Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
Cell ; 165(6): 1493-1506, 2016 Jun 02.
Article in English | MEDLINE | ID: mdl-27238023

ABSTRACT

Essential gene functions underpin the core reactions required for cell viability, but their contributions and relationships are poorly studied in vivo. Using CRISPR interference, we created knockdowns of every essential gene in Bacillus subtilis and probed their phenotypes. Our high-confidence essential gene network, established using chemical genomics, showed extensive interconnections among distantly related processes and identified modes of action for uncharacterized antibiotics. Importantly, mild knockdown of essential gene functions significantly reduced stationary-phase survival without affecting maximal growth rate, suggesting that essential protein levels are set to maximize outgrowth from stationary phase. Finally, high-throughput microscopy indicated that cell morphology is relatively insensitive to mild knockdown but profoundly affected by depletion of gene function, revealing intimate connections between cell growth and shape. Our results provide a framework for systematic investigation of essential gene functions in vivo broadly applicable to diverse microorganisms and amenable to comparative analysis.


Subject(s)
Bacillus subtilis/genetics , Genes, Bacterial , Genes, Essential , CRISPR-Cas Systems , Gene Knockdown Techniques , Gene Library , Gene Regulatory Networks , Molecular Targeted Therapy
2.
Mol Cell ; 81(10): 2201-2215.e9, 2021 05 20.
Article in English | MEDLINE | ID: mdl-34019789

ABSTRACT

The multi-subunit bacterial RNA polymerase (RNAP) and its associated regulators carry out transcription and integrate myriad regulatory signals. Numerous studies have interrogated RNAP mechanism, and RNAP mutations drive Escherichia coli adaptation to many health- and industry-relevant environments, yet a paucity of systematic analyses hampers our understanding of the fitness trade-offs from altering RNAP function. Here, we conduct a chemical-genetic analysis of a library of RNAP mutants. We discover phenotypes for non-essential insertions, show that clustering mutant phenotypes increases their predictive power for drawing functional inferences, and demonstrate that some RNA polymerase mutants both decrease average cell length and prevent killing by cell-wall targeting antibiotics. Our findings demonstrate that RNAP chemical-genetic interactions provide a general platform for interrogating structure-function relationships in vivo and for identifying physiological trade-offs of mutations, including those relevant for disease and biotechnology. This strategy should have broad utility for illuminating the role of other important protein complexes.


Subject(s)
DNA-Directed RNA Polymerases/chemistry , DNA-Directed RNA Polymerases/genetics , Mutation/genetics , Amdinocillin/pharmacology , Bacterial Proteins/metabolism , Cell Death/drug effects , Chromosomes, Bacterial/genetics , Cytoprotection/drug effects , Cytoskeletal Proteins/metabolism , Escherichia coli/genetics , Gene Expression Regulation, Bacterial/drug effects , Mutagenesis, Insertional/genetics , Peptides/metabolism , Phenotype , Structure-Activity Relationship , Transcription, Genetic , Uridine Diphosphate Glucose/metabolism
3.
J Bacteriol ; : e0015124, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39258918

ABSTRACT

Small multidrug resistance (SMR) transporters are key players in the defense of multidrug-resistant pathogens to toxins and other homeostasis-perturbing compounds. However, recent evidence demonstrates that EmrE, an SMR from Escherichia coli and a model for understanding transport, can also induce susceptibility to some compounds by drug-gated proton leak. This runs down the ∆pH component of the proton-motive force (PMF), reducing the viability of the affected bacteria. Proton leak may provide an unexplored drug target distinct from the targets of most known antibiotics. Activating proton leak requires an SMR to be merely present, rather than be the primary resistance mechanism, and dissipates the energy source for many other efflux pumps. PAsmr, an EmrE homolog from Pseudomonas aeruginosa, transports many EmrE substrates in cells and purified systems. We hypothesized that PAsmr, like EmrE, may confer susceptibility to some compounds via drug-gated proton leak. Growth assays of E. coli expressing PAsmr displayed substrate-dependent resistance and susceptibility phenotypes, and in vitro solid-supported membrane electrophysiology experiments revealed that PAsmr performs both antiport and substrate-gated proton uniport, demonstrating the same functional promiscuity observed in EmrE. Growth assays of P. aeruginosa strain PA14 demonstrated that PAsmr contributes resistance to some antimicrobial compounds, but no growth defect is observed with susceptibility substrates, suggesting P. aeruginosa can compensate for the proton leak occurring through PAsmr. These phenotypic differences between P. aeruginosa and E. coli advance our understanding of the underlying resistance mechanisms in P. aeruginosa and prompt further investigation into the role that SMRs play in antibiotic resistance in pathogens. IMPORTANCE: Small multidrug resistance (SMR) transporters are a class of efflux pumps found in many pathogens, although their contributions to antibiotic resistance are not fully understood. We hypothesize that these transporters may confer not only resistance but also susceptibility, by dissipating the proton-motive force. This means to use an SMR transporter as a target; it merely needs to be present (as opposed to being the primary resistance mechanism). Here, we test this hypothesis with an SMR transporter found in Pseudomonas aeruginosa and find that it can perform both antiport (conferring resistance) and substrate-gated proton leak. Proton leak is detrimental to growth in Escherichia coli but not P. aeruginosa, suggesting that P. aeruginosa responds differently to or can altogether prevent ∆pH dissipation.

