabolism , Clostridiales/genetics , Protein Binding
9.
Biotechnol Biofuels ; 12: 208, 2019.
Article in English | MEDLINE | ID: mdl-31497068

ABSTRACT

BACKGROUND: In anaerobic cellulolytic micro-organisms, cellulolysis results in the action of several cellulases gathered in extracellular multi-enzyme complexes called cellulosomes. Their action releases cellobiose and longer cellodextrins which are imported and further degraded in the cytosol to fuel the cells. In Ruminiclostridium cellulolyticum, an anaerobic and cellulolytic mesophilic bacteria, three cellodextrin phosphorylases named CdpA, CdpB, and CdpC, were identified in addition to the cellobiose phosphorylase (CbpA) previously characterized. The present study aimed at characterizing them, exploring their implication during growth on cellulose to better understand the life-style of cellulolytic bacteria on such substrate. RESULTS: The three cellodextrin phosphorylases from R. cellulolyticum displayed marked different enzymatic characteristics. They are specific for cellodextrins of different lengths and present different k cat values. CdpC is the most active enzyme before CdpA, and CdpB is weakly active. Modeling studies revealed that a mutation of a conserved histidine residue in the phosphate ion-binding pocket in CdpB and CdpC might explain their activity-level differences. The genes encoding these enzymes are scattered over the chromosome of R. cellulolyticum and only the expression of the gene encoding the cellobiose phosphorylase and the gene cdpA is induced during cellulose growth. Characterization of four independent mutants constructed in R. cellulolyticum for each of the cellobiose and cellodextrin phosphorylases encoding genes indicated that only the cellobiose phosphorylase is essential for growth on cellulose. CONCLUSIONS: Unexpectedly, the cellobiose phosphorylase but not the cellodextrin phosphorylases is essential for the growth of the model bacterium on cellulose. This suggests that the bacterium adopts a "short" dextrin strategy to grow on cellulose, even though the use of long cellodextrins might be more energy-saving. Our results suggest marked differences in the cellulose catabolism developed among cellulolytic bacteria, which is a result that might impact the design of future engineered strains for biomass-to-biofuel conversion.

11.
Biotechnol Biofuels ; 10: 250, 2017.
Article in English | MEDLINE | ID: mdl-29093754

ABSTRACT

BACKGROUND: Like a number of anaerobic and cellulolytic Gram-positive bacteria, the model microorganism Ruminiclostridium cellulolyticum produces extracellular multi-enzymatic complexes called cellulosomes, which efficiently degrade the crystalline cellulose. Action of the complexes on cellulose releases cellobiose and longer cellodextrins but to date, little is known about the transport and utilization of the produced cellodextrins in the bacterium. A better understanding of the uptake systems and fermentation of sugars derived from cellulose could have a major impact in the field of biofuels production. RESULTS: We characterized a putative ABC transporter devoted to cellodextrins uptake, and a cellobiose phosphorylase (CbpA) in R. cellulolyticum. The genes encoding the components of the ABC transporter (a binding protein CuaA and two integral membrane proteins) and CbpA are expressed as a polycistronic transcriptional unit induced in the presence of cellobiose. Upstream, another polycistronic transcriptional unit encodes a two-component system (sensor and regulator), and a second binding protein CuaD, and is constitutively expressed. The products might form a three-component system inducing the expression of cuaABC and cbpA since we showed that CuaR is able to recognize the region upstream of cuaA. Biochemical analysis showed that CbpA is a strict cellobiose phosphorylase inactive on longer cellodextrins; CuaA binds to all cellodextrins (G2-G5) tested, whereas CuaD is specific to cellobiose and presents a higher affinity to this sugar. This results are in agreement with their function in transport and signalization, respectively. Characterization of a cuaD mutant, and its derivatives, indicated that the ABC transporter and CbpA are essential for growth on cellobiose and cellulose. CONCLUSIONS: For the first time in a Gram-positive strain, we identified a three-component system and a conjugated ABC transporter/cellobiose phosphorylase system which was shown to be essential for the growth of the model cellulolytic bacterium R. cellulolyticum on cellobiose and cellulose. This efficient and energy-saving system of transport and phosphorolysis appears to be the major cellobiose utilization pathway in R. cellulolyticum, and seems well adapted to cellulolytic life-style strain. It represents a new way to enable engineered strains to utilize cellodextrins for the production of biofuels or chemicals of interest from cellulose.