4.
Appl Environ Microbiol ; 90(6): e0006524, 2024 06 18.
Article in English | MEDLINE | ID: mdl-38775491

ABSTRACT

CRISPRi (Clustered Regularly Interspaced Palindromic Repeats interference) is a gene knockdown method that uses a deactivated Cas9 protein (dCas9) that binds a specific gene target locus dictated by an encoded guide RNA (sgRNA) to block transcription. Mobile-CRISPRi is a suite of modular vectors that enable CRISPRi knockdowns in diverse bacteria by integrating IPTG-inducible dcas9 and sgRNA genes into the genome using Tn7 transposition. Here, we show that the Mobile-CRISPRi system functions robustly and specifically in multiple Vibrio species: Vibrio cholerae, Vibrio fischeri, Vibrio vulnificus, Vibrio parahaemolyticus, and Vibrio campbellii. We demonstrate efficacy by targeting both essential and non-essential genes that function to produce defined, measurable phenotypes: bioluminescence, quorum sensing, cell division, and growth arrest. We anticipate that Mobile-CRISPRi will be used in Vibrio species to systematically probe gene function and essentiality in various behaviors and native environments.IMPORTANCEThe genetic manipulation of bacterial genomes is an invaluable tool in experimental microbiology. The development of CRISPRi (Clustered Regularly Interspaced Palindromic Repeats interference) tools has revolutionized genetics in many organisms, including bacteria. Here, we optimized the use of Mobile-CRISPRi in five Vibrio species, each of which has significant impacts on marine environments and organisms that include squid, shrimp, shellfish, finfish, corals, and multiple of which pose direct threats to human health. The Mobile-CRISPRi technology is easily adaptable, moveable from strain to strain, and enables researchers to selectively turn off gene expression. Our experiments demonstrate Mobile-CRISPRi is effective and robust at repressing gene expression of both essential and non-essential genes in Vibrio species.


Subject(s)
Vibrio vulnificus , Vibrio , Vibrio/genetics , Vibrio vulnificus/genetics , Vibrio parahaemolyticus/genetics , Gene Expression Regulation, Bacterial , CRISPR-Cas Systems , Vibrio cholerae/genetics , Clustered Regularly Interspaced Short Palindromic Repeats , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Knockdown Techniques , Aliivibrio fischeri/genetics
5.
Appl Environ Microbiol ; : e0034824, 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39324814

ABSTRACT

Alphaproteobacteria have a variety of cellular and metabolic features that provide important insights into biological systems and enable biotechnologies. For example, some species are capable of converting plant biomass into valuable biofuels and bioproducts that have the potential to contribute to the sustainable bioeconomy. Among the Alphaproteobacteria, Novosphingobium aromaticivorans, Rhodobacter sphaeroides, and Zymomonas mobilis show promise as organisms that can be engineered to convert extracted plant lignin or sugars into bioproducts and biofuels. Genetic manipulation of these bacteria is needed to introduce engineered pathways and modulate expression of native genes with the goal of enhancing bioproduct output. Although recent work has expanded the genetic toolkit for Z. mobilis, N. aromaticivorans and R. sphaeroides still need facile, reliable approaches to deliver genetic payloads to the genome and to control gene expression. Here, we expand the platform of genetic tools for N. aromaticivorans and R. sphaeroides to address these issues. We demonstrate that Tn7 transposition is an effective approach for introducing engineered DNA into the chromosome of N. aromaticivorans and R. sphaeroides. We screen a synthetic promoter library to identify isopropyl ß-D-1-thiogalactopyranoside-inducible promoters with regulated activity in both organisms (up to ~15-fold induction in N. aromaticivorans and ~5-fold induction in R. sphaeroides). Combining Tn7 integration with promoters from our library, we establish CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) interference systems for N. aromaticivorans and R. sphaeroides (up to ~10-fold knockdown in N. aromaticivorans and R. sphaeroides) that can target essential genes and modulate engineered pathways. We anticipate that these systems will greatly facilitate both genetic engineering and gene function discovery efforts in these species and other Alphaproteobacteria.IMPORTANCEIt is important to increase our understanding of the microbial world to improve health, agriculture, the environment, and biotechnology. For example, building a sustainable bioeconomy depends on the efficient conversion of plant material to valuable biofuels and bioproducts by microbes. One limitation in this conversion process is that microbes with otherwise promising properties for conversion are challenging to genetically engineer. Here we report genetic tools for Novosphingobium aromaticivorans and Rhodobacter sphaeroides that add to the burgeoning set of tools available for genome engineering and gene expression in Alphaproteobacteria. Our approaches allow straightforward insertion of engineered pathways into the N. aromaticivorans or R. sphaeroides genome and control of gene expression by inducing genes with synthetic promoters or repressing genes using CRISPR interference. These tools can be used in future work to gain additional insight into these and other Alphaproteobacteria and to aid in optimizing yield of biofuels and bioproducts.

6.
Br J Nutr ; 131(8): 1289-1297, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38053344

ABSTRACT

This study investigated the effects of Lacticaseibacillus rhamnosus HN001 supplementation on the architecture and gene expression in small intestinal tissues of piglets used as an animal model for infant humans. Twenty-four 10-d-old entire male piglets (4·3 (sd 0·59) kg body weight) were fed an infant formula (IF) (control) or IF supplemented with 1·3 × 105 (low dose) or 7·9 × 106 (high dose) colony-forming units HN001 per ml of reconstituted formula (n 8 piglets/treatment). After 24 d, piglets were euthanised. Samples were collected to analyse the histology and gene expression (RNAseq and qPCR) in the jejunal and ileal tissues, blood cytokine concentrations, and blood and faecal calprotectin concentrations. HN001 consumption altered (false discovery rate < 0·05) gene expression (RNAseq) in jejunal tissues but not in ileal tissues. The number of ileal goblet cells and crypt surface area increased quadratically (P < 0·05) as dietary HN001 levels increased, but no increase was observed in the jejunal tissues. Similarly, blood plasma concentrations of IL-10 and calprotectin increased linearly (P < 0·05) as dietary HN001 levels increased. In conclusion, supplementation of IF with HN001 affected the architecture and gene expression of small intestine tissue, blood cytokine concentration and frequencies, and blood calprotectin concentrations, indicating that HN001 modulated small intestinal tissue maturation and immunity in the piglet model.


Subject(s)
Lacticaseibacillus rhamnosus , Probiotics , Humans , Infant , Animals , Male , Swine , Probiotics/therapeutic use , Dietary Supplements , Ileum , Cytokines/genetics , Leukocyte L1 Antigen Complex , Gene Expression
7.
J Bacteriol ; 205(2): e0046822, 2023 02 22.
Article in English | MEDLINE | ID: mdl-36719218

ABSTRACT

To accelerate genetic studies on the Lyme disease pathogen Borrelia burgdorferi, we developed an enhanced CRISPR interference (CRISPRi) approach for isopropyl-ß-d-thiogalactopyranoside (IPTG)-inducible repression of specific B. burgdorferi genes. The entire system is encoded on a compact 11-kb shuttle vector plasmid that allows for inducible expression of both the sgRNA module and a nontoxic codon-optimized dCas9 protein. We validated this CRISPRi system by targeting the genes encoding OspA and OspB, abundant surface lipoproteins coexpressed by a single operon, and FlaB, the major subunit forming the periplasmic flagella. As in other systems, single guide RNAs (sgRNAs) complementary to the nontemplate strand were consistently effective in gene repression, with 4- to 994-fold reductions in targeted transcript levels and concomitant reductions of protein levels. Furthermore, we showed that ospAB knockdowns could be selectively complemented in trans for OspA expression via the insertion of CRISPRi-resistant, synonymously or nonsynonymously mutated protospacer adjacent motif (PAM*) ospA alleles into a unique site within the CRISPRi plasmid. Together, this establishes CRISPRi PAM* as a robust new genetic tool to simplify the study of B. burgdorferi genes, bypassing the need for gene disruptions by allelic exchange and avoiding rare codon toxicity from the heterologous expression of dCas9. IMPORTANCE Borrelia burgdorferi, the spirochetal bacterium causing Lyme disease, is a tick-borne pathogen of global importance. Here, we expand the genetic toolbox for studying B. burgdorferi physiology and pathogenesis by establishing a single plasmid-based, fully inducible, and nontoxic CRISPR interference (CRISPRi) system for transcriptional silencing of B. burgdorferi genes and operons. We also show that alleles of CRISPRi-targeted genes with mutated protospacer-adjacent motif (PAM*) sites are CRISPRi resistant and can be used for simultaneous in trans gene complementation. The CRISPRi PAM* system will streamline the study of essential Borrelia proteins and accelerate investigations into their structure-function relationships.