12.
Biochem J ; 389(Pt 2): 325-32, 2005 Jul 15.
Article in English | MEDLINE | ID: mdl-15790314

ABSTRACT

One of the mechanisms contributing to the protection by breast-feeding of the newborn against enteric diseases is related to the ability of human milk oligosaccharides to prevent the attachment of pathogenic bacteria to the duodenual epithelium. Indeed, a variety of fucosylated oligosaccharides, specific to human milk, form part of the innate immune system. In the present study, we demonstrate the specific blocking of PA-IIL, a fucose-binding lectin of the human pathogen Pseudomonas aeruginosa, by milk oligosaccharides. Two fucosylated epitopes, Lewis a and 3-fucosyl-lactose (Lewis x glucose analogue) bind to the lectin with dissociation constants of 2.2x10(-7) M and 3.6x10(-7) M respectively. Thermodynamic studies indicate that these interactions are dominated by enthalpy. The entropy contribution is slightly favourable when binding to fucose and to the highest-affinity ligand, Lewis a. The high-resolution X-ray structures of two complexes of PA-IIL with milk oligosaccharides allow the precise determination of the conformation of a trisaccharide and a pentasaccharide. The different types of interaction between the oligosaccharides and the protein involve not only hydrogen bonding, but also calcium- and water-bridged contacts, allowing a rationalization of the thermodynamic data. This study provides important structural information about compounds that could be of general application in new therapeutic strategies against bacterial infections.


Subject(s)
Adhesins, Bacterial/metabolism , Lectins/metabolism , Milk, Human/chemistry , Oligosaccharides/chemistry , Oligosaccharides/metabolism , Pseudomonas aeruginosa/chemistry , Binding Sites , Carbohydrate Conformation , Carbohydrate Sequence , Crystallography , Humans , Models, Molecular , Molecular Sequence Data , Protein Binding , Protein Conformation , Pseudomonas aeruginosa/metabolism , Substrate Specificity , Thermodynamics
13.
Sci Rep ; 6: 22770, 2016 Mar 07.
Article in English | MEDLINE | ID: mdl-26946939

ABSTRACT

Xyloglucan, a ubiquitous highly branched plant polysaccharide, was found to be rapidly degraded and metabolized by the cellulosome-producing bacterium Ruminiclostridium cellulolyticum. Our study shows that at least four cellulosomal enzymes displaying either endo- or exoxyloglucanase activities, achieve the extracellular degradation of xyloglucan into 4-glucosyl backbone xyloglucan oligosaccharides. The released oligosaccharides (composed of up to 9 monosaccharides) are subsequently imported by a highly specific ATP-binding cassette transporter (ABC-transporter), the expression of the corresponding genes being strongly induced by xyloglucan. This polysaccharide also triggers the synthesis of cytoplasmic ß-galactosidase, α-xylosidase, and ß-glucosidase that act sequentially to convert the imported oligosaccharides into galactose, xylose, glucose and unexpectedly cellobiose. Thus R. cellulolyticum has developed an energy-saving strategy to metabolize this hemicellulosic polysaccharide that relies on the action of the extracellular cellulosomes, a highly specialized ABC-transporter, and cytoplasmic enzymes acting in a specific order. This strategy appears to be widespread among cellulosome-producing mesophilic bacteria which display highly similar gene clusters encoding the cytosolic enzymes and the ABC-transporter.


Subject(s)
Bacterial Proteins/metabolism , Cellulosomes/metabolism , Clostridiales/metabolism , Glucans/metabolism , Xylans/metabolism , ATP-Binding Cassette Transporters/metabolism , Cellulases/metabolism , Cytoplasm/enzymology , Substrate Specificity
14.
PLoS One ; 11(8): e0160812, 2016.
Article in English | MEDLINE | ID: mdl-27501457

ABSTRACT

Ruminiclostridium cellulolyticum (Clostridium cellulolyticum) is a mesophilic cellulolytic anaerobic bacterium that produces a multi-enzymatic system composed of cellulosomes and non-cellulosomal enzymes to degrade plant cell wall polysaccharides. We characterized one of the non-cellulosomal enzymes, Cel5I, composed of a Family-5 Glycoside Hydrolase catalytic module (GH5), a tandem of Family-17 and -28 Carbohydrate Binding Modules (CBM), and three S-layer homologous (SLH) modules, where the latter are expected to anchor the protein on the cell surface. Cel5I is the only putative endoglucanase targeting the cell surface as well as the only putative protein in R. cellulolyticum containing CBM17 and/or CBM28 modules. We characterized different recombinant structural variants from Cel5I. We showed that Cel5I has an affinity for insoluble cellulosic substrates through its CBMs, that it is the most active endoglucanase on crystalline cellulose of R. cellulolyticum characterized to date and mostly localized in the cell envelope of R. cellulolyticum. Its role in vivo was analyzed using a R. cellulolyticum cel5I mutant strain. Absence of Cel5I in the cell envelope did not lead to a significant variation of the phenotype compared to the wild type strain. Neither in terms of cell binding to cellulose, nor for its growth on crystalline cellulose, thus indicating that the protein has a rather subtle role in tested conditions. Cel5I might be more important in a natural environment, at low concentration of degradable glucose polymers, where its role might be to generate higher concentration of short cellodextrins close to the cell surface, facilitating their uptake or for signalization purpose.


Subject(s)
Cellulase/metabolism , Cellulosomes/metabolism , Clostridium cellulolyticum/enzymology , Glycosides/metabolism , Carbohydrate Metabolism , Hydrolysis
15.
Proteins ; 58(3): 735-46, 2005 Feb 15.
Article in English | MEDLINE | ID: mdl-15573375

ABSTRACT

PA-IIL is a fucose-binding lectin from Pseudomonas aeruginosa that is closely related to the virulence factors of the bacterium. Previous structural studies have revealed a new carbohydrate-binding mode with direct involvement of two calcium ions (Mitchell E, Houles C, Sudakevitz D, Wimmerova M, Gautier C, Perez S, Wu AM, Gilboa-Garber N, Imberty A. Structural basis for selective recognition of oligosaccharides from cystic fibrosis patients by the lectin PA-IIL of Pseudomonas aeruginosa. Nat Struct Biol 2002;9:918-921). A combination of thermodynamic, structural, and computational methods has been used to study the basis of the high affinity for the monosaccharide ligand. A titration microcalorimetry study indicated that the high affinity is enthalpy driven. The crystal structure of the tetrameric PA-IIL in complex with fucose and calcium was refined to 1.0 A resolution and, in combination with modeling, allowed a proposal to be made for the hydrogen-bond network in the binding site. Calculations of partial charges using ab initio computational chemistry methods indicated that extensive delocalization of charges between the calcium ions, the side chains of the protein-binding site and the carbohydrate ligand is responsible for the high enthalpy of binding and therefore for the unusually high affinity observed for this unique mode of carbohydrate recognition.


Subject(s)
Adhesins, Bacterial/chemistry , Computational Biology/methods , Crystallography, X-Ray/methods , Fucose/chemistry , Lectins/chemistry , Pseudomonas aeruginosa/metabolism , Amino Acid Sequence , Bacterial Proteins/chemistry , Binding Sites , Calcium/chemistry , Calorimetry , Carbohydrates/chemistry , Cystic Fibrosis/metabolism , Escherichia coli/metabolism , Hemagglutinins/metabolism , Hot Temperature , Hydrogen Bonding , Hydrogen-Ion Concentration , Ions , Ligands , Models, Molecular , Molecular Conformation , Molecular Sequence Data , Plasmids/metabolism , Protein Binding , Proteins/chemistry , Protons , Recombinant Proteins/chemistry , Software , Temperature , Thermodynamics
16.
FEBS J ; 280(22): 5764-79, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24033928

ABSTRACT

Bacterial cellulosomes are generally believed to assemble at random, like those produced by Clostridium cellulolyticum. They are composed of one scaffolding protein bearing eight homologous type I cohesins that bind to any of the type I dockerins borne by the 62 cellulosomal subunits, thus generating highly heterogeneous complexes. In the present study, the heterogeneity and random assembly of the cellulosomes were evaluated with a simpler model: a miniscaffoldin containing three C. cellulolyticum cohesins and three cellulases of the same bacterium bearing the cognate dockerin (Cel5A, Cel48F, and Cel9G). Surprisingly, rather than the expected randomized integration of enzymes, the assembly of the minicellulosome generated only three distinct types of complex out of the 10 possible combinations, thus indicating preferential integration of enzymes upon binding to the scaffoldin. A hybrid scaffoldin that displays one cohesin from C. cellulolyticum and one from C. thermocellum, thus allowing sequential integration of enzymes, was exploited to further characterize this phenomenon. The initial binding of a given enzyme to the C. thermocellum cohesin was found to influence the type of enzyme that subsequently bound to the C. cellulolyticum cohesin. The preferential integration appears to be related to the length of the inter-cohesin linker. The data indicate that the binding of a cellulosomal enzyme to a cohesin has a direct influence on the dockerin-bearing proteins that will subsequently interact with adjacent cohesins. Thus, despite the general lack of specificity of the cohesin-dockerin interaction within a given species and type, bacterial cellulosomes are not necessarily assembled at random.