Subject(s)
Borrelia burgdorferi , Antigens, Surface/genetics , Bacterial Outer Membrane Proteins/genetics , Bacterial Vaccines , Borrelia burgdorferi/genetics , Clustered Regularly Interspaced Short Palindromic Repeats , Codon , Operon
8.
J Am Chem Soc ; 143(31): 12003-12013, 2021 08 11.
Article in English | MEDLINE | ID: mdl-34342433

ABSTRACT

Hybrid antibiotics are an emerging antimicrobial strategy to overcome antibiotic resistance. The natural product thiomarinol A is a hybrid of two antibiotics: holothin, a dithiolopyrrolone (DTP), and marinolic acid, a close analogue of the drug mupirocin that is used to treat methicillin-resistant Staphylococcus aureus (MRSA). DTPs disrupt metal homeostasis by chelating metal ions in cells, whereas mupirocin targets the essential enzyme isoleucyl-tRNA synthetase (IleRS). Thiomarinol A is over 100-fold more potent than mupirocin against mupirocin-sensitive MRSA; however, its mode of action has been unknown. We show that thiomarinol A targets IleRS. A knockdown of the IleRS-encoding gene, ileS, exhibited sensitivity to a synthetic analogue of thiomarinol A in a chemical genomics screen. Thiomarinol A inhibits MRSA IleRS with a picomolar Ki and binds to IleRS with low femtomolar affinity, 1600 times more tightly than mupirocin. We find that thiomarinol A remains effective against high-level mupirocin-resistant MRSA and provide evidence to support a dual mode of action for thiomarinol A that may include both IleRS inhibition and metal chelation. We demonstrate that MRSA develops resistance to thiomarinol A to a substantially lesser degree than mupirocin and the potent activity of thiomarinol A requires hybridity between DTP and mupirocin. Our findings identify a mode of action of a natural hybrid antibiotic and demonstrate the potential of hybrid antibiotics to combat antibiotic resistance.


Subject(s)
Anti-Bacterial Agents/pharmacology , Enzyme Inhibitors/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , Mupirocin/analogs & derivatives , Anti-Bacterial Agents/chemistry , Enzyme Inhibitors/chemistry , Isoleucine-tRNA Ligase/antagonists & inhibitors , Isoleucine-tRNA Ligase/metabolism , Methicillin-Resistant Staphylococcus aureus/metabolism , Microbial Sensitivity Tests , Molecular Structure , Mupirocin/chemistry , Mupirocin/pharmacology
9.
Appl Environ Microbiol ; 86(23)2020 11 10.
Article in English | MEDLINE | ID: mdl-32978126

ABSTRACT

Zymomonas mobilis is a promising biofuel producer due to its high alcohol tolerance and streamlined metabolism that efficiently converts sugar to ethanol. Z. mobilis genes are poorly characterized relative to those of model bacteria, hampering our ability to rationally engineer the genome with pathways capable of converting sugars from plant hydrolysates into valuable biofuels and bioproducts. Many of the unique properties that make Z. mobilis an attractive biofuel producer are controlled by essential genes; however, these genes cannot be manipulated using traditional genetic approaches (e.g., deletion or transposon insertion) because they are required for viability. CRISPR interference (CRISPRi) is a programmable gene knockdown system that can precisely control the timing and extent of gene repression, thus enabling targeting of essential genes. Here, we establish a stable, high-efficacy CRISPRi system in Z. mobilis that is capable of perturbing all genes-including essential genes. We show that Z. mobilis CRISPRi causes either strong knockdowns (>100-fold) using single guide RNA (sgRNA) spacers that perfectly match target genes or partial knockdowns using spacers with mismatches. We demonstrate the efficacy of Z. mobilis CRISPRi by targeting essential genes that are universally conserved in bacteria, are key to the efficient metabolism of Z. mobilis, or underlie alcohol tolerance. Our Z. mobilis CRISPRi system will enable comprehensive gene function discovery, opening a path to rational design of biofuel production strains with improved yields.IMPORTANCE Biofuels produced by microbial fermentation of plant feedstocks provide renewable and sustainable energy sources that have the potential to mitigate climate change and improve energy security. Engineered strains of the bacterium Z. mobilis can convert sugars extracted from plant feedstocks into next-generation biofuels like isobutanol; however, conversion by these strains remains inefficient due to key gaps in our knowledge about genes involved in metabolism and stress responses such as alcohol tolerance. Here, we develop CRISPRi as a tool to explore gene function in Z. mobilis We characterize genes that are essential for growth, required to ferment sugar to ethanol, and involved in resistance to isobutanol. Our Z. mobilis CRISPRi system makes it straightforward to define gene function and can be applied to improve strain engineering and increase biofuel yields.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , Genes, Bacterial , Genetic Association Studies/methods , Zymomonas/genetics , Biofuels/microbiology , RNA, Bacterial , RNA, Guide, Kinetoplastida/metabolism , Zymomonas/metabolism
10.
Genes Dev ; 26(23): 2621-33, 2012 Dec 01.
Article in English | MEDLINE | ID: mdl-23207917

ABSTRACT

Despite the prevalence of antisense transcripts in bacterial transcriptomes, little is known about how their synthesis is controlled. We report that a major function of the Escherichia coli termination factor Rho and its cofactor, NusG, is suppression of ubiquitous antisense transcription genome-wide. Rho binds C-rich unstructured nascent RNA (high C/G ratio) prior to its ATP-dependent dissociation of transcription complexes. NusG is required for efficient termination at minority subsets (~20%) of both antisense and sense Rho-dependent terminators with lower C/G ratio sequences. In contrast, a widely studied nusA deletion proposed to compromise Rho-dependent termination had no effect on antisense or sense Rho-dependent terminators in vivo. Global colocalization of the histone-like nucleoid-structuring protein (H-NS) with Rho-dependent terminators and genetic interactions between hns and rho suggest that H-NS aids Rho in suppression of antisense transcription. The combined actions of Rho, NusG, and H-NS appear to be analogous to the Sen1-Nrd1-Nab3 and nucleosome systems that suppress antisense transcription in eukaryotes.


Subject(s)
Escherichia coli Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression Regulation, Bacterial , Peptide Elongation Factors/metabolism , Transcription Factors/metabolism , Base Sequence , Escherichia coli Proteins/genetics , Gene Deletion , Genome, Bacterial , Peptide Elongation Factors/genetics , Protein Binding , Transcription Factors/genetics , Transcription, Genetic
11.
J Bacteriol ; 201(22)2019 11 15.
Article in English | MEDLINE | ID: mdl-31481541

ABSTRACT

Conditionally essential (CE) genes are required by pathogenic bacteria to establish and maintain infections. CE genes encode virulence factors, such as secretion systems and effector proteins, as well as biosynthetic enzymes that produce metabolites not found in the host environment. Due to their outsized importance in pathogenesis, CE gene products are attractive targets for the next generation of antimicrobials. However, the precise manipulation of CE gene expression in the context of infection is technically challenging, limiting our ability to understand the roles of CE genes in pathogenesis and accordingly design effective inhibitors. We previously developed a suite of CRISPR interference-based gene knockdown tools that are transferred by conjugation and stably integrate into bacterial genomes that we call Mobile-CRISPRi. Here, we show the efficacy of Mobile-CRISPRi in controlling CE gene expression in an animal infection model. We optimize Mobile-CRISPRi in Pseudomonas aeruginosa for use in a murine model of pneumonia by tuning the expression of CRISPRi components to avoid nonspecific toxicity. As a proof of principle, we demonstrate that knock down of a CE gene encoding the type III secretion system (T3SS) activator ExsA blocks effector protein secretion in culture and attenuates virulence in mice. We anticipate that Mobile-CRISPRi will be a valuable tool to probe the function of CE genes across many bacterial species and pathogenesis models.IMPORTANCE Antibiotic resistance is a growing threat to global health. To optimize the use of our existing antibiotics and identify new targets for future inhibitors, understanding the fundamental drivers of bacterial growth in the context of the host immune response is paramount. Historically, these genetic drivers have been difficult to manipulate precisely, as they are requisite for pathogen survival. Here, we provide the first application of Mobile-CRISPRi to study conditionally essential virulence genes in mouse models of lung infection through partial gene perturbation. We envision the use of Mobile-CRISPRi in future pathogenesis models and antibiotic target discovery efforts.


Subject(s)
CRISPR-Cas Systems , Gene Editing/methods , Pneumonia, Bacterial/microbiology , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/pathogenicity , Animals , CRISPR-Associated Protein 9 , Gene Knockdown Techniques , Genes, Bacterial , Immunoblotting , Male , Mice , Mice, Inbred C57BL , Pneumonia, Bacterial/metabolism , Pseudomonas Infections/metabolism , Pseudomonas aeruginosa/genetics , Reverse Transcriptase Polymerase Chain Reaction , Type III Secretion Systems/genetics
12.
J Am Pharm Assoc (2003) ; 59(1): 70-78.e3, 2019.
Article in English | MEDLINE | ID: mdl-30416067

ABSTRACT

OBJECTIVES: To develop and pilot test a model that extends pharmacists' direct patient care from the patient-centered medical home (PCMH) to the community pharmacy. SETTING: Two Michigan Medicine PCMH clinics and 2 CVS Pharmacy sites in Ann Arbor, MI. PRACTICE DESCRIPTION: In the PCMH clinics, pharmacists have provided patient care using collaborative practice agreements for diabetes, hypertension, and hyperlipidemia for more than 5 years. PRACTICE INNOVATION: Legal agreements were developed for sharing data and for accessing the Michigan Medicine Electronic Medical Record (EMR) in the CVS pharmacies. An immersion training model was used to train 2 community pharmacists to provide direct patient care and change medications to improve disease control. Then these community pharmacists provided disease management and comprehensive medication reviews (CMRs) in either the PCMH clinic or in CVS pharmacies. MAIN OUTCOME MEASURES: Glycosylated hemoglobin (A1C ≤ 9% and < 7%) and blood pressure (BP < 140/90) were compared for patients seen by PCMH pharmacists, patients seen by community pharmacists, and a propensity score-generated control group. Surveys were used to assess patient satisfaction. RESULTS: Of 503 shared patients, 200 received disease management and 113 received a CMR from the community pharmacists. Lack of efficacy was the most common reason for medication changes in diabetes (n = 136) and hypertension (n = 188). For CMR, optimizing the dosage regimen was the most common intervention. For the community pharmacist group, the odds of patients having an A1C ≤ 9% increased by 8% in each time period, whereas the odds decreased by 16% for the control group (odds ratio 1.29; P = 0.0028). No statistically significant differences were seen in the outcomes for patients seen by PCMH versus community pharmacists. Most patients (90%) rated the care as excellent. CONCLUSION: Direct patient care provided by community pharmacists, either in PCMH clinics or CVS pharmacies, was consistent with care provided by PCMH pharmacists. Patients were highly satisfied with the services provided.