Subject(s)
Bacterial Proteins/metabolism , Cell Cycle Proteins/metabolism , Cellulases/metabolism , Cellulosomes/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Clostridium cellulolyticum/metabolism , Bacterial Proteins/chemistry , Cell Cycle Proteins/chemistry , Cellulases/chemistry , Cellulosomes/chemistry , Chromosomal Proteins, Non-Histone/chemistry , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Protein Binding , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Substrate Specificity , Cohesins
17.
PLoS One ; 8(7): e69360, 2013.
Article in English | MEDLINE | ID: mdl-23935995

ABSTRACT

Clostridium cellulolyticum, a mesophilic anaerobic bacterium, produces highly active enzymatic complexes called cellulosomes. This strain was already shown to bind to cellulose, however the molecular mechanism(s) involved is not known. In this context we focused on the gene named hycP, encoding a 250-kDa protein of unknown function, containing a Family-3 Carbohydrate Binding Module (CBM3) along with 23 hyaline repeat modules (HYR modules). In the microbial kingdom the gene hycP is only found in C. cellulolyticum and the very close strain recently sequenced Clostridium sp BNL1100. Its presence in C. cellulolyticum guided us to analyze its function and its putative role in adhesion of the cells to cellulose. The CBM3 of HycP was shown to bind to crystalline cellulose and was assigned to the CBM3b subfamily. No hydrolytic activity on cellulose was found with a mini-protein displaying representative domains of HycP. A C. cellulolyticum inactivated hycP mutant strain was constructed, and we found that HycP is neither involved in binding of the cells to cellulose nor that the protein has an obvious role in cell growth on cellulose. We also characterized the role of the cellulosome scaffolding protein CipC in adhesion of C. cellulolyticum to cellulose, since cellulosome scaffolding protein has been proposed to mediate binding of other cellulolytic bacteria to cellulose. A second mutant was constructed, where cipC was inactivated. We unexpectedly found that CipC is only partly involved in binding of C. cellulolyticum to cellulose. Other mechanisms for cellulose adhesion may therefore exist in C. cellulolyticum. In addition, no cellulosomal protuberances were observed at the cellular surface of C. cellulolyticum, what is in contrast to reports from several other cellulosomes producing strains. These findings may suggest that C. cellulolyticum has no dedicated molecular mechanism to aggregate the cellulosomes at the cellular surface.


Subject(s)
Bacterial Proteins/genetics , Carrier Proteins/genetics , Cellulosomes/genetics , Clostridium cellulolyticum/genetics , Computational Biology , Amino Acid Sequence , Bacterial Adhesion , Bacterial Proteins/metabolism , Carrier Proteins/metabolism , Cellulose/metabolism , Cellulosomes/metabolism , Clostridium cellulolyticum/metabolism , Clostridium cellulolyticum/ultrastructure , Escherichia coli/genetics , Escherichia coli/metabolism , Molecular Sequence Data , Protein Structure, Tertiary , Sequence Alignment , Sequence Homology, Amino Acid
18.
FEBS J ; 276(11): 3076-86, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19490109

ABSTRACT

Cellulosomes produced by Clostridium cellulolyticum grown on cellulose were purified and separated using anion-exchange chromatography. SDS/PAGE analysis of six fractions showed variations in their cellulosomal protein composition. Hydrolytic activity on carboxymethyl cellulose, xylan, crystalline cellulose and hatched straw differed from one fraction to another. Fraction F1 showed a high level of activity on xylan, whereas fractions F5 and F6 were most active on crystalline cellulose and carboxymethyl cellulose, respectively. Several cellulosomal components specific to fractions F1, F5 and F6 were investigated using MS analysis. Several hemicellulases were identified, including three xylanases in F1, and several cellulases belonging to glycoside hydrolase families 9 and 5 and, a cystein protease inhibitor were identified in F5 and F6. Synergies were observed when two or three fractions were combined. A mixture containing fractions F1, F3 and F6 showed the most divergent cellulosomal composition, the most synergistic effects and the highest level of activity on straw (the most heterogeneous substrate tested). These findings show that on complex substrates such as straw, synergies occur between differently composed cellulosomes and the degradation efficiency of the cellulosomes is correlated with their enzyme diversity.