Subject(s)
Community Pharmacy Services/organization & administration , Patient Care/methods , Patient-Centered Care/organization & administration , Pharmacists , Aged , Blood Pressure/physiology , Female , Glycated Hemoglobin/metabolism , Humans , Male , Middle Aged , Patient Satisfaction , Pilot Projects , Professional Role , Program Development , Program Evaluation/statistics & numerical data
13.
J Am Chem Soc ; 140(24): 7471-7485, 2018 06 20.
Article in English | MEDLINE | ID: mdl-29771498

ABSTRACT

NsaS is one of four intramembrane histidine kinases (HKs) in Staphylococcus aureus that mediate the pathogen's response to membrane active antimicrobials and human innate immunity. We describe the first integrative structural study of NsaS using a combination of solution state NMR spectroscopy, chemical-cross-linking, molecular modeling and dynamics. Three key structural features emerge: First, NsaS has a short N-terminal amphiphilic helix that anchors its transmembrane (TM) bundle into the inner leaflet of the membrane such that it might sense neighboring proteins or membrane deformations. Second, the transmembrane domain of NsaS is a 4-helix bundle with significant dynamics and structural deformations at the membrane interface. Third, the intracellular linker connecting the TM domain to the cytoplasmic catalytic domains of NsaS is a marginally stable helical dimer, with one state likely to be a coiled-coil. Data from chemical shifts, heteronuclear NOE, H/D exchange measurements and molecular modeling suggest that this linker might adopt different conformations during antibiotic induced signaling.


Subject(s)
Bacterial Proteins/chemistry , Histidine Kinase/chemistry , Membrane Proteins/chemistry , Anti-Bacterial Agents/pharmacology , Bacitracin/pharmacology , Bacterial Proteins/genetics , Gene Knockout Techniques , Histidine Kinase/genetics , Hydrophobic and Hydrophilic Interactions , Magnetic Resonance Spectroscopy , Membrane Proteins/genetics , Microbial Sensitivity Tests , Molecular Dynamics Simulation , Nisin/pharmacology , Protein Conformation, alpha-Helical , Protein Domains , Staphylococcus aureus/drug effects , Staphylococcus aureus/enzymology , Staphylococcus aureus/genetics
14.
Mol Cell ; 33(1): 97-108, 2009 Jan 16.
Article in English | MEDLINE | ID: mdl-19150431

ABSTRACT

The trafficking patterns of the bacterial regulators of transcript elongation sigma(70), rho, NusA, and NusG on genes in vivo and the explanation for promoter-proximal peaks of RNA polymerase (RNAP) are unknown. Genome-wide, E. coli ChIP-chip revealed distinct association patterns of regulators as RNAP transcribes away from promoters (rho first, then NusA, then NusG). However, the interactions of elongating complexes with these regulators did not differ significantly among most transcription units. A modest variation of NusG signal among genes reflected increased NusG interaction as transcription progresses, rather than functional specialization of elongating complexes. Promoter-proximal RNAP peaks were offset from sigma(70) peaks in the direction of transcription and co-occurred with NusA and rho peaks, suggesting that the RNAP peaks reflected elongating, rather than initiating, complexes. However, inhibition of rho did not increase RNAP levels within genes downstream from the RNAP peaks, suggesting the peaks are caused by a mechanism other than rho-dependent attenuation.


Subject(s)
Escherichia coli Proteins/metabolism , Escherichia coli/genetics , Transcription, Genetic , Chromatin Immunoprecipitation , DNA-Directed RNA Polymerases/metabolism , Genes, Bacterial , Models, Genetic , Promoter Regions, Genetic/genetics , Protein Binding , Protein Transport
15.
Proc Natl Acad Sci U S A ; 111(25): E2576-85, 2014 Jun 24.
Article in English | MEDLINE | ID: mdl-24927582

ABSTRACT

The molecular mechanisms of ethanol toxicity and tolerance in bacteria, although important for biotechnology and bioenergy applications, remain incompletely understood. Genetic studies have identified potential cellular targets for ethanol and have revealed multiple mechanisms of tolerance, but it remains difficult to separate the direct and indirect effects of ethanol. We used adaptive evolution to generate spontaneous ethanol-tolerant strains of Escherichia coli, and then characterized mechanisms of toxicity and resistance using genome-scale DNAseq, RNAseq, and ribosome profiling coupled with specific assays of ribosome and RNA polymerase function. Evolved alleles of metJ, rho, and rpsQ recapitulated most of the observed ethanol tolerance, implicating translation and transcription as key processes affected by ethanol. Ethanol induced miscoding errors during protein synthesis, from which the evolved rpsQ allele protected cells by increasing ribosome accuracy. Ribosome profiling and RNAseq analyses established that ethanol negatively affects transcriptional and translational processivity. Ethanol-stressed cells exhibited ribosomal stalling at internal AUG codons, which may be ameliorated by the adaptive inactivation of the MetJ repressor of methionine biosynthesis genes. Ethanol also caused aberrant intragenic transcription termination for mRNAs with low ribosome density, which was reduced in a strain with the adaptive rho mutation. Furthermore, ethanol inhibited transcript elongation by RNA polymerase in vitro. We propose that ethanol-induced inhibition and uncoupling of mRNA and protein synthesis through direct effects on ribosomes and RNA polymerase conformations are major contributors to ethanol toxicity in E. coli, and that adaptive mutations in metJ, rho, and rpsQ help protect these central dogma processes in the presence of ethanol.


Subject(s)
Drug Resistance, Bacterial , Escherichia coli K12 , Escherichia coli Proteins , Ethanol/pharmacology , Protein Biosynthesis , Solvents/pharmacology , Transcription, Genetic , Alleles , Drug Resistance, Bacterial/drug effects , Drug Resistance, Bacterial/genetics , Escherichia coli K12/genetics , Escherichia coli K12/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Genome-Wide Association Study , Protein Biosynthesis/drug effects , Protein Biosynthesis/genetics , Transcription, Genetic/drug effects , Transcription, Genetic/genetics
16.
J Bacteriol ; 198(21): 2925-2935, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27528508

ABSTRACT

The integrity of the bacterial cell envelope is essential to sustain life by countering the high turgor pressure of the cell and providing a barrier against chemical insults. In Bacillus subtilis, synthesis of both peptidoglycan and wall teichoic acids requires a common C55 lipid carrier, undecaprenyl-pyrophosphate (UPP), to ferry precursors across the cytoplasmic membrane. The synthesis and recycling of UPP requires a phosphatase to generate the monophosphate form Und-P, which is the substrate for peptidoglycan and wall teichoic acid synthases. Using an optimized clustered regularly interspaced short palindromic repeat (CRISPR) system with catalytically inactive ("dead") CRISPR-associated protein 9 (dCas9)-based transcriptional repression system (CRISPR interference [CRISPRi]), we demonstrate that B. subtilis requires either of two UPP phosphatases, UppP or BcrC, for viability. We show that a third predicted lipid phosphatase (YodM), with homology to diacylglycerol pyrophosphatases, can also support growth when overexpressed. Depletion of UPP phosphatase activity leads to morphological defects consistent with a failure of cell envelope synthesis and strongly activates the σM-dependent cell envelope stress response, including bcrC, which encodes one of the two UPP phosphatases. These results highlight the utility of an optimized CRISPRi system for the investigation of synthetic lethal gene pairs, clarify the nature of the B. subtilis UPP-Pase enzymes, and provide further evidence linking the σM regulon to cell envelope homeostasis pathways. IMPORTANCE: The emergence of antibiotic resistance among bacterial pathogens is of critical concern and motivates efforts to develop new therapeutics and increase the utility of those already in use. The lipid II cycle is one of the most frequently targeted processes for antibiotics and has been intensively studied. Despite these efforts, some steps have remained poorly defined, partly due to genetic redundancy. CRISPRi provides a powerful tool to investigate the functions of essential genes and sets of genes. Here, we used an optimized CRISPRi system to demonstrate functional redundancy of two UPP phosphatases that are required for the conversion of the initially synthesized UPP lipid carrier to Und-P, the substrate for the synthesis of the initial lipid-linked precursors in peptidoglycan and wall teichoic acid synthesis.


Subject(s)
Bacillus subtilis/enzymology , Bacterial Proteins/genetics , Cell Wall/metabolism , Pyrophosphatases/genetics , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Bacterial Proteins/metabolism , Cell Wall/enzymology , Cell Wall/genetics , Gene Deletion , Gene Expression Regulation, Bacterial , Gene Expression Regulation, Enzymologic , Polyisoprenyl Phosphates/metabolism , Pyrophosphatases/metabolism
17.
bioRxiv ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38853957

ABSTRACT

Gene expression systems that transcend species barriers are needed for cross-species analysis of gene function. In particular, expression systems that can be utilized in both model and pathogenic bacteria underpin comparative functional approaches that inform conserved and variable features of bacterial physiology. Here, we develop replicative and integrative vectors alongside a novel, IPTG-inducible promoter that can be used in the model bacterium Escherichia coli K-12 as well as strains of the antibiotic-resistant pathogen, Acinetobacter baumannii. We generate modular vectors that transfer by conjugation at high efficiency and either replicate or integrate into the genome, depending on design. Embedded in these vectors, we also developed a synthetic, IPTG-inducible promoter, P abstBR , that induces to a high level, but is less leaky than the commonly used trc promoter. We show that P abstBR is titratable at both the population and single cell level, regardless of species, highlighting the utility of our expression systems for cross-species functional studies. Finally, as a proof of principle, we use our integrating vector to develop a reporter for the E. coli envelope stress σ factor, RpoE, and deploy the reporter in E. coli and A. baumannii, finding that A. baumannii does not recognize RpoE-dependent promoters unless RpoE is heterologously expressed. We envision that these vector and promoter tools will be valuable for the community of researchers that study fundamental biology of E. coli and A. baumannii.

18.
Microbiol Spectr ; : e0130624, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39302127

ABSTRACT

Gene expression systems that transcend species barriers are needed for cross-species analysis of gene function. In particular, expression systems that can be utilized in both model and pathogenic bacteria underpin comparative functional approaches that inform conserved and variable features of bacterial physiology. In this study, we develop replicative and integrative vectors alongside a novel, IPTG-inducible promoter that can be used in the model bacterium Escherichia coli K-12 as well as strains of the antibiotic-resistant pathogen, Acinetobacter baumannii. We generate modular vectors that transfer by conjugation at high efficiency and either replicate or integrate into the genome, depending on design. Embedded in these vectors, we also developed a synthetic, IPTG-inducible promoter, PabstBR, that induces to a high level but is less leaky than the commonly used trc promoter. We show that PabstBR is titratable at both the population and single-cell levels, regardless of species, highlighting the utility of our expression systems for cross-species functional studies. Finally, as a proof of principle, we use our integrating vector to develop a reporter for the E. coli envelope stress σ factor, RpoE, and deploy the reporter in E. coli and A. baumannii, finding that A. baumannii does not recognize RpoE-dependent promoters unless RpoE is heterologously expressed. We envision that these vector and promoter tools will be valuable for the community of researchers who study the fundamental biology of E. coli and A. baumannii.IMPORTANCEAcinetobacter baumannii is a multidrug-resistant, hospital-acquired pathogen with the ability to cause severe infections. Understanding the unique biology of this non-model bacterium may lead to the discovery of new weaknesses that can be targeted to treat antibiotic-resistant infections. In this study, we provide expression tools that can be used to study the gene function in A. baumannii, including in drug-resistant clinical isolates. These tools are also compatible with the model bacterium, Escherichia coli, enabling cross-species comparisons of gene function. We anticipate that the use of these tools by the scientific community will accelerate our understanding of Acinetobacter biology.

19.
Microbiol Mol Biol Rev ; 88(2): e0017022, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38809084

ABSTRACT

SUMMARYFunctional genomics is the use of systematic gene perturbation approaches to determine the contributions of genes under conditions of interest. Although functional genomic strategies have been used in bacteria for decades, recent studies have taken advantage of CRISPR (clustered regularly interspaced short palindromic repeats) technologies, such as CRISPRi (CRISPR interference), that are capable of precisely modulating expression of all genes in the genome. Here, we discuss and review the use of CRISPRi and related technologies for bacterial functional genomics. We discuss the strengths and weaknesses of CRISPRi as well as design considerations for CRISPRi genetic screens. We also review examples of how CRISPRi screens have defined relevant genetic targets for medical and industrial applications. Finally, we outline a few of the many possible directions that could be pursued using CRISPR-based functional genomics in bacteria. Our view is that the most exciting screens and discoveries are yet to come.


Subject(s)
Bacteria , CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats , Genomics , Bacteria/genetics , Bacteria/metabolism , CRISPR-Cas Systems/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Genome, Bacterial , Gene Editing/methods , Biomedical Research , Humans
20.
bioRxiv ; 2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38659955

ABSTRACT

Bacterial host factors regulate the infection cycle of bacteriophages. Except for some well-studied host factors (e.g., receptors or restriction-modification systems), the contribution of the rest of the host genome on phage infection remains poorly understood. We developed PHAGEPACK, a pooled assay that systematically and comprehensively measures each host-gene impact on phage fitness. PHAGEPACK combines CRISPR interference with phage packaging to link host perturbation to phage fitness during active infection. Using PHAGEPACK, we constructed a genome-wide map of genes impacting T7 phage fitness in permissive E. coli, revealing pathways previously unknown to affect phage packaging. When applied to the non-permissive E. coli O121, PHAGEPACK identified pathways leading to host resistance; their removal increased phage susceptibility up to a billion-fold. Bioinformatic analysis indicates phage genomes carry homologs or truncations of key host factors, potentially for fitness advantage. In summary, PHAGEPACK offers valuable insights into phage-host interactions, phage evolution, and bacterial resistance.

SELECTION OF CITATIONS
SEARCH DETAIL