Subject(s)
Clostridium cellulolyticum/metabolism , Cytoplasmic Granules/metabolism , Bacterial Proteins/isolation & purification , Bacterial Proteins/metabolism , Cellulase/isolation & purification , Cellulase/metabolism , Cellulose/metabolism , Cellulose/pharmacology , Chromatography, Ion Exchange , Chromatography, Liquid/methods , Clostridium cellulolyticum/drug effects , Cysteine Proteinase Inhibitors/isolation & purification , Cysteine Proteinase Inhibitors/metabolism , Cytoplasmic Granules/chemistry , Electrophoresis, Polyacrylamide Gel , Glycoside Hydrolases/isolation & purification , Glycoside Hydrolases/metabolism , Inclusion Bodies , Mass Spectrometry/methods
19.
Biochemistry ; 45(24): 7501-10, 2006 Jun 20.
Article in English | MEDLINE | ID: mdl-16768446

ABSTRACT

The purple pigmented bacterium Chromobacterium violaceum is a dominant component of tropical soil microbiota that can cause rare but fatal septicaemia in humans. Its sequenced genome provides insight into the abundant potential of this organism for biotechnological and pharmaceutical applications and allowed an ORF encoding a protein that is 60% identical to the fucose binding lectin (PA-IIL) from Pseudomonas aeruginosa and the mannose binding lectin (RS-IIL) from Ralstonia solanacearum to be identified. The lectin, CV-IIL, has recently been purified from C. violaceum [Zinger-Yosovich, K., Sudakevitz, D., Imberty, A., Garber, N. C., and Gilboa-Garber, N. (2006) Microbiology 152, 457-463] and has been confirmed to be a tetramer with subunit size of 11.86 kDa and a binding preference for fucose. We describe here the cloning of CV-IIL and its expression as a recombinant protein. A complete structure-function characterization has been made in an effort to analyze the specificity and affinity of CV-IIL for fucose and mannose. Crystal structures of CV-IIL complexes with monosaccharides have yielded the molecular basis of the specificity. Each monomer contains two close calcium cations that mediate the binding of the monosaccharides, which occurs in different orientations for fucose and mannose. The thermodynamics of binding has been analyzed by titration microcalorimetry, giving dissociation constants of 1.7 and 19 microM for alpha-methyl fucoside and alpha-methyl mannoside, respectively. Further analysis demonstrated a strongly favorable entropy term that is unusual in carbohydrate binding. A comparison with both PA-IIL and RS-IIL, which have binding preferences for fucose and mannose, respectively, yielded insights into the monosaccharide specificity of this important class of soluble bacterial lectins.


Subject(s)
Bacterial Proteins/metabolism , Chromobacterium/metabolism , Lectins/metabolism , Mannose-Binding Lectin/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Binding Sites , Calcium/chemistry , Chromobacterium/chemistry , Crystallization , Entropy , Fucose/metabolism , Hydrogen Bonding , Lectins/chemistry , Lectins/genetics , Lectins/isolation & purification , Mannose/metabolism , Mannose-Binding Lectin/chemistry , Mannose-Binding Lectin/genetics , Mannose-Binding Lectin/isolation & purification , Models, Molecular , Protein Binding , Protein Structure, Secondary , Recombinant Proteins/metabolism , Sensitivity and Specificity , Solubility , Static Electricity , Structure-Activity Relationship
20.
Appl Environ Microbiol ; 71(3): 1215-22, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15746321

ABSTRACT

The gene man5K encoding the mannanase Man5K from Clostridium cellulolyticum was cloned alone or as an operon with the gene cipC1 encoding a truncated scaffoldin (miniCipC1) of the same origin in the solventogenic Clostridium acetobutylicum. The expression of the heterologous gene(s) was under the control of a weakened thiolase promoter Pthl. The recombinant strains of the solventogenic bacterium were both found to secrete active Man5K in the range of milligrams per liter. In the case of the strain expressing only man5K, a large fraction of the recombinant enzyme was truncated and lost the N-terminal dockerin domain, but it remained active towards galactomannan. When man5K was coexpressed with cipC1 in C. acetobutylicum, the recombinant strain secreted almost exclusively full-length mannanase, which bound to the scaffoldin miniCipC1, thus showing that complexation to the scaffoldin stabilized the enzyme. The secreted heterologous complex was found to be functional: it binds to crystalline cellulose via the carbohydrate binding module of the miniscaffoldin, and the complexed mannanase is active towards galactomannan. Taken together, these data show that C. acetobutylicum is a suitable host for the production, assembly, and secretion of heterologous minicellulosomes.


Subject(s)
Cellulase/biosynthesis , Clostridium acetobutylicum/metabolism , Multienzyme Complexes/biosynthesis , Bacterial Proteins/biosynthesis , Bacterial Proteins/genetics , Carrier Proteins/biosynthesis , Carrier Proteins/genetics , Cellulase/genetics , Cellulose/metabolism , Cloning, Molecular , Clostridium acetobutylicum/genetics , Gene Expression , Genes, Bacterial , Mannosidases/biosynthesis , Mannosidases/genetics , Multienzyme Complexes/genetics , Operon , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